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TWO MODIFIED CONJUGATE GRADIENT METHODS FOR SOLVING
UNCONSTRAINED OPTIMIZATION AND APPLICATION

Abd Elhamid Mehamdia1,2,*, Yacine Chaib1,2 and Tahar Bechouat2

Abstract. Conjugate gradient methods are a popular class of iterative methods for solving linear
systems of equations and nonlinear optimization problems as they do not require the storage of any
matrices. In order to obtain a theoretically effective and numerically efficient method, two modified
conjugate gradient methods (called the MCB1 and MCB2 methods) are proposed. In which the coeffi-
cient 𝛽𝑘 in the two proposed methods is inspired by the structure of the conjugate gradient parameters
in some existing conjugate gradient methods. Under the strong Wolfe line search, the sufficient descent
property and global convergence of the MCB1 method are proved. Moreover, the MCB2 method gen-
erates a descent direction independently of any line search and produces good convergence properties
when the strong Wolfe line search is employed. Preliminary numerical results show that the MCB1 and
MCB2 methods are effective and robust in minimizing some unconstrained optimization problems and
each of these modifications outperforms the four famous conjugate gradient methods. Furthermore, the
proposed algorithms were extended to solve the problem of mode function.
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1. Introduction

The optimization model is a requisite mathematical problem since it has been connected to different fields
such as economics, engineering and physics. Today there are many optimization algorithms, such as Newton,
quasi-Newton and bundle algorithms. Note that these algorithms fail to solve large-scale optimization problems
as they need to store and calculate relevant matrices. In contrast, the conjugate gradient (CG) algorithm is
successful due to its simplicity of iteration and low memory requirements. In this paper, the nonlinear CG
method is studied for the following unconstrained optimization problem:

min{𝑓(𝑥) : 𝑥 ∈ R𝑛}, (1.1)

where 𝑓 is a smooth and nonlinear function. The CG method generates a sequence {𝑥𝑘}𝑘≥0 such that:

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, (1.2)
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where 𝑥𝑘 is the current iteration point and 𝑑𝑘 ∈ R𝑛 is the search direction defined by the following formula:

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑑𝑘; 𝑑0 = −𝑔0, (1.3)

where 𝑔𝑘+1 the gradient of 𝑓 at 𝑥𝑘+1 and the parameter 𝛽𝑘 is known as the conjugate gradient coefficient. The
step length 𝛼𝑘 is very important for the global convergence of conjugate gradient methods. One often requires
the line search to satisfy the Wolfe conditions (WLS)

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘)− 𝑓(𝑥𝑘) ≤ 𝛿𝛼𝑘𝑔𝑇
𝑘 𝑑𝑘, (1.4)

and
𝑔𝑇

𝑘+1𝑑𝑘 ≥ 𝜎𝑔𝑇
𝑘 𝑑𝑘. (1.5)

Also, the strong Wolfe (SWLS) conditions consist of (1.4) and⃒⃒
𝑔𝑇

𝑘+1𝑑𝑘

⃒⃒
≤ −𝜎𝑔𝑇

𝑘 𝑑𝑘, (1.6)

where 0 < 𝛿 < 𝜎 < 1. For the scalar 𝛽𝑘 many formulas have been proposed. Some of the classical algorithms
for 𝛽𝑘 are Fletcher–Reeves (FR) method [12], Dai–Yuan (DY) method [5], Conjugate Descent (CD) method
proposed by Fletcher [11], Polak–Ribière and Polyak (PRP) method [20,21], Hestenes-Stiefel (HS) method [13]
and Liu-Storey (LS) method [17]. where formulas for 𝛽𝑘, are given, respectively, by:

𝛽FR
𝑘 =

‖𝑔𝑘+1‖2

‖𝑔𝑘‖2
, 𝛽DY

𝑘 =
‖𝑔𝑘+1‖2

𝑦𝑇
𝑘 𝑑𝑘

, 𝛽CD
𝑘 =

‖𝑔𝑘+1‖2

−𝑔𝑇
𝑘 𝑑𝑘

, (1.7)

𝛽PRP
𝑘 =

𝑔𝑇
𝑘+1𝑦𝑘

‖𝑔𝑘‖2
, 𝛽HS

𝑘 =
𝑔𝑇

𝑘+1𝑦𝑘

𝑦𝑇
𝑘 𝑑𝑘

, 𝛽LS
𝑘 =

𝑔𝑇
𝑘+1𝑦𝑘

−𝑔𝑇
𝑘 𝑑𝑘

, (1.8)

where ‖·‖ denotes the Euclidean norm and 𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘. Although all nonlinear conjugate gradient methods
should reduce to the linear conjugate gradient method when 𝑓 is a convex quadratic and the line search is
exact, their convergence properties may be quite different for nonquadratic functions. For example, Al-Baali [1]
established the convergence of the FR method if the step length 𝛼𝑘 satisfies (1.4) and (1.6) with 𝜎 < 1

2 . Dai
and Yuan [5] proved the global convergence result of the DY if the WLS is used with 𝜎 < 1. In contrast, the
PRP and HS methods have a drawback in that they may not globally be convergent even with the exact line
search [22]. This problem inspired numerous researchers to study the global convergence of the above methods
under the inexact line search. Wei et al. [25] based on the PRP method, gave a new CG formula, called WYL
method, where 𝛽𝑘 is given by:

𝛽WYL
𝑘 =

𝑔𝑇
𝑘+1

(︁
𝑔𝑘+1 − ‖𝑔𝑘+1‖

‖𝑔𝑘‖ 𝑔𝑘

)︁
‖𝑔𝑘‖2

·

The WYL method can be considered as a modification of the PRP method, which inherits good numerical
results from the original method. Furthermore, Huang et al. [14] proved that the WYL method satisfies the
sufficient descent condition and converges globally under the SWLS with the parameter 𝜎 < 1

4 . Moreover, the
Wei–Yao–Liu method may not be a descent method if the WLS is used. Yao et al. [26] extended this idea to
the HS method, called the MHS. The parameter 𝛽𝑘 in the MHS method is given by:

𝛽MHS
𝑘 =

𝑔𝑇
𝑘+1

(︁
𝑔𝑘+1 − ‖𝑔𝑘+1‖

‖𝑔𝑘‖ 𝑔𝑘

)︁
𝑦𝑇

𝑘 𝑑𝑘
·

For the SWLS under the Lipschitz continuity of the gradient, Yao et al. [26] established the global convergence
of this computational scheme. Soon afterward, Zhang [27] took a little modification to the WYL method and
constructed the NPRP method, such as the CG coefficient is computed by:

𝛽NPRP
𝑘 =

‖𝑔𝑘+1‖2 − ‖𝑔𝑘+1‖
‖𝑔𝑘‖

⃒⃒
𝑔𝑇

𝑘+1𝑔𝑘

⃒⃒
‖𝑔𝑘‖2

·
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Also, this author [27] has given a modified HS method, in which 𝛽𝑘 is defined by:

𝛽NHS
𝑘 =

‖𝑔𝑘+1‖2 − ‖𝑔𝑘+1‖
‖𝑔𝑘‖

⃒⃒
𝑔𝑇

𝑘+1𝑔𝑘

⃒⃒
𝑦𝑇

𝑘 𝑑𝑘
·

The NPRP and NHS methods possess sufficient descent conditions and converge globally if the SWLS is used
and the parameter 𝜎 is restricted in

