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Abstract

Let T be a periodic time scale. The purpose of this paper is to use Schauder's �xed point theorem to prove
the existence of periodic and asymptotically periodic solutions of nonlinear coupled Volterra integro-dynamic
systems with in�nite delay on time scales. The results obtained here extend the work of Ra�oul [22].
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1. Introduction

Time scales calculus was initiated in 1988 by Stefan Hilger. It bridges the gap between continuous and
discrete analysis and expands on both theories. Di�erential equations are de�ned on an interval of the set
of real numbers while di�erence equations are de�ned on discrete sets. However, some physical systems
are modeled by what is called dynamic equations because they are either di�erential equations, di�erence
equations or a combination of both. This means that dynamic equations are de�ned on connected, discrete
or combination of both types of sets. Hence, time scales calculus provides a generalization of di�erential and
di�erence analysis, see [9, 10, 18, 20] and the references therein.

Delay dynamic equations arise from a variety of applications including in various �elds of science and
engineering such as applied sciences, practical problems concerning mechanics, the engineering technique
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�elds, economy, control systems, physics, chemistry, biology, medicine, atomic energy, information theory,
harmonic oscillator, nonlinear oscillations, conservative systems, stability and instability of geodesic on Rie-
mannian manifolds, dynamics in Hamiltonian systems, etc, see [9, 10, 20, 25, 26]. In particular, problems
concerning qualitative analysis of delay dynamic equations have received the attention of many authors, see
[1]�[22], [24]�[26] and the references therein.

Let T be a periodic time scale such that 0 ∈ T. In this article, we are interested in the analysis of
qualitative theory of periodic and asymptotically periodic solutions of coupled Volterra integro-dynamic
equations. Inspired and motivated by the references in this paper, we consider the following nonlinear
coupled Volterra integro-dynamic systems with in�nite delay{

x∆(t) = h1(t)x(t) + h2(t)y(t) +
∫ t
−∞ a(t, s)f(x(s), y(s))∆s,

y∆(t) = p1(t)y(t) + p2(t)x(t) +
∫ t
−∞ b(t, s)g(x(s), y(s))∆s,

(1)

where h1, h2, p1, p2, a and b are rd-continuous functions, f and g are continuous functions. To show the
existence of periodic and asymptotically periodic solutions of (1), we transform (1) into an integral system
and then use Schauder's �xed point theorem. In the special case T = R, Ra�oul in [22] show the existence
of periodic and asymptotically periodic solutions of (1). Then, the results presented in this paper extend the
main results in [22].

2. Preliminaries

A time scale is an arbitrary nonempty closed subset of real numbers. The study of dynamic equations
on time scales is a fairly new subject, and research in this area is rapidly growing (see [1]-[13], [17]-[20] and
papers therein). The theory of dynamic equations uni�es the theories of di�erential equations and di�erence
equations. We suppose that the reader is familiar with the basic concepts concerning the calculus on time
scales for dynamic equations. Otherwise one can �nd in Bohner and Peterson books [9, 10, 20] most of
the material needed to read this paper. We start by giving some de�nitions necessary for our work. The
notion of periodic time scales is introduced in Kaufmann and Ra�oul [19]. The following two de�nitions are
borrowed from [19].

De�nition 2.1. We say that a time scale T is periodic if there exists an ω > 0 such that if t ∈ T then

t± ω ∈ T. For T 6= R, the smallest positive ω is called the period of the time scale.

Example 2.1. The following time scales are periodic.

1. T =
⋃∞
i=−∞[(2i− 1)h, 2ih], h > 0 has period ω = 2h.

2. T = hZ has period ω = h.

3. T = R.
4. T = {t = k − qm : k ∈ Z, m ∈ N0} where, 0 < q < 1 has period ω = 1.

Remark 2.1 ([19]). All periodic time scales are unbounded above and below.

De�nition 2.2. Let T 6= R be a periodic time scale with period ω. We say that the function f : T → R is

periodic with period T if there exists a natural number n such that T = nω, f(t±T ) = f(t) for all t ∈ T and

T is the smallest number such that f(t± T ) = f(t).
If T = R, we say that f is periodic with period T > 0 if T is the smallest positive number such that

f(t± T ) = f(t) for all t ∈ T.

Remark 2.2 ([19]). If T is a periodic time scale with period ω, then σ(t± nω) = σ(t)± nω. Consequently,
the graininess function µ satis�es µ(t± nω) = σ(t± nω)− (t± nω) = σ(t)− t = µ(t) and so, is a periodic

function with period ω.
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De�nition 2.3 ([9]). A function f : T→ R is called rd-continuous provided it is continuous at every right-

dense point t ∈ T and its left-sided limits exist, and is �nite at every left-dense point t ∈ T. The set of

rd-continuous functions f : T→ R will be denoted by

Crd = Crd(T) =Crd(T,R).

The set of functions f : T→ R that are di�erentiable and whose derivative is rd-continuous is denoted by

C1
rd = C1

rd(T) =C1
rd(T,R).

De�nition 2.4 ([9]). For f : T → R, we de�ne f∆(t) to be the number (if it exists) with the property that

for any given ε > 0, there exists a neighborhood U of t such that∣∣(f(σ(t))− f(s))− f∆(t) (σ(t)− s)
∣∣ < ε |σ(t)− s| for all s ∈ U.

The function f∆ : Tk → R is called the delta (or Hilger) derivative of f on Tk.

De�nition 2.5 ([9]). A function p : T→ R is called regressive provided 1 + µ(t)p(t) 6= 0 for all t ∈ T. The

set of all regressive and rd-continuous functions p : T → R will be denoted by R = R(T,R). We de�ne the

set R+ of all positively regressive elements of R by

R+ = R+(T,R) = {p ∈ R : 1 + µ(t)p(t) > 0, ∀t ∈ T}.

De�nition 2.6 ([9]). Let p ∈ R, then the generalized exponential function ep is de�ned as the unique solution

of the initial value problem

x∆(t) = p(t)x(t), x(s) = 1, where s ∈ T.

An explicit formula for ep(t, s) is given by

ep(t, s) = exp

(∫ t

s
ξµ(v)(p(v))∆v

)
, for all s, t ∈ T,

with

ξµ(p) =

{
log(1+µp)

µ if µ 6= 0,

p if µ = 0,

where log is the principal logarithm function.

Lemma 2.1 ([9]). Let p, q ∈ R. Then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1,

(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s),

(iii) 1
ep(t,s) = e	p(t, s) where, 	p(t) = − p(t)

1+µ(t)p(t) ,

(iv) ep(t, s) = 1
ep(s,t) = e	p(s, t),

(v) ep(t, s)ep(s, r) = ep(t, r),

(vi)
(

1
ep(·,s)

)∆
= − p(t)

eσp (·,s) .

Lemma 2.2 ([1]). If p ∈ R+, then

0 < ep(t, s) ≤ exp

(∫ t

s
p(v)∆v

)
, ∀t ∈ T.
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The proof of the main results in the next section is based upon an application of the following Schauder
�xed point theorem.

Theorem 2.1 (Schauder's �xed point theorem [23]). Let X be a Banach space, and Ω be a convex closed

bounded subset of X. If E : Ω→ Ω is completely continuous, then E has at least one �xed point in Ω.

De�nition 2.7. A map is completely continuous if it is continuous and it maps bounded sets into relatively

compact sets.

3. Periodic solutions

Let T > 0, T ∈ T be �xed and if T 6= R, T = nω for some n ∈ N. By the notation [a, b] we mean

[a, b] = {t ∈ T : a ≤ t ≤ b} ,

unless otherwise speci�ed. The intervals [a, b), (a, b] and (a, b) are de�ned similarly. De�ne

PT =
{

(φ, ψ) ∈ Crd(T,R2) : (φ, ψ)(t+ T ) = (φ, ψ)(t)
}
,

where both ϕ and ψ are real valued rd-continuous functions on T. Then PT is a Banach space when endowed
with the maximum norm

‖(x, y)‖ = max

{
max
t∈[0,T ]

|x(t)| , max
t∈[0,T ]

|y(t)|
}
,

see [3]. Throughout this paper, we assume that h1, p1 ∈ R+, h1, p1, h2, p2, a and b are rd-continuous
functions, f and g are continuous functions, and

a(t+ T, s+ T ) = a(t, s), b(t+ T, s+ T ) = b(t, s),

pi(t+ T ) = pi(t), hi(t+ T ) = hi(t), i = 1, 2, (2)

for all t ∈ T. Also, we assume that
eh1(T, 0) 6= 1, ep1(T, 0) 6= 1. (3)

The following lemma is fundamental to our results.

Lemma 3.1. Assume (2) and (3) hold. If (x, y) ∈ PT , then (x, y) is a solution of (1) if and only if

x(t) =

∫ t+T

t

eh1(t+ T, σ(u))

1− eh1(t+ T, t)
h2(u)y(u)∆u

+

∫ t+T

t

eh1(t+ T, σ(u))

1− eh1(t+ T, t)

∫ u

−∞
a(u, s)f(x(s), y(s))∆s∆u, (4)

and

y(t) =

∫ t+T

t

ep1(t+ T, σ(u))

1− ep1(t+ T, t)
p2(u)x(u)∆u

+

∫ t+T

t

ep1(t+ T, σ(u))

1− ep1(t+ T, t)

∫ u

−∞
b(u, s)g(x(s), y(s))∆s∆u. (5)