(︀
0, 1

2

)︀
. Numerical results reported in [27] show that the NPRP method

performs better than the WYL method and the NHS method better than the MHS method. Likewise, Du et al.
[9] in 2016 give two modified CG methods, proposing the following formula:

𝛽NVPRP*

𝑘 =
𝑔𝑇

𝑘+1

(︂
𝑔𝑘+1 −

|𝑔𝑇
𝑘+1𝑔𝑘|
‖𝑔𝑘‖2

𝑔𝑘

)︂
‖𝑔𝑘‖2

,

and

𝛽NVHS*

𝑘 =
𝑔𝑇

𝑘+1

(︂
𝑔𝑘+1 −

|𝑔𝑇
𝑘+1𝑔𝑘|
‖𝑔𝑘‖2

𝑔𝑘

)︂
𝑦𝑇

𝑘 𝑑𝑘
·

The NVPRP* and NVHS* methods have sufficient descent conditions and are globally convergent if the SWLS
is utilized with the parameter 𝜎 < 1

4 and 𝜎 < 1
3 , respectively. In 2012, Dai and Wen [6] proposed two modified

CG methods, denoted by DPRP and DHS methods. The parameter 𝛽𝑘 in the DPRP method is given by:

𝛽DPRP
𝑘 =

‖𝑔𝑘+1‖2 − ‖𝑔𝑘+1‖
‖𝑔𝑘‖

⃒⃒
𝑔𝑇

𝑘+1𝑔𝑘

⃒⃒
‖𝑔𝑘‖2 + 𝜇

⃒⃒
𝑑𝑇

𝑘 𝑔𝑘+1

⃒⃒ , 𝜇 > 1.

And the scalar 𝛽𝑘 in the DHS method is defined as:

𝛽DHS
𝑘 =

‖𝑔𝑘+1‖2 − ‖𝑔𝑘+1‖
‖𝑔𝑘‖

⃒⃒
𝑔𝑇

𝑘+1𝑔𝑘

⃒⃒
𝑦𝑇

𝑘 𝑑𝑘 + 𝜇
⃒⃒
𝑑𝑇

𝑘 𝑔𝑘+1

⃒⃒ , 𝜇 > 1.

The convergence of two methods with the WLS established and numerical results show that these computational
schemes are efficient [6]. Recently, Zhu et al. [28] gave a modified CG method, called DDY1, where 𝛽𝑘 in this
method given by:

𝛽DDY1
𝑘 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
‖𝑔𝑘+1‖2−

𝜇1(𝑔𝑇
𝑘+1𝑑𝑘)2

𝑔𝑇
𝑘+1𝑔𝑘

‖𝑔𝑘‖‖𝑔𝑘+1‖‖𝑑𝑘‖2
𝑦𝑇

𝑘 𝑑𝑘
, 𝑔𝑇

𝑘+1𝑔𝑘 ≥ 0,

‖𝑔𝑘+1‖2+
𝜇1(𝑔𝑇

𝑘+1𝑑𝑘)2
𝑔𝑇

𝑘+1𝑔𝑘

‖𝑔𝑘‖‖𝑔𝑘+1‖‖𝑑𝑘‖2
𝑦𝑇

𝑘 𝑑𝑘
, 𝑔𝑇

𝑘+1𝑔𝑘 < 0,

with 𝜇1 ∈ [0, 1]. The authors proved that this method possesses sufficient descent conditions and global conver-
gence property when SWLS is employed [28].

The aim of this paper is to propose two new conjugate gradient methods. Under the SWLS, the convergence
properties of MCB1 and MCB2 CG methods are established. Numerical results show that the two modifications
are efficient and robust. Finally, an application of these methods in nonparametric mode estimator is also
considered.

The most important and new thing in this work is the application of these methods in nonparametric statistics,
where we are the first to use and access in this field.

– This work is organized as follows. In the next section, the two modified algorithms are introduced and the
sufficient descent condition is proved. In setion three, the global convergence of the two proposed methods
with an SWLS is proved. The numerical results are contained in section four. In section five, an application
of the new methods in statistics nonparametric is focused. Finally, a paper summary is made.
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2. New conjugate gradient methods

In this section, The two novel 𝛽𝑘 are introduced, which are defined as 𝛽MCB1
𝑘 and 𝛽MCB2

𝑘 , where MCB denoted
Mehamdia, Chaib and Bechouat. First, the conjugate gradient parameter of MCB1 method is presented as
follows

𝛽MCB1
𝑘 =

‖𝑔𝑘+1‖2 − 𝜌1

⃒⃒
𝑔𝑇

𝑘+1𝑔𝑘

⃒⃒
𝜔𝑘

𝑑𝑇
𝑘 𝑦𝑘 + 𝜇1

⃒⃒
𝑑𝑇

𝑘 𝑔𝑘+1

⃒⃒ , (2.1)

where 𝜔𝑘 = |𝑔𝑇
𝑘+1𝑑𝑘|𝑔𝑇

𝑘+1𝑑𝑘

‖𝑔𝑘‖‖𝑔𝑘+1‖‖𝑑𝑘‖2
, 𝜌1 ∈ [0, 1] and 𝜇1 > 1 + 𝜌1.

Second, the parameter 𝛽𝑘 of the MCB2 method is defined as follows

𝛽MCB2
𝑘 =

‖𝑔𝑘+1‖2 − 𝜌2

⃒⃒
𝑔𝑇

𝑘+1𝑔𝑘

⃒⃒
𝜔𝑘

‖𝑔𝑘‖2 + 𝜇2

⃒⃒
𝑑𝑇

𝑘 𝑔𝑘+1

⃒⃒ , (2.2)

where 𝜌2 ∈ [0, 1] and 𝜇2 > 1 + 𝜌2.
The search direction 𝑑𝑘 of MCB1 algorithm is given by:

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽MCB1
𝑘 𝑑𝑘; 𝑑0 = −𝑔0, (2.3)

and the search direction 𝑑𝑘 of MCB2 algorithm is defined by:

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽MCB2
𝑘 𝑑𝑘; 𝑑0 = −𝑔0. (2.4)

2.1. Algorithms

In this part, the MCB1 and MCB2 Algorithms with the SWLS are presented.

MCB1 Algorithm

Step 1. Initialization.
Choose an initial point 𝑥0 ∈ R𝑛 and the parameters 0 < 𝛿 < 𝜎 < 1. Compute 𝑓(𝑥0) and 𝑔0. Set 𝑑0 = −𝑔0.

Step 2. Test for a continuation of iterations.
If ‖𝑔𝑘‖∞ ≤ 10−6, then stop. Otherwise, go to the next step.

Step 3. Line search.
Calculate 𝛼𝑘 satisfies the linear search conditions of stong Wolfe (1.4) and (1.6) and update the variables
𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘.

Step 4. Compute 𝛽𝑘 by the formula (2.1).
Step 5. Compute the search direction by the formula (2.3).
Step 6. Set 𝑘 = 𝑘 + 1 and go to Step 2.

MCB2 Algorithm

The Algorithm of MCB2 is the same as the MCB1 Algorithm, but in Step 4, we replace formula (2.1) by
formula (2.2) and in Step 5, we replace equation (2.3) by equation (2.4).

2.2. The sufficient descent direction

– The following lemma to prove the sufficient descent direction of proposed methods is needed.

Lemma 2.1. The following inequality always holds:

‖𝑔𝑘+1‖2 − 𝜌
⃒⃒
𝑔𝑇

𝑘+1𝑔𝑘

⃒⃒
𝜔𝑘 ≤ (1 + 𝜌)‖𝑔𝑘+1‖2, with 𝜌 ∈ [0, 1]. (2.5)
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Proof. Suppose that the 𝜉𝑘 is the angle between the 𝑔𝑘 and 𝑔𝑘+1 vectors and the 𝜃𝑘 is the angle between the
𝑔𝑘+1 and 𝑑𝑘 vectors, then

cos 𝜉𝑘 =
𝑔𝑇

𝑘+1𝑔𝑘

‖𝑔𝑘+1‖‖𝑔𝑘‖
, cos 𝜃𝑘 =

𝑔𝑇
𝑘+1𝑑𝑘

‖𝑔𝑘+1‖‖𝑑𝑘‖
·

We have

‖𝑔𝑘+1‖2 − 𝜌
⃒⃒
𝑔𝑇

𝑘+1𝑔𝑘

⃒⃒
𝜔𝑘 = ‖𝑔𝑘+1‖2(1− 𝜌|cos 𝜃𝑘||cos 𝜉𝑘| cos 𝜃𝑘)

≤ ‖𝑔𝑘+1‖2
(︀
1 + 𝜌 cos2 𝜃𝑘|cos 𝜉𝑘|

)︀
≤ (1 + 𝜌)‖𝑔𝑘+1‖2.

The result can be achieved. �

– First, the sufficient descent direction of the MCB1 is proved.

Theorem 2.1. Let the sequence {𝑔𝑘}𝑘≥0 and {𝑑𝑘}𝑘≥0 be generated by Algorithm MCB1, then for positive
constant 𝑐1 we have

𝑔𝑇
𝑘 𝑑𝑘 ≤ −𝑐1‖𝑔𝑘‖2, ∀𝑘 > 0. (2.6)

Proof. The following proof is by induction. For 𝑘 = 0, 𝑔𝑇
0 𝑑0 = −‖𝑔0‖2, thus the sufficient descent condition

holds for 𝑘 = 0. Now, it is assumed that (2.6) holds for 𝑘 and prove that for 𝑘 + 1.
Multiplying (2.3) by 𝑔𝑇

𝑘+1 from the left, we get

𝑔𝑇
𝑘+1𝑑𝑘+1 = −‖𝑔𝑘+1‖2 +

‖𝑔𝑘+1‖2 − 𝜌1

⃒⃒
𝑔𝑇

𝑘+1𝑔𝑘

⃒⃒
𝜔𝑘

𝑑𝑇
𝑘 𝑦𝑘 + 𝜇1

⃒⃒
𝑑𝑇

𝑘 𝑔𝑘+1

⃒⃒ 𝑔𝑇
𝑘+1𝑑𝑘. (2.7)

From (1.6) and (2.6), it is obtained
𝑑𝑇

𝑘 𝑦𝑘 ≥ (1− 𝜎)
(︀
−𝑑𝑇

𝑘 𝑔𝑘

)︀
≥ 0. (2.8)

By (2.5), (2.7) and (2.8), it is got

𝑔𝑇
𝑘+1𝑑𝑘+1 ≤ −‖𝑔𝑘+1‖2 +

(1 + 𝜌1)‖𝑔𝑘+1‖2
⃒⃒
𝑔𝑇

𝑘+1𝑑𝑘

⃒⃒
𝜇1

⃒⃒
𝑑𝑇

𝑘 𝑔𝑘+1

⃒⃒ · (2.9)

Hence,
𝑔𝑇

𝑘+1𝑑𝑘+1 ≤ −𝑐1‖𝑔𝑘+1‖2, (2.10)

where 𝑐1 = 1− 1+𝜌1
𝜇1

, so there is a constant 𝑐1 > 0 with 𝜇1 > 1 + 𝜌1. Therefore, the proof is completed. �

– Second, the sufficient descent direction of the MCB2 method is proved.

Theorem 2.2. Let the direction 𝑑𝑘 be yielded by the MCB2 Algorithm. Then, we get

𝑔𝑇
𝑘 𝑑𝑘 ≤ −𝑐2‖𝑔𝑘‖2, ∀𝑘 > 0, (2.11)

where 𝑐2 = 1− 1+𝜌2
𝜇2

.

Proof. The following proof is by induction. For 𝑘 = 0, 𝑔𝑇
0 𝑑0 = −‖𝑔0‖2, thus the sufficient descent condition

holds for 𝑘 = 0. Now, it is assumed that (2.11) holds for 𝑘 and prove that for 𝑘 + 1.
Multiplying (2.4) by 𝑔𝑇

𝑘+1 from the left, we obtain

𝑔𝑇
𝑘+1𝑑𝑘+1 = −‖𝑔𝑘+1‖2 +

‖𝑔𝑘+1‖2 − 𝜌2

⃒⃒
𝑔𝑇

𝑘+1𝑔𝑘

⃒⃒
𝜔𝑘

‖𝑔𝑘‖2 + 𝜇2

⃒⃒
𝑑𝑇

𝑘 𝑔𝑘+1

⃒⃒ 𝑔𝑇
𝑘+1𝑑𝑘. (2.12)
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From the (2.5) and (2.12), there is

𝑔𝑇
𝑘+1𝑑𝑘+1 ≤ −‖𝑔𝑘+1‖2 +

(1 + 𝜌2)‖𝑔𝑘+1‖2

𝜇2

⃒⃒
𝑔𝑇

𝑘+1𝑑𝑘

⃒⃒ ⃒⃒
𝑔𝑇

𝑘+1𝑑𝑘

⃒⃒
. (2.13)

Thus,
𝑔𝑇

𝑘+1𝑑𝑘+1 ≤ −𝑐2‖𝑔𝑘+1‖2.

So there is a constant 𝑐2 > 0 with 𝜇2 > 1 + 𝜌2. Hence, Theorem 2.2 is proved. �

3. Global convergence

To establish the global convergence of proposed methods, the following basic Assumptions on the objective
function are needed.

Assumption 3.1. The level set
𝑆 = {𝑥 ∈ R𝑛 : 𝑓(𝑥) ≤ 𝑓(𝑥0)},

is bounded.

Assumption 3.2. In some open convex neighborhood N of 𝑆, the function 𝑓 is continuously differentiable and
its gradient is Lipschitz continuous, namely, there exists a constant 𝐿 > 0, such that

‖∇𝑓(𝑥)−∇𝑓(𝑦)‖ ≤ 𝐿‖𝑥− 𝑦‖, ∀𝑥, 𝑦 ∈ N . (3.1)

From Assumption 3.2, it is deduced that for all 𝑥 ∈ N , there exists a positive constant Γ ≥ 0, such that

‖ O𝑓(𝑥) ‖≤ Γ, for all 𝑥 ∈ N . (3.2)

– It follows from Dai et al. [7] proved the sufficient condition for the convergence of CG methods with strong
Wolfe line search.

Lemma 3.1. Let Assumptions 3.1 and 3.2 hold. Consider the method (1.2) and (1.3), where 𝑑𝑘 is a descent
direction and 𝛼𝑘 is obtained by the SWLS. If ∑︁

𝑘≥0

1
‖𝑑𝑘‖2

= ∞,

then
lim

𝑘→∞
inf‖𝑔𝑘‖ = 0.

– This lemma is also needed to prove the convergence of MCB1 and MCB2 methods.