Proof. Let (x, y) ∈ PT be a solution of (1). First we write the �rst equation of (1) as

x∆(t)− h1(t)x(t) = h2(t)y(t) +

∫ t

−∞
a(t, s)f(x(s), y(s))∆s.
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Multiplying both side by e	h1(σ(t), 0) and then integrate from t to t+ T to obtain∫ t+T

t
[x(s)e	h1(s, 0)]∆ ∆s

=

∫ t+T

t
e	h1(σ(u), 0)h2(u)y(u)∆u

+

∫ t+T

t
e	h1(σ(u), 0)

∫ u

−∞
a(u, s)f(x(s), y(s))∆s∆u,

then

x(t+ T )e	h1(t+ T, 0)− x(t)e	h1(t, 0)

=

∫ t+T

t
e	h1(σ(u), 0)h2(u)y(u)∆u

+

∫ t+T

t
e	h1(σ(u), 0)

∫ u

−∞
a(u, s)f(x(s), y(s))∆s∆u.

Periodicity of x gives

x(t) (1− eh1(t+ T, t))

=

∫ t+T

t
h2(u)y(u)eh1(t+ T, σ(u))∆u

+

∫ t+T

t
eh1(t+ T, σ(u))

∫ u

−∞
a(u, s)f(x(s), y(s))∆s∆u.

Thus

x(t) =

∫ t+T

t

eh1(t+ T, σ(u))

1− eh1(t+ T, t)
h2(u)y(u)∆u

+

∫ t+T

t

eh1(t+ T, σ(u))

(1− eh1(t+ T, t))

∫ u

−∞
a(u, s)f(x(s), y(s))∆s∆u.

In the similar fashion

y(t) =

∫ t+T

t

ep1(t+ T, σ(u))

1− ep1(t+ T, t)
p2(u)x(u)∆u

+

∫ t+T

t

ep1(t+ T, σ(u))

1− ep1(t+ T, t)

∫ u

−∞
b(u, s)g(x(s), y(s))∆s∆u.

The proof is complete by reversing every step.

Since h1, h2, p1 and p2 are rd-continuous T -periodic functions, then there exist positive constants H1,
H2, P1 and P2 such that |hi(t)| ≤ Hi and |pi(t)| ≤ Pi for i = 1, 2. Let L1 and L2 be positive constants such
that 0 < L1H2T < 1 and 0 < L2P2T < 1. Also, assume there exist positive constants M1, M2, A and B
such that

|f(x, y)| ≤M1, (6)

|g(x, y)| ≤M2, (7)∣∣∣∣ eh1(t+ T, σ(u))

1− eh1(t+ T, t)

∣∣∣∣ ≤ L1, (8)∣∣∣∣ ep1(t+ T, σ(u))

1− ep1(t+ T, t)

∣∣∣∣ ≤ L2, (9)
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−∞
|a(u, s)|∆s ≤ A, (10)

and ∫ u

−∞
|b(u, s)|∆s ≤ B. (11)

Set

M = max

{
L1AM1T

1− L1H2T
,
L2BM2T

1− L2P2T

}
. (12)

We de�ne a subset Ωx,y of PT as follows

Ωx,y = {(x, y) ∈ PT : ‖(x, y)‖ ≤M} .

Then Ωx,y is a bounded closed convex subset of PT . Now for (x, y) ∈ Ωx,y we can de�ne an operator
E : Ωx,y → PT by

E(x, y)(t) = (E1(x, y)(t), E2(x, y)(t)) ,

where

E1(x, y)(t) =

∫ t+T

t

eh1(t+ T, σ(u))

1− eh1(t+ T, t)
h2(u)y(u)∆u

+

∫ t+T

t

eh1(t+ T, σ(u))

1− eh1(t+ T, t)

∫ u

−∞
a(u, s)f(x(s), y(s))∆s∆u, (13)

and

E2(x, y)(t) =

∫ t+T

t

ep1(t+ T, σ(u))

1− ep1(t+ T, t)
p2(u)x(u)∆u

+

∫ t+T

t

ep1(t+ T, σ(u))

1− ep1(t+ T, t)

∫ u

−∞
b(u, s)g(x(s), y(s))∆s∆u. (14)

Theorem 3.1. Suppose (2), (3) and (6)-(11) hold. Then (1) has a T -periodic solution.

Proof. It is clear from Lemma 3.1 that E1(x, y)(t + T ) = E1(x, y)(t) and E2(x, y)(t + T ) = E2(x, y)(t).
Therefore, E(x, y)(t+ T ) = E(x, y)(t). Moreover, if (x, y) ∈ Ωx,y, then

|E1(x, y)(t)| ≤
∫ t+T

t

∣∣∣∣ eh1(t+ T, σ(u))

1− eh1(t+ T, t)

∣∣∣∣ |h2(u)| |y(u)|∆u

+

∫ t+T

t

∣∣∣∣ eh1(t+ T, σ(u))

1− eh1(t+ T, t)

∣∣∣∣ ∫ u

−∞
|a(u, s)| |f(x(s), y(s))|∆s∆u

≤ L1H2TM + L1AM1T.