Lemma 3.2. Let Assumptions 3.1 and 3.2 hold. If 𝑑𝑘 is a descent direction and 𝛼𝑘 satisfies the WLS (1.4)
and (1.5). Then

𝛼𝑘 ≥
(1− 𝜎) | 𝑔𝑇

𝑘 𝑑𝑘 |
𝐿 ‖ 𝑑𝑘 ‖2

· (3.3)

Proof. See the proof of Lemma 3.2 in Lui and Li [16]. �

Remark 3.1. From (1.6), (2.6) and (2.11), the step size 𝛼𝑘 obtained in the MCB1 and MCB2 Algorithms
satisfies (3.3). This indicates the step length 𝛼𝑘 obtained in the MCB1 and MCB2 methods is not equal to zero,
i.e., there exists a constant 𝜆 > 0, such that

𝛼𝑘 ≥ 𝜆, ∀𝑘 > 0. (3.4)
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– The following theorem establishes the global convergence of the MCB1 method with the SWLS.

Theorem 3.1. Suppose that Assumptions 3.1 and 3.2 hold. Consider any CG method in the form (1.2) and
(1.3), with the parameter 𝛽𝑘 = 𝛽MCB1

𝑘 , in which the step length 𝛼𝑘 is determined to satisfy the SWLS condition
(1.4) and (1.6), where 𝑑𝑘 is a descent search direction. Then, this method converges in the sense that

lim
𝑘→∞

inf‖𝑔𝑘‖ = 0. (3.5)

Proof. To prove Theorem 3.1, contradiction is used. That is, if equation (3.5) is not true, then we can find a
positive constant 𝛾1, such that

‖𝑔𝑘‖ ≥ 𝛾1, for all 𝑘. (3.6)

Since the definition of 𝛽MCB1
𝑘 and (2.5) is

⃒⃒
𝛽MCB1

𝑘

⃒⃒
≤ (1 + 𝜌1)‖𝑔𝑘+1‖2

𝑑𝑇
𝑘 𝑦𝑘 + 𝜇1

⃒⃒
𝑑𝑇

𝑘 𝑔𝑘+1

⃒⃒ ≤ (1 + 𝜌1)‖𝑔𝑘+1‖2

𝑑𝑇
𝑘 𝑦𝑘

· (3.7)

By using (2.6), (2.8) and (3.6),

𝑑𝑇
𝑘 𝑦𝑘 ≥ (1− 𝜎)

(︀
−𝑑𝑇

𝑘 𝑔𝑘

)︀
≥ 𝑐1(1− 𝜎)𝛾2

1 ≥ 0. (3.8)

Hence, by (3.2), (3.7) and (3.8), ⃒⃒
𝛽MCB1

𝑘

⃒⃒
≤ (1 + 𝜌1)Γ2

𝑐1(1− 𝜎)𝛾2
1

= 𝐸. (3.9)

Thus, it follows from (2.3), (3.2), (3.4) and (3.9) that

‖𝑑𝑘+1‖ ≤‖ 𝑔𝑘+1 ‖ +
⃒⃒
𝛽MCB1

𝑘

⃒⃒‖ 𝑥𝑘+1 − 𝑥𝑘 ‖
𝛼𝑘

≤ 𝑀1, (3.10)

where
𝑀1 = Γ + 𝐸

𝐷

𝜆
,

and
𝐷 = max{‖𝑦 − 𝑧‖ : 𝑦, 𝑧 ∈ N }.

By taking the summation 𝑘 ≥ 0, ∑︁
𝑘≥0

1
‖𝑑𝑘‖2

= ∞.

By applying Lemma 3.1, equation (3.5) is true. This is a contradiction with (3.6), so we have proved (3.5). �

– The next lemma, called the Zoutendijk condition, is often used to prove the global convergence of MCB2
CG method. It was originally given by Zoutendijk [29].

Lemma 3.3. It is assumed that 𝑥0 is a starting point for which Assumptions 3.1 and 3.2 hold. Consider any
method in the form (1.2) and (1.3), where 𝑑𝑘 is a descent direction and the step size 𝛼𝑘 satisfies the WLS (1.4)
and (1.5), then we have

∞∑︁
𝑘=0

(𝑔𝑇
𝑘 𝑑𝑘)2

‖𝑑𝑘‖2
< ∞. (3.11)

It is easy to get from (2.11) that the Zoutendijk condition (3.11) is equivalent to the following inequality

∞∑︁
𝑘=0

‖𝑔𝑘‖4

‖𝑑𝑘‖2
< ∞. (3.12)
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– The following theorem is used to prove the global convergence of the MCB2 method.

Theorem 3.2. Consider that Assumptions 3.1 and 3.2 hold. Let the sequences {𝑔𝑘}𝑘≥0 and {𝑑𝑘}𝑘≥0 be gener-
ated by MCB2 Algorithm. Then

lim
𝑘→∞

inf‖𝑔𝑘‖ = 0. (3.13)

Proof. Suppose that (3.13) does not hold. Then, there exists a constant 𝛾2 > 0 such that

‖𝑔𝑘‖ ≥ 𝛾2, for all 𝑘. (3.14)

In fact, by using (2.2) and (2.5),

⃒⃒
𝛽MCB2

𝑘

⃒⃒
≤ (1 + 𝜌2)‖𝑔𝑘+1‖2

‖𝑔𝑘‖2 + 𝜇2

⃒⃒
𝑑𝑇

𝑘 𝑔𝑘+1

⃒⃒ ≤ (1 + 𝜌2)‖𝑔𝑘+1‖2

‖𝑔𝑘‖2
· (3.15)

Therefore, from (3.2), (3.14) and (3.15),

⃒⃒
𝛽MCB2

𝑘

⃒⃒
≤ (1 + 𝜌2)Γ2

𝛾2
2

= 𝐹. (3.16)

Thus, it follows from (2.4), (3.2), (3.4) and (3.16) that

‖𝑑𝑘+1‖ ≤‖ 𝑔𝑘+1 ‖ +
⃒⃒
𝛽MCB2

𝑘

⃒⃒‖ 𝑥𝑘+1 − 𝑥𝑘 ‖
𝛼𝑘

≤ 𝑀2, (3.17)

where
𝑀2 = Γ + 𝐹

𝐷

𝜆
,

and
𝐷 = max{‖𝑦 − 𝑧‖ : 𝑦, 𝑧 ∈ N }.

Which implies that ∑︁
𝑘≥0

1
‖𝑑𝑘‖2

= ∞. (3.18)

On the other hand, from (3.12) and (3.14),

𝛾4
2

∑︁
𝑘≥0

1
‖𝑑𝑘‖2

≤
∑︁
𝑘≥0

‖𝑔𝑘‖4

‖𝑑𝑘‖2
< ∞.