Since
L1AM1T

1− L1H2T
≤M,

we have
|E1(x, y)(t)| ≤ L1H2TM +M (1− L1H2T ) = M.

In the same manner we can see that
|E2(x, y)(t)| ≤M.

So, we have
|E(x, y)(t)| ≤M.
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Thus, E maps Ωx,y into itself, i.e E (Ωx,y) ⊆ Ωx,y. Now, we shall prove that E is continuous. Let
{(
xl, yl

)}
be a sequence in Ωx,y such that

lim
l→∞

∥∥∥(xl, yl)− (x, y)
∥∥∥ = 0.

Since Ωx,y is closed, we have (x, y) ∈ Ωx,y. Then by de�nition of E we have∥∥∥E (xl, yl)− E(x, y)
∥∥∥

= max

{
max
t∈[0,T ]

∣∣∣E1

(
xl, yl

)
− E1(x, y)

∣∣∣ , max
t∈[0,T ]

∣∣∣E2

(
xl, yl

)
− E2(x, y)

∣∣∣} ,
in which ∣∣∣E1

(
xl, yl

)
− E1(x, y)

∣∣∣
=

∣∣∣∣∫ t+T

t

eh1(t+ T, σ(u))

1− eh1(t+ T, t)
h2(u)yl(u)∆u

+

∫ t+T

t

eh1(t+ T, σ(u))

1− eh1(t+ T, t)

∫ u

−∞
a(u, s)f(xl(s), yl(s))∆s∆u

−
∫ t+T

t

eh1(t+ T, σ(u))

1− eh1(t+ T, t)
h2(u)y(u)∆u

−
∫ t+T

t

eh1(t+ T, σ(u))

1− eh1(t+ T, t)

∫ u

−∞
a(u, s)f(x(s), y(s))∆s∆u

∣∣∣∣
≤
∫ t+T

t

∣∣∣∣ eh1(t+ T, σ(u))

1− eh1(t+ T, t)

∣∣∣∣ |h2(u)|
∣∣∣yl(u)− y(u)

∣∣∣∆u
+

∫ t+T

t

∣∣∣∣ eh1(t+ T, σ(u))

1− eh1(t+ T, t)

∣∣∣∣ ∫ u

−∞
|a(u, s)|

∣∣∣f(xl(s), yl(s))− f(x(s), y(s))
∣∣∣∆s∆u.

The continuity of f along with the Lebesgue dominated convergence theorem implies that

lim
l→∞

max
t∈[0,T ]

∣∣∣E1

(
xl, yl

)
(t)− E1(x, y)(t)

∣∣∣ = 0.

In similar way we have

lim
l→∞

max
t∈[0,T ]

∣∣∣E2

(
xl, yl

)
(t)− E2(x, y)(t)

∣∣∣ = 0.

Thus,

lim
l→∞

∥∥∥E (xl, yl)− E(x, y)
∥∥∥ = 0.

This show that E is a continuous map. To show that the map E is completely continuous, we will show that
E (Ωx,y) is relatively compact. We know that E (Ωx,y) ⊆ Ωx,y, which means E (Ωx,y) is uniformly bounded
because Ωx,y is uniformly bounded. Moreover, a direct calculation shows that

E1(x, y)4(t) = h1(t)E1(x, y)(t) + h2(t)y(t) +

∫ t

−∞
a(t, s)f(x(s), y(s))∆s,

and

E2(x, y)4(t) = p1(t)x(t) + p2(t)E2(x, y)(t) +

∫ t

−∞
b(t, s)g(x(s), y(s))∆s.

Then, there exists a positive constant L such that∣∣∣E1(x, y)4(t)
∣∣∣ ≤ H1M +H2M +M1A ≤ L,
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and ∣∣∣E2(x, y)4(t)
∣∣∣ ≤ P1M + P2M +M2B ≤ L.

This means that
∣∣E(x, y)4(t)

∣∣ ≤ L. Therefore the set E (Ωx,y) is equicontinuous, and hence by Arzela-
Ascoli's theorem, it is relatively compact. By Schauder's �xed point theorem, we conclude that there exists
(x, y) ∈ Ωx,y such that (x, y) = E(x, y).

Now, we relax condition (7).

Theorem 3.2. Suppose (2), (3), (6) and (9)-(11) hold. In addition, we assume the existence of continuous

nondecreasing function G such that

|g(x, y)| ≤ g(|x| , y) ≤ QG(|x|) for some positive constant Q,

and for u > 0 we ask that
G(u)

u
≤ 1− L2P2T

L2BQT
.

Then (1) has a T -periodic solution.

Proof. Set

M = max

{
L1AM1T

1− L1H2T
,
L2BQG (M)T

1− L2P2T

}
.

For (x, y) ∈ Ωx,y, we have from the proof of Theorem 3.1 that

|E1 (x, y) (t)| ≤M.

Thus,

|E2(x, y)(t)| ≤
∫ t+T

t

∣∣∣∣ ep1(t+ T, σ(u))

1− ep1(t+ T, t)

∣∣∣∣ |p2(u)| |x(u)|∆u

+

∫ t+T

t

∣∣∣∣ ep1(t+ T, σ(u))

1− ep1(t+ T, t)

∣∣∣∣ ∫ u

−∞
|b(u, s)| |g(x(s), y(s))|∆s∆u

≤
∫ t+T

t

∣∣∣∣ ep1(t+ T, σ(u))

1− ep1(t+ T, t)

∣∣∣∣ |p2(u)| |E1 (x, y) (u)|∆u

+

∫ t+T

t

∣∣∣∣ ep1(t+ T, σ(u))

1− ep1(t+ T, t)

∣∣∣∣ ∫ u

−∞
|b(u, s)| |g (|E1 (x, y) (s)| , y(s))|∆s∆u

≤
∫ t+T

t

∣∣∣∣ ep1(t+ T, σ(u))

1− ep1(t+ T, t)

∣∣∣∣ |p2(u)| |E1 (x, y) (u)|∆u

+Q

∫ t+T

t

∣∣∣∣ ep1(t+ T, σ(u))

1− ep1(t+ T, t)

∣∣∣∣ ∫ u

−∞
|b(u, s)|G (|E1 (x, y) (s)|) ∆s∆u

≤M
∫ t+T

t

∣∣∣∣ ep1(t+ T, σ(u))

1− ep1(t+ T, t)

∣∣∣∣ |p2(u)|∆u

+Q

∫ t+T

t

∣∣∣∣ ep1(t+ T, σ(u))

1− ep1(t+ T, t)

∣∣∣∣ ∫ u

−∞
|b(u, s)|G (M) ∆s∆u

≤ML2P2T + L2BQG (M)T
M(1− L2P2T )

L2BQG (M)T
= M.

The rest of the proof follows along the lines of the proof of Theorem 3.1.

In the next theorem we relax condition (6).
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Theorem 3.3. Suppose (2), (3), and (7)-(11) hold. In addition, we assume the existence of continuous

nondecreasing function W such that

|f(x, y)| ≤ f(x, |y|) ≤ RW (|y|) for some positive constant R,

and for u > 0 we ask that
W (u)

u
≤ 1− L1H2T

L1ART
.

Then (1) has a T -periodic solution.

Proof. Set

M = max

{
L1ARW (M)T

1− L1H2T
,
L2BM2T

1− L2P2T

}
.

For (x, y) ∈ Ωx,y, we have from the proof of Theorem 3.1 that

|E2 (x, y) (t)| ≤M.

Thus,

|E1(x, y)(t)| ≤
∫ t+T

t

∣∣∣∣ eh1(t+ T, σ(u))

1− eh1(t+ T, t)

∣∣∣∣ |h2(u)| |y(u)|∆u

+

∫ t+T

t

∣∣∣∣ eh1(t+ T, σ(u))

1− eh1(t+ T, t)

∣∣∣∣ ∫ u

−∞
|a(u, s)| |f(x(s), y(s))|∆s∆u

≤
∫ t+T

t

∣∣∣∣ eh1(t+ T, σ(u))

1− eh1(t+ T, t)

∣∣∣∣ |h2(u)| |E2 (x, y) (u)|∆u

+

∫ t+T

t

∣∣∣∣ eh1(t+ T, σ(u))

1− eh1(t+ T, t)

∣∣∣∣ ∫ u

−∞
|a(u, s)| |f (x(s), E2 (x, y) (s))|∆s∆u

≤
∫ t+T

t

∣∣∣∣ eh1(t+ T, σ(u))

1− eh1(t+ T, t)

∣∣∣∣ |h2(u)| |E2 (x, y) (u)|∆u

+R

∫ t+T

t

∣∣∣∣ eh1(t+ T, σ(u))

1− eh1(t+ T, t)

∣∣∣∣ ∫ u

−∞
|a(u, s)|W (|E2 (x, y) (s)|) ∆s∆u

≤M
∫ t+T

t

∣∣∣∣ eh1(t+ T, σ(u))

1− eh1(t+ T, t)

∣∣∣∣ |h2(u)|∆u

+R

∫ t+T

t

∣∣∣∣ eh1(t+ T, σ(u))

1− eh1(t+ T, t)

∣∣∣∣ ∫ u

−∞
|a(u, s)|W (M) ∆s∆u

≤ML1H2T + L1ARW (M)T
M(1− L1H2T )

L1ARW (M)T
= M.