Which contradicts with (3.18). Hence, equation (3.14) does not hold and the claim (3.13) is proved. �

4. Numerical experiments

In this section, some obtained numerical experiments are presented with the two new proposed CG methods.
The test problems have been taken to the CUTE library [2,4]. All the algorithms have been coded in MATLAB
2013 and compiler settings on the PC machine (2.5 GHz, 3.8 GB RAM) with Windows XP operating system.
The computational results of MCB1 method are compared with the NHS [27], NVHS* [9], DDY1 [28] and DHS
[6]. On the other hand, the computational results of the MCB2 method are compared with the NPRP [27],
NVPRP* [9], DDY1 [28] and DPRP [6]. In this numerical result, all algorithms implement the SWLS condition
with 𝛿 = 10−3 and 𝜎 = 10−1. The iteration is terminated if one of the following conditions is satisfied (i)
‖𝑔𝑘‖∞ < 10−6, where ‖·‖∞ is the maximum absolute component of a vector, (ii) The number of iterations
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Figure 1. Performance profile on the CPU time (MCB1).

exceeded 2000, (iii) The computing time is more than 500 s. The performance profile introduced by Dolan and
Morè [8] is chosen to compare the performance according to the number of iterations and CPU time to rule as
follows. Let 𝑆 is the set of methods and 𝑃 is the set of the test problems with 𝑛𝑝, 𝑛𝑠 is the number of the test
problems and the number of the methods, respectively. For each problem 𝑝 ∈ 𝑃 and solver 𝑠 ∈ 𝑆, denote 𝜏𝑝,𝑠

be the number of iterations or CPU time required to solve problems 𝑝 ∈ 𝑃 by solver 𝑠 ∈ 𝑆. Then a comparison
between different solvers based on the performance ratio is given by

𝑟𝑝,𝑠 =
𝜏𝑝,𝑠

min{𝜏𝑝,𝑖, 1 ≤ 𝑖 ≤ 𝑛𝑠}
·

Suppose that a parameter 𝑟𝑀 ≥ 𝑟𝑝,𝑠 for all problems and solvers chosen, and 𝑟𝑀 = 𝑟𝑝,𝑠 if and only if solver
𝑆 does not solve problem 𝑝. The overall evaluation of the performance of the solvers is then given by the
performance profile function given by

𝐹𝑠(𝑡) =
size{𝑝 : 1 ≤ 𝑝 ≤ 𝑛𝑝, 𝑟𝑝,𝑠 ≤ 𝑡}

𝑛𝑝
,

where 𝑡 ≥ 1 and size{𝑝 : 1 ≤ 𝑝 ≤ 𝑛𝑝, 𝑟𝑝,𝑠 ≤ 𝑡} is the number of elements in the set {𝑝 : 1 ≤ 𝑝 ≤ 𝑛𝑝, 𝑟𝑝,𝑠 ≤ 𝑡}.
This function 𝐹𝑠 : [1,∞[→ [0, 1] is the distribution function for the performance ratio. The value of 𝐹𝑠(1) is the
probability that the solver will win the rest of the solvers.

In this numerical study, Dim denotes the dimension of the problem, ITR denotes the number of iterations,
TIME denotes the CPU time and Inf denotes the algorithm failed to yield a solution for the problem.

Figure 1 gives a performance comparison of the MCB1 method versus NHS, NVHS*, DDY1 and DHS methods.
As this figure indicates, the new algorithm prevailed over all other Methods, with respect to CPU time, this
clearly confirms the effectiveness of the MCB1 method. Generally, the DDY1 method and the DHS method are
better than the NHS and NVHS* methods.
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Figure 2. Performance profile on the number of iterations (MCB1).

It can be seen from Figure 2 that the MCB1 curve is mostly at the top of the NHS, NVHS*, DDY1 and
DHS CG curves, so it is indicating that the MCB1 algorithm outperforms the NHS, NVHS*, DDY1 and DHS
methods based on the number of iterations. In particular, the DHS method outperforms the other methods
except for the DDY1 method.

From Table 1, it is clear that the average performance of the MCB1, NHS, NVHS*, DDY1 and DHS methods
are very similar to the results obtained from Figures 1 and 2.

On the other side, Figure 3 is the performance profile of the MCB2, NPRP, NVPRP*, DDY1 and DPRP CG
methods. From this figure, it is concluded that the MCB2 method performs better than the NPRP, NVPRP*,
DDY1 and DPRP CG methods, from the viewpoint of the CPU time. Furthermore, although Figure 3 shows
that DPRP method is also faster and more robust than DDY1 method when 1.5 < 𝑡 < 3.5. Generally DDY1 is
preferable to DPRP, NVPRP* and NPRP methods. The NVPRP* method behaves like the NPRP method, for
the given test problems.

Figure 4 shows the performance profile for the number of iterations. Relative to this metric, MCB2 achieves
the top performance, followed by DDY1 if 𝑡 ≥ 9, then DPRP. The NVPRP* method behaves such as the NPRP
method.

From Table 2, it is clear that the average performance of the MCB2, NPRP, NVPRP*, DDY1 and DPRP
methods are very similar to the results obtained from Figures 3 and 4.

5. Application in mode function

The conjugate gradient method has played an important role in solving large scale unconstrained optimization
problems that may arise in regression analysis [30], portfolio selection [3] and image restoration problems [18].

Estimation nonparametric has received a great deal of attention in both theoretical and applied statistics
literature. For the historical and mathematical survey, we refer to the reader to Sager [23]. In statistics, it
is always interesting to study the central tendency of the data, that is usually quantified using the location
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Table 1. The simulation results of MCB1, DDY1, NVHS *, DHS and NHS methods.

Method
Dim

MCB1 NVHS* NHS DDY1 DHS
Function TIME ITR TIME ITR TIME ITR TIME ITR TIME ITR

Griewank
2000 0.1410 7 5.1410 140 72.0500 1213 5.5890 140 6.1620 140

2500 0.1840 7 8.0000 225 25.5610 338 8.0790 225 8.0310 225
3000 0.1100 7 13.5780 292 14.3590 175 16.2790 291 15.9070 291

Dixon
5000 0.4850 4 1.0460 7 0.9220 7 0.9210 6 1.0000 7
6000 0.7030 4 1.1870 7 0.9380 6 0.9690 6 1.2660 7

7000 0.7810 4 1.7500 7 1.5470 6 1.1870 6 1.3600 7

Diagonal 4
4000 0.2500 8 0.2810 8 0.2660 8 0.2970 8 0.2660 8

5000 0.2500 8 0.2970 8 0.2500 8 0.2650 8 0.2340 8
7000 0.3440 8 0.3750 8 0.3280 8 0.4370 8 0.3590 8

Diagonal 1 600 9.5780 526 18.7180 837 Inf Inf Inf Inf Inf Inf

Matyas 2 0.0320 4 0.0780 10 0.0160 4 0.0160 4 0.0160 4

Staircase S3
70 0.2500 226 0.2960 270 0.8910 835 0.4060 385 0.9690 902
100 0.7660 354 0.5630 387 2.7350 1362 0.8750 597 3.7960 1623

130 0.6700 424 1.0310 527 1.5310 1895 2.0580 888 3.3430 1244

Arwhead

2000 0.2980 5 0.0940 2 0.7580 10 0.0940 2 0.1090 2

4000 0.5780 5 0.1720 2 1.2820 10 0.1720 2 0.1720 2
10 000 1.4220 5 0.3910 2 3.2810 10 0.4220 2 0.4690 2

Quartcim

1100 0.3360 5 14.5620 1102 13.9530 1058 0.3750 8 14.2330 1081
1200 0.2650 5 18.3890 1136 17.5970 1083 0.4910 8 18.1660 1115

1800 0.3910 5 0.8430 10 26.2970 1290 1.0980 7 29.4520 1289
2000 0.4530 5 0.7650 8 30.0150 1332 0.8150 7 34.0750 1335

Linear

Perturbed

600 2.7180 262 3.5300 311 9.8300 703 Inf Inf 11.4060 809
621 2.7810 251 3.5310 311 8.7970 657 Inf Inf 8.1880 630