The rest of the proof follows along the lines of the proof of Theorem 3.1.

4. Asymptotically periodic solutions

In this section, we obtain asymptotically periodic solutions of (1).

De�nition 4.1. A function x is called asymptotically T -periodic if there exist two functions x1 and x2 such

that x1 is T -periodic, limt→∞ x2(t) = 0 and x(t) = x1(t) + x2(t) for all t ∈ T.

In this section we do not assume the periodicity condition on the functions h2, p2, a and b. We only
assume h1, p1 ∈ R+, h1 and p1 are T -periodic, and

eh1(T, 0) = ep1(T, 0) = 1. (15)
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Since h1 and p1 are T -periodic, there are constants Sk, sk, M
∗
k , mk, k = 1, 2, such that

m1 ≤ eh1(t, 0) ≤M∗1 and m2 ≤ ep1(t, 0) ≤M∗2 ,
s1 ≤ e	h1(σ (t) , 0) ≤ S1 and s2 ≤ e	p1(σ (t) , 0) ≤ S2. (16)

Also, we assume that there are positive constants A∗, B∗, M∗3 and M∗4 such that∫ ∞
0

∫ u

−∞
|a(u, s)|∆s∆u ≤ A∗ and

∫ ∞
0

∫ u

−∞
|b(u, s)|∆s∆u ≤ B∗, (17)

and ∫ ∞
0
|h2(u)|∆u ≤M∗3 and

∫ ∞
0
|p2(u)|∆u ≤M∗4 . (18)

In addition, we suppose that

lim
t→∞

∫ ∞
t

∫ u

−∞
|a(u, s)|∆s∆u = lim

t→∞

∫ ∞
t

∫ u

−∞
|b(u, s)|∆s∆u = 0, (19)

and

lim
t→∞

∫ ∞
t
|h2(u)|∆u = lim

t→∞

∫ ∞
t
|p2(u)|∆u = 0. (20)

Finally, we Assume that
1−m−1

1 S1M
∗
3 > 0 and 1−m−1

2 S2M
∗
4 > 0. (21)

Theorem 4.1. Suppose that (6), (7) and (15)-(21) hold. Then the system (1) has asymptotically T -periodic
solution (x, y) satisfying

x(t) = x1(t) + x2(t),

y(t) = y1(t) + y2(t),

where

x1(t) = c1eh1(t, 0), y1(t) = c2ep1(t, 0), c1, c2 ∈ R∗,

and

lim
t→∞

x2(t) = lim
t→∞

y2(t) = 0.

Proof. De�ne

P ∗T =
{

(ϕ,ψ) ∈ Crd(T,R2) : ϕ = ϕ1 + ϕ2, ψ = ψ1 + ψ2,

(ϕ1, ψ1) (T + t) = (ϕ1, ψ1) (t), (ϕ2, ψ2) (t) → (0, 0) as t → ∞}.

Then P ∗T is a Banach space when endowed with the maximum norm

‖(x, y)‖ = max

{
max
t∈[0,T ]

|x(t)| , max
t∈[0,T ]

|y(t)|
}
.

De�ne a subset Ωx,y of P
∗
T as follows. For a positive constant W ∗ to be de�ned later in the proof, let

Ωx,y = {(x, y) ∈ P ∗T : ‖(x, y)‖ ≤W ∗} .

Then Ωx,y is a bounded closed convex subset of P ∗T . Now, for (x, y) ∈ Ωx,y we can de�ne an operator
F : Ωx,y → P ∗T by

F (x, y)(t) = (F1(x, y)(t), F2(x, y)(t)) ,
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where

F1(x, y)(t) = c1eh1(t, 0)−
∫ ∞
t

e	h1(σ(u), t)h2(u)y(u)∆u

−
∫ ∞
t

e	h1(σ(u), t)

∫ u

−∞
a(u, s)f(x(s), y(s))∆s∆u,

and

F2(x, y)(t) = c2ep1(t, 0)−
∫ ∞
t

e	p1(σ(u), t)p2(u)x(u)∆u

−
∫ ∞
t

e	p1(σ(u), t)

∫ u

−∞
b(u, s)g(x(s), y(s))∆s∆u.

We will show that the mapping F has a �xed point in Ωx,y. Set

W ∗ = max

{
c1M

∗
1 +m−1

1 S1M1A
∗

1−m−1
1 S1M∗3

,
c2M

∗
2 +m−1

2 S2M2B
∗

1−m−1
2 S2M∗4

}
.

We note that W ∗ is well de�ned due to (21). First, we demonstrate that F (Ωx,y) ⊆ Ωx,y. If (x, y) ∈ Ωx,y,
then

|F1(x, y)(t)| ≤ c1eh1(t, 0) +

∫ ∞
t
|e	h1(σ(u), t)| |h2(u)| |y(u)|∆u

+

∫ ∞
t
|e	h1(σ(u), t)|

∫ u

−∞
|a(u, s)| |f(x(s), y(s))|∆s∆u,

≤ c1M
∗
1 +m−1

1 S1W
∗
∫ ∞

0
|h2(u)|∆u

+m−1
1 S1M1

∫ ∞
0

∫ u

−∞
|a(u, s)|∆s∆u

≤ c1M
∗
1 +m−1

1 S1W
∗M∗3 +m−1

1 S1M1A
∗.

In similar way we have

|F2(x, y)(t)| ≤ c2M
∗
2 +m−1

2 S2W
∗M∗4 +m−1

2 S2M2B
∗.

This implies that
|F1(x, y)(t)| ≤ c1M

∗
1 +m−1

1 S1W
∗M∗3 +m−1

1 S1M1A ≤W ∗,
and

|F2(x, y)(t)| ≤ c2M
∗
2 +m−1

2 S2W
∗M∗4 +m−1

2 S2M2B ≤W ∗.
Thus,

‖F (x, y)‖ ≤W ∗.
By letting

x2(t) = −
∫ ∞
t

e	h1(σ(u), t)h2(u)y(u)∆u

−
∫ ∞
t

e	h1(σ(u), t)

∫ u

−∞
a(u, s)f(x(s), y(s))∆s∆u,

and

y2(t) = −
∫ ∞
t

e	p1(σ(u), t)p2(u)x(u)∆u

−
∫ ∞
t

e	p1(σ(u), t)

∫ u

−∞
b(u, s)g(x(s), y(s))∆s∆u.
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Then,

lim
t→∞
|x2(t)| ≤ m−1

1 S1W
∗ lim
t→∞

∫ ∞
t
|h2(u)|∆u

+m−1
1 S1M1 lim

t→∞

∫ ∞
t

∫ u

−∞
|a(u, s)|∆s∆u = 0,

and

lim
t→∞
|y2(t)| ≤ m−1

2 S2W
∗ lim
t→∞

∫ ∞
t
|p2(u)|∆u

+m−1
2 S2M2 lim

t→∞

∫ ∞
t

∫ u

−∞
|b(u, s)|∆s∆u = 0.

Hence,
lim
t→∞

x2(t) = 0 and lim
t→∞

y2(t) = 0.

We will prove that x1 and y1 are T -periodic. From (15), one can see

x1(t+ T ) = c1eh1(t+ T, 0) = c1eh1(t, 0)eh1(t+ T, t)

= c1eh1(t, 0)eh1(T, 0) = c1eh1(t, 0) = x1 (t) .

Similarly, y1 is T -periodic. Hence F (Ωxy) ⊆ Ωxy. The proof that F is completely continuous is similar to the
corresponding work in Theorem 3.1, hence we omit it here. Therefore, by Schauder's �xed point theorem,
there exists a �xed point (x, y) ∈ Ωx,y such that

(x, y) = F (x, y) = (F1(x, y), F2(x, y)) .

Now we show that this �xed point is a solution of (1). Let

x(t) = c1eh1(t, 0)−
∫ ∞
t

e	h1(σ(u), t)h2(u)y(u)∆u

−
∫ ∞
t

e	h1(σ(u), t)

∫ u

−∞
a(u, s)f(x(s), y(s))∆s∆u,

and

y(t) = c2ep1(t, 0)−
∫ ∞
t

e	p1(σ(u), t)p2(u)x(u)∆u

−
∫ ∞
t

e	p1(σ(u), t)

∫ u

−∞
b(u, s)g(x(s), y(s))∆s∆u.

Then a delta di�erentiation with respect to t gives

x4(t) = h1(t)x(t) + h2(t)y(t) +

∫ t

−∞
a(t, s)f(x(s), y(s))∆s,

and

y4(t) = p1(t)x(t) + p2(t)y(t) +

∫ t

−∞
b(t, s)g(x(s), y(s))∆s.

Then (x, y) is a solution of (1). Therefore, (x, y) given by

x(t) = x1(t) + x2(t),

y(t) = y1(t) + y2(t),

is asymptotically T -periodic solution of (1).
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B. Bordj, A. Ardjouni, Adv. Theory Nonlinear Anal. Appl. 5 (2021), 180�192. 192

References

[1] M. Adivar, H.C. Koyuncuoglu, Y.N. Ra�oul, Classi�cation of positive solutions of nonlinear systems of Volterra integro-
dynamic equations on time scales, Commun. Appl. Anal. 16(3) (2012) 359-375.

[2] M. Adivar, Y. N. Ra�oul, Existence of periodic solutions in totally nonlinear delay dynamic equations, Electronic Journal
of Qualitative Theory of Di�erential Equations 2009(1) (2009) 1-20.