650 3.2500 273 3.6570 314 13.1720 314 Inf Inf 9.0780 649

800 4.3280 298 6.2570 340 25.9660 342 Inf Inf 23.6710 1086

Extended
Hiebert

1200 17.7640 203 Inf Inf Inf Inf 18.7030 328 Inf Inf

Leon 2 0.2360 34 0.2350 76 0.7030 34 0.2350 61 0.4220 67

Extended
White and

Holst

5000 1.1560 5 1.7970 7 1.1870 5 1.1620 5 1.1650 5
5500 1.2660 5 1.8590 7 12560 5 1.4220 5 1.4530 5

6000 1.6250 5 1.8600 6 1.4840 5 2.0560 5 1.4380 5

Branin 2 0.0160 4 0.0310 8 0.1250 16 0.0620 8 0.0470 8

Cube 1670 0.3910 4 Inf Inf 0.4380 5 Inf Inf Inf Inf

Almost

Perturbed
1500 0.5000 6 0.5080 7 0.5470 7 0.5000 6 0.5080 7

Quartic 5000 1.4370 6 1.9380 7 1.6410 6 1.6720 6 1.6250 6

Prod 2 1800 0.2030 5 0.5310 6 0.2340 6 0.2190 8 0.2350 6

Harkerp 1400 0.4370 9 6.6560 111 6.4220 110 1.2340 23 6.3910 110

Booth 2 0.0310 4 0.0470 8 0.2040 22 0.0470 8 0.1560 21

Quadratic

1000 3.2720 162 3.5710 200 Inf Inf 3.3430 204 8.2500 424

1200 4.1290 227 5.8120 269 Inf Inf 4.8590 244 23.9770 880
1500 6.9200 254 6.6770 269 Inf Inf 7.4220 273 36.3990 1033

Quartic

1600 0.1400 5 2.0940 114 17.3900 201 2.0780 114 2.0780 114
1700 0.1620 5 1.8910 97 19.2970 207 1.6290 97 1.8750 97

2000 0.1800 5 3.1320 125 46.4100 316 3.1090 124 3.0940 125
2400 0.1880 5 3.1870 114 49.1510 329 3.6300 114 3.1580 114

Ridge
1200 0.3910 56 Inf Inf Inf Inf 0.5470 78 Inf Inf
1800 0.6850 58 Inf Inf Inf Inf 0.5160 57 Inf Inf

Raydan 2
100 0.1400 6 0.1400 93 4.3450 509 Inf Inf 0.1880 126

140 0.1410 41 Inf Inf Inf Inf 0.1720 46 Inf Inf

Styblinski
800 0.7190 17 1.3750 31 0.9280 18 1.3440 30 1.3880 30

1960 1.0150 21 3.3210 66 1.4200 25 1.3130 30 2.7960 56
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Table 1. continued.

Method
Dim

MCB1 NVHS* NHS DDY1 DHS

Function TIME ITR TIME ITR TIME ITR TIME ITR TIME ITR

Sumsquares

1200 2.0820 62 2.0940 62 5.8600 97 7.1410 80 2.0000 61

1250 2.0000 59 2.1720 63 Inf Inf 14.7930 120 2.7350 76
1300 2.8220 64 3.1850 65 Inf Inf 2.9680 66 2.4540 62

1600 3.2760 71 3.3130 74 Inf Inf 3.5780 79 3.7810 84

1800 3.8280 78 3.9070 78 Inf Inf 3.9220 78 4.6270 88

Sphere

4200 0.1610 5 0.4470 9 0.7660 9 1.9220 17 0.2820 9
5400 0.2030 5 0.3540 9 1.0780 10 2.4530 17 0.3750 9

6500 0.2660 5 0.4060 9 1.3590 10 3.0620 17 0.4530 9

7800 0.2970 5 0.5470 9 1.3910 9 3.6250 17 0.5310 9

Schwefel 223
7000 0.3910 2 0.4690 3 0.7190 5 0.4690 3 0.4690 3
9000 0.9530 5 0.5630 4 0.9220 6 0.5620 4 0.5630 3

10 000 1.0210 4 0.6580 4 1.0150 6 0.6250 4 0.6090 3

Extended
Rosenbrock

1000 0.5780 33 0.7970 48 1.2820 41 0.6440 38 0.9370 43

1200 0.5150 27 0.9310 40 1.0620 32 1.1250 59 0.9680 30
1500 0.5620 25 0.8590 32 1.3290 78 3.7650 150 1.3440 60

1600 0.6720 27 1.0310 31 1.3600 71 1.7500 65 1.4680 62

Raydan 1

1200 0.0940 7 0.1610 8 0.8220 20 0.1090 9 0.1090 22

2000 0.1410 8 1.3470 25 0.7340 15 0.3900 12 0.7500 17
2400 0.1250 6 0.8410 18 0.7970 14 0.3130 10 0.3280 11

4000 0.5020 8 1.4220 14 1.4370 11 9.1100 58 14.7340 126

Qing

1400 0.4530 7 17.6480 397 0.9220 14 21.5030 437 57.1440 1278

1500 0.4840 7 19.4370 401 68.733 838 99.5020 1406 74.1340 925

1600 0.5000 7 23.2280 429 79.555 1226 110.789 1448 90.3330 1360

Rastrigin
1200 7.2030 197 4.8280 93 3.5000 93 7.6400 197 7.6560 197
1300 0.2660 10 1.7340 46 3.4680 87 2.9530 74 3.8100 87

1900 0.2970 6 0.6250 16 0.4690 8 3.5420 66 0.6250 16

Penalty

1950 0.4380 9 8.0710 134 0.5160 10 1.6040 37 2.6570 51

2000 0.4530 10 0.7160 17 0.4690 10 0.9220 23 1.4530 32
3000 0.6720 7 0.7030 8 0.8240 8 3.9380 48 12.6510 142

Perquadratic
1300 12.3280 512 14.2190 583 Inf Inf 13.7750 537 18.4460 703
1600 18.2630 557 21.4920 686 Inf Inf 25.8070 746 31.7860 915

Hager
1200 10.3030 234 15.6870 354 Inf Inf 11.1720 268 8.2500 424

1700 28.3630 10 39.9520 606 Inf Inf 79.4380 1676 Inf Inf

Extended
Himmelblau

2000 0.4840 6 0.8440 28 Inf Inf Inf Inf 0.7030 19

4000 0.7970 6 1.3440 19 Inf Inf Inf Inf 1.3750 20
5000 1.0150 6 1.9840 22 Inf Inf Inf Inf 1.5630 19
6000 1.1560 6 1.9210 18 Inf Inf Inf Inf 1.8750 17

parameters (mean, mode, median). The problem of estimating the mode function of a probability density
function (p.d.f.) has taken considerable attention in the past for both independent and dependent data, and a
number of distinguished papers deal with this topic. For example, Parzen [19] and Eddy [10] for estimation of
the unconditional mode in the independent and identically distributed (i.i.d.) case.

In this section, it is considered that the problem of estimating the mode of a multivariate unimodal probability
density 𝑓 with support in R𝑛 from i.i.d. standard normal random variables 𝑋1, . . . , 𝑋𝑛 with common probability
density function 𝑓 . This problem has been investigated in numerous papers. To quote a few of them, Konakov
[15] and Samanta [24]. We assume that density 𝑓 has an unique mode denoted by 𝜃 and defined by

𝑓(𝜃) = max
𝑥∈R𝑛

𝑓(𝑥). (5.1)
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Figure 3. Performance profile on the CPU time (MCB2).

A kernel estimator of the mode 𝜃 is defined as the random variable 𝜃 which maximizer the kernel estimator
𝑓𝑛(𝑥) of 𝑓(𝑥), that is

𝑓𝑛

(︁
𝜃
)︁

= max
𝑥∈R𝑛

𝑓𝑛(𝑥), (5.2)

where

𝑓𝑛(𝑥) =
1

𝑛ℎ𝑛
𝑛

𝑛∑︁
𝑖=1

𝐾

(︂
𝑥−𝑋𝑖

ℎ𝑛

)︂
· (5.3)

The bandwidth (ℎ𝑛) is a sequence of positive real numbers which goes to zero as 𝑛 goes to infinity and the
kernel 𝐾 is a p.d.f. on R𝑛 In this simulation, we choose between two different types of kernel: while standard
Gaussian kernel defined by

𝐾(𝑥) =
1

(2𝜋)
𝑛
2

exp

⎛⎝−1
2

𝑛∑︁
𝑗=1

𝑥2
𝑗

⎞⎠,

and Epanechnikov kernel obtained by

𝐾(𝑥) =
(︂

3
4

)︂𝑛 𝑛∏︁
𝑗=1

(︀
1− 𝑥2

𝑗

)︀
.

The selection of the bandwidth ℎ is an important and basic problem in kernel smoothing techniques. In this
simulation, the optimal bandwidth by the cross-validation method is chosen.

In this context, the MCB1 and MCB2 methods are employed to solve the problem (5.2) under the SWLS
technique and compare with NHS [27] and DDY1 [28] and NPRP [27] methods. According to Tables 3 and 4, it
is clear that the MCB1 method is more efficient than NHS [27], DDY1 [28] methods and the MCB2 method is
superior to the NPRP [27] and DDY1 [28] methods based on the number of iterations and CPU time for solving
the problem (5.2).
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Figure 4. Performance profile on the number of iterations (MCB2).

Table 2. The simulation results of MCB2, DDY1, NVPRP*, DPRP and NPRP methods.

Method
Dim

MCB2 DDY1 NVPRP* DPRP NPRP
Function TIME ITR TIME ITR TIME ITR TIME ITR TIME ITR

Extended
Hiebert

3000 16.5630 164 16.4840 164 6.4320 97 Inf Inf 12.2230 197
4000 0.7900 6 26.0870 190 7.1700 61 Inf Inf 19.1700 201
5000 1.0320 6 31.9470 186 Inf Inf Inf Inf 24.0340 207

Penalty
1200 0.1720 7 1.9060 59 0.4060 14 0.2030 9 3.1410 91
1400 0.3030 13 0.4370 49 1.4540 29 0.2340 8 2.6250 69
1600 0.2180 7 35.0840 686 4.4690 101 0.2660 9 2.0000 49

Extended
Himmelblau

1400 0.2920 18 0.3440 16 0.3750 19 0.2810 15 0.3750 19
1500 0.2030 7 0.2820 12 0.3910 19 0.3130 15 0.3910 19
1800 0.3690 16 Inf Inf 0.4690 19 0.3750 15 0.4530 19

Quartic

805 0.6100 60 Inf Inf 0.9690 89 0.9220 91 0.9680 89
950 1.3990 128 Inf Inf 2.2030 195 2.2030 194 2.6220 195
1400 2.4360 129 Inf Inf 3.1520 199 3.0980 199 3.8350 199
1800 2.8910 132 Inf Inf 4.3910 200 4.4890 200 4.4810 203

Extended
Rosenbrock

1000 1.0780 55 Inf Inf 2.6720 128 71.7950 1689 72.5990 1689
1300 0.8440 35 Inf Inf 7.5470 258 71.5930 1386 70.6100 1386

Diagonal 4
1800 0.0470 7 0.1090 10 0.1090 10 0.1100 10 0.1090 10
2000 0.0930 7 Inf Inf 0.1400 10 0.1100 10 0.1100 10
2900 0.0410 4 0.0490 4 0.0470 4 0.0470 4 0.0460 4

Styblinski
800 0.6880 18 0.8130 21 1.9380 26 0.8120 21 1.0080 21
950 3.5940 68 5.6720 112 5.2340 98 6.4340 114 6.3000 114
990 3.9060 72 27.6560 468 28.600 477 30.342 495 29.655 495
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Table 2. continued.

Method
Dim

MCB2 DDY1 NVPRP* DPRP NPRP
Function TIME ITR TIME ITR TIME ITR TIME ITR TIME ITR

Double
Border
Arrow Up

1300 0.4250 12 0.3430 8 1.2810 40 Inf Inf 1.3280 39
6000 0.6250 5 1.0000 7 5.3240 32 Inf Inf 7.4140 40
6500 0.6560 5 1.1100 7 4.8750 31 Inf Inf 6.1410 37

Extended
White and
Holst

4000 0.6310 3 1.2340 5 0.7660 4 0.7970 4 0.8130 4

Linear
Perturbed

600 0.0930 6 2.2500 225 2.6250 238 Inf Inf 7.6250 995
2000 0.2190 6 55.4960 1007 16.9110 446 Inf Inf 51.3910 1056

Quarticm 1200 0.2660 5 16.5750 1122 15.7800 354 Inf Inf 15.4990 1117
Extended
Tridiagonal 1

100 0.0460 13 0.0630 19 Inf Inf Inf Inf 8.0160 649
120 0.0620 13 0.0780 19 Inf Inf Inf Inf Inf Inf

Alpine 1 400 14.1490 4 50.5650 14 103.896 25 Inf Inf Inf Inf

Hager
600 1.8630 88 1.6420 83 3.7190 134 2.3220 117 1.9420 88
800 0.1090 5 5.2350 169 Inf Inf 3.5640 138 Inf Inf
1000 2.5250 95 2.6560 95 6.5310 190 3.3440 113 Inf Inf

Chung 1200 1.2790 5 7.0460 104 6.1400 100 5.6240 30 6.3270 104
Exponential 602 0.0310 2 0.0320 3 0.0630 3 0.0470 2 0.0320 3

Griewank
1700 0.6090 16 3.0470 81 3.0320 82 3.0310 81 3.0160 81
1800 1.4740 21 1.4380 20 1.5160 21 1.4700 20 1.6410 20
2200 0.9380 17 5.0940 104 5.3110 105 5.0620 104 5.2420 104

Power 700 0.0930 7 50.0120 1821 Inf Inf 0.1250 7 Inf Inf
Schwefel1 221 2000 0.2960 9 0.2810 8 Inf Inf Inf Inf Inf Inf
Liarwhd 110 0.0320 6 Inf Inf Inf Inf Inf Inf 0.8900 175
Engval 1 1800 0.1400 4 0.1720 7 0.3430 7 0.3280 7 0.2810 6
Almost Perturbed
Quartic

1900 0.3890 6 50.1230 408 7.0880 213 Inf Inf 5.8750 184
23 000 64.890 95 50.0970 39 64.6660 94 Inf Inf 76.3750 156

Almost Perturbed
Quadratic

140 0.0160 3 10.7510 1398 3.7030 578 0.0320 5 4.6090 697
200 0.0470 3 Inf Inf 5.0150 553 0.0470 5 5.2810 704