[3] M. Adivar, Y.N. Ra�oul, Existence results for periodic solutions of integro-dynamic equations on time scales, Annali di
Matematica 188 (2009) 543-559.

[4] E. Akin, O. Ozturk, On Volterra integro dynamical systems on time scales, Communications in Applied Analysis 23(1)
(2019) 21-30.

[5] A. Ardjouni, A. Djoudi, Existence of positive periodic solutions for nonlinear neutral dynamic equations with variable
delay on a time scale, Malaya Journal of Matematik 2(1) (2013) 60-67.

[6] A. Ardjouni, A. Djoudi, Existence of periodic solutions for nonlinear neutral dynamic equations with functional delay on
a time scale, Acta Univ. Palacki. Olomnc., Fac. rer. nat., Mathematica 52(1) (2013) 5-19.

[7] A. Ardjouni, A. Djoudi, Existence of periodic solutions for nonlinear neutral dynamic equations with variable delay on a
time scale, Commun Nonlinear Sci Numer Simulat 17 (2012) 3061-3069.

[8] A. Ardjouni, A. Djoudi, Periodic solutions in totally nonlinear dynamic equations with functional delay on a time scale,
Rend. Sem. Mat. Univ. Politec. Torino Vol. 68(4)(2010) 349-359.

[9] M. Bohner, A. Peterson, Dynamic equations on time scales, An introduction with applications, Birkhäuser, Boston, (2001).
[10] M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Birkhäuser, Boston, (2003).
[11] F. Bouchelaghem, A. Ardjouni, A. Djoudi, Existence and stability of positive periodic solutions for delay nonlinear dynamic

equations, Nonlinear Studies 25(1) (2018) 191-202.
[12] F. Bouchelaghem, A. Ardjouni, A. Djoudi, Existence of positive solutions of delay dynamic equations, Positivity 21(4)

(2017) 1483-1493.
[13] F. Bouchelaghem, A. Ardjouni, A. Djoudi, Existence of positive periodic solutions for delay dynamic equations, Proyecciones

(Antofagasta) 36(3) (2017) 449-460.
[14] J.A. Cid, G. Propst, M. Tvrdy, On the pumping e�ect in a pipe/tank �ow con�guration with friction, Physica D: Nonlinear

Phenomena 273/274 (2014) 28-33.
[15] I. Culakova, L. Hanustiakova, R. Olach, Existence for positive solutions of second-ordre neutral nonlinear di�erential

equations, Applied Mathematics Letters 22 (2009) 1007-1010.
[16] B. Dorociakova, M. Michalkova, R. Olach, M. Saga, Existence and stability of periodic solution related to valveless pumping,

Mathematical Problems in Engineering 2018 (2018) 1-8.
[17] M. Gouasmia, A. Ardjouni, A. Djoudi, Periodic and nonnegative periodic solutions of nonlinear neutral dynamic equations

on a time scale, International Journal of Analysis and Applications 16(2) (2018) 162-177.
[18] S. Hilger, Ein Masskettenkalkul mit Anwendung auf Zentrumsmanningfaltigkeiten, PhD thesis, Universitat Wurzburg,

(1988).
[19] E.R. Kaufmann, Y.N. Ra�oul, Periodic solutions for a neutral nonlinear dynamical equation on a time scale, J. Math.

Anal. Appl. 319 (2006) 315-325.
[20] V. Lakshmikantham, S. Sivasundaram, B. Kaymarkcalan, Dynamic systems on measure chains, Kluwer Academic Publish-

ers, Dordrecht, (1996).
[21] Z. Li, C. Wang, R.P. Agarwal, D. O'Regan, Commutativity of quaternion-matrix-valued functions and quaternion matrix

dynamic equations on time scales, Studies in Applied Mathematics (2020), https://doi.org/10.1111/sapm.12344.
[22] Y.N. Ra�oul, Analysis of periodic and asymptotically periodic solutions in nonlinear coupled Volterra integro-di�erential

systems, Turk. J. Math. 42 (2018), 108-120.
[23] D.R. Smart, Fixed points theorems, Cambridge Univ. Press, Cambridge, UK, (1980).
[24] C. Wang, R.P. Agarwal, A classi�cation of time scales and analysis of the general delays on time scales with applications,

Mathematical Methods in the Applied Sciences 39(6) (2016) 1568-1590.
[25] C. Wang, R.P. Agarwal, D. O' Regan, R. Sakthivel, Theory of translation closedness for time scales, Developments in

Mathematics, Vol. 62, Springer, (2020).
[26] C. Wang, R.P. Agarwal, S. Rathinasamy, Almost periodic oscillations for delay impulsive stochastic Nicholsons blow�ies

timescale model, Computational and Applied Mathematics 37 (2018) 3005-3026.


	1 Introduction
	2 Preliminaries
	3 Periodic solutions
	4 Asymptotically periodic solutions