Nonscomp
1500 0.2500 7 Inf Inf 5.0280 112 Inf Inf Inf Inf
1800 0.2970 7 Inf Inf 5.0000 84 Inf Inf Inf Inf
2000 0.3280 7 Inf Inf 5.0150 82 Inf Inf Inf Inf

Schwefel 223
950 0.2040 28 1.7670 251 Inf Inf Inf Inf Inf Inf
1800 0.3430 29 1.3590 120 Inf Inf Inf Inf Inf Inf
1900 0.3600 30 3.5510 293 Inf Inf Inf Inf Inf Inf

Alpine 2 600 2.8590 2 2.9220 2 2.8590 2 2.8590 2 2.8750 2

Raydan 2
1000 0.1760 8 0.2080 8 0.0690 7 Inf Inf 0.1720 8
1500 0.0780 6 148.65 1970 0.1250 8 Inf Inf 0.2030 8
1800 2.2720 48 2.2660 47 1.4220 31 Inf Inf 0.2340 8

Rastrigin
800 0.3880 14 73.6360 1820 2.2340 84 0.3590 12 2.6250 102
1100 0.2030 9 73.6980 1509 0.5940 21 0.4370 12 1.5000 46
1200 0.1100 6 51.1870 1050 4.2650 113 0.4380 11 1.8590 52

Quadratic 1470 0.1720 7 1.8750 78 55.7450 1466 0.2190 6 0.2190 6

Qing
470 0.0940 6 30.9690 1532 1.7650 140 3.3600 259 2.8440 222
1000 0.2190 6 3.5460 65 8.4760 253 30.2320 787 17.0160 489
1600 2.1130 30 2.0780 28 16.2970 1231 78.9530 1231 79.3470 1193

Perquadratic
1200 0.1870 6 13.8430 607 22.6880 838 0.2040 7 29.3860 1075
1800 2.7340 10 2.9220 115 2.1870 111 0.3590 11 2.7340 102
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Table 2. continued.

Method
Dim

MCB2 DDY1 NVPRP* DPRP NPRP
Function TIME ITR TIME ITR TIME ITR TIME ITR TIME ITR

2800 0.6090 10 7.5880 141 7.7020 142 0.7690 12 6.5620 122

Cube
1600 0.6890 7 Inf Inf Inf Inf Inf Inf Inf Inf
1700 0.7180 7 Inf Inf Inf Inf Inf Inf Inf Inf

Dixon 6000 0.6570 4 0.2820 2 0.9060 5 0.2660 2 1.0620 6
Ridge 6000 0.0630 6 0.4130 66 Inf Inf Inf Inf Inf Inf
Prod 2 1300 1.5600 6 1.5150 6 1.4220 5 0.3600 7 0.3440 7
Harkerp 400 0.1410 10 0.1400 10 17.7420 926 0.0620 9 17.7360 926
Matyas 2 0.0150 6 0.0160 7 0.0160 7 0.0160 7 0.0160 7
Leon 2 1.1720 82 0.9260 80 0.2190 47 0.2220 29 0.2030 29

Sphere
1400 0.1650 11 0.2020 12 0.1720 14 0.1720 14 0.1880 14
1900 0.1720 11 0.3280 17 0.2190 14 0.2500 14 0.2190 14

Raydan 1
80 0.1620 90 0.0780 55 0.0780 55 0.1090 100 0.1090 88
125 0.1870 65 0.2030 77 0.2660 77 0.2970 136 0.3130 155
2000 0.4370 17 0.4370 17 0.3130 14 0.2970 14 0.3230 14

Table 3. The simulation result of MCB1, DDY1 and NHS methods for solving problem (5.2).

Kernel Initial points Dim
MCB1 DDY1 NHS

ITR TIME ITR TIME ITR TIME

Epanechnikov (0.545, . . . , 0.545)

8 113 1.5350 144 1.8120 131 1.7350
10 18 0.2390 125 2.3280 44 0.8440
12 15 0.3880 14 0.3900 63 1.7280
14 6 0.1870 8 0.2350 7 0.2030
16 5 0.2310 6 0.2560 9 0.3840
20 9 0.5250 7 0.4530 6 0.3910
40 3 0.3900 4 0.6560 4 0.7820

Gaussian

(0.545, . . . , 0.545)

160 6 16.466 87 228.17 7 17.686
170 5 12.066 33 99.078 63 80.500
190 14 45.551 20 69.828 15 47.147
180 14 46.782 19 60.440 18 65.532
270 4 30.020 28 204.83 48 350.62
290 24 162.81 13 109.75 18 151.87
320 12 127.57 15 155.18 28 289.17
340 9 107.19 10 111.31 16 236.39

(0.01, . . . , 0.01)

26 36 2.6560 106 8.8670 975 67.547
32 86 8.9690 44 4.3600 86 8.9830
37 51 7.4690 112 14.891 57 7.7770
40 11 1.9220 80 11.133 85 12.175
48 64 13.343 206 42.625 84 17.657
50 10 2.2030 37 8.2510 54 12.171
58 4 1.0310 8 2.7500 43 15.047
60 14 10.968 31 10.000 13 4.2660
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Table 4. The simulation result of MCB2, DDY1 and NPRP methods for solving problem (5.2).

Kernel Initial points Dim
MCB2 DDY1 NPRP

ITR TIME ITR TIME ITR TIME

Epanechnikov (0.545, . . . , 0.545)

06 77 0.5780 106 0.7970 79 0.6250
08 142 1.5780 144 1.6100 140 1.5400
10 35 0.4840 55 0.9060 199 3.2660
12 26 0.6410 72 1.7030 109 2.5460
20 4 0.1720 10 0.5310 8 0.4060
30 3 0.4060 4 0.4210 4 0.4370
100 4 7.1720 4 12.688 4 9.5160

Gaussian

(0.545, . . . , 0.545)

100 55 34.605 159 156.67 98 97.4640
120 48 72.553 Inf Inf 180 263.802
140 6 5.8730 8 12.793 35 69.2470
150 40 36.454 87 205.79 31 70.6320
170 15 34.534 66 205.12 63 182.250
310 4 42.396 Inf Inf Inf Inf
340 4 36.493 13 160.27 Inf Inf

(0.01, . . . , 0.01)

40 27 4.2340 81 12.938 97 15.2500
46 11 2.2810 28 5.7810 31 06.4460
48 12 2.8280 24 5.9840 78 18.2660
52 18 4.7340 94 24.703 40 10.5470
55 10 4.7820 30 11.203 23 08.5630
57 9 2.8440 35 11.141 55 17.3440
62 13 4.8250 13 4.8440 7 0 2.6250
68 9 3.6090 12 4.7810 8 0 3.2030

6. Conclusion

This paper has presented two modified conjugate gradient methods, that is, MCB1 and MCB2 methods.
Under the SWLS condition the sufficient descent condition of the MCB1 method has been established. An
attractive property of the MCB2 method is that it generates a sufficient descent condition, regardless of the
line search. The global convergence properties of the MCB1 and MCB2 methods have been established under
the SWLS conditions.

From the statistical results obtained by the first comparison technique in Figures 1 and 3, it is clear that the
average CPU time of the MCB1 and MCB2 methods are approximately equal.

From Figures 2 and 4, the MCB1 method is slightly more effective than the MCB2 method, with respect to
the number of iterations.

The final conclusion is that the proposed methods are more efficient than some existing methods. The practical
applicability of MCB1 and MCB2 methods is also explored in nonparametric estimation of the mode function.
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