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Abstract: The objective of this study is to enhance the longevity of damaged or defective components 
through necessary repairs. In corrosive environments, stainless steels, such as 304 and 316NG 
austenitic stainless steel (SS), are preferred due to their chemical composition. Notably, 316SS 
contains a higher molybdenum content, resulting in improved resistance to pitting and crevice 
corrosion. The simulation of intergranular stress corrosion cracking (IGSCC) in SS piping relies on 
factors like applied and residual stresses, environmental conditions, and sensitization degree. To 
understand crack growth rates and times-to-initiation for each material, "damage parameters 
(DPs)" are utilized. These DPs consolidate the individual influences of various parameters. To 
estimate the DPs an artificial neuronal network (ANN) is proposed in this work. The ANN serves as 
a tool for predicting the DPs based on the given inputs. The obtained results are then utilized in 
numerical simulations to assess crack growth rates, times-to-initiation, and reliability for damaged 
304SS and 316SS. Finally, this paper investigates the impact of replacing old 304 material with 
new 316NG material on piping reliability. By examining the effects of this replacement, the study 
aims to provide insights into how the reliability of the piping can be improved through material 
upgrades. 
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1. Introduction

The field of nuclear materials science and structural reliability analysis has experienced 
significant progress and a growing body of research over the decades. A foundational 
document dating back to 1979 by the Nuclear Regulatory Commission (NRC) [1] 
investigates and evaluates stress corrosion cracking in the piping of Light Water Reactor 
(LWR) plants. This report highlights the early recognition of stress corrosion cracking as 
a critical concern for nuclear power systems. In 1987, Akashi and Ohtomo's work [2] 
evaluated the factor of improvement for the intergranular stress corrosion cracking life 
of sensitized stainless alloys in high-temperature, high-purity water environments. Their 
research provides valuable insights into the behavior of stainless alloys under specific 
conditions. A theoretical and user's manual for PC-Praise, a probabilistic fracture mechanics 
computer code developed by Harris and Dedhia in 1992, is presented in [3]. Endorsed 
by the US Nuclear Regulatory Commission (NRC), this code serves as a crucial tool for 
analyzing piping reliability. In 1994, Akashi [4] proposed an exponential distribution 
model for assessing the stress corrosion cracking lifetime of BWR component materials. 
This model offers a valuable framework for estimating the service life of materials under 
the influence of stress corrosion cracking. The work by Zhang et al. [5] delves into the 
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initiation and propagation of IGSCC for sensitized 
type 304 stainless steel in dilute sulfate solutions. 
This study contributes to our understanding of 
the mechanisms behind IGSCC, a phenomenon of 
great concern in nuclear materials. Ting's work [6] 
evaluates IGSCC problems in stainless steel piping 
at the Taiwan BWR-6 nuclear power plant, shedding 
light on localized issues within specific nuclear 
installations.

Further advancements in reliability analysis and 
prediction are presented in [7] to [10], which explore 
techniques such as neural networks and Monte 
Carlo simulations (MCS) for assessing structural 
integrity and reliability under various conditions. 
Meireles et al. [11] provide a comprehensive 
review of the industrial applicability of artificial 
neural networks, emphasizing their role in modern 
reliability engineering. Additionally, [12] documents 
proceedings from a seminar on Materials Research 
and Development for Prototype Fast Breeder 
Reactors (PFBR), emphasizing the importance of 
materials research in advanced reactor systems. 
Jones [13] focuses on mitigating corrosion problems 
in LWRs through changes in water chemistry, 
underlining the significance of chemistry alterations 
in combating corrosion issues. The International 
Atomic Energy Agency (IAEA) plays a crucial 
role in setting standards for the assessment and 
management of aging major nuclear power plant 
components. [14] provides guidelines for ensuring 
the safety and reliability of BWR pressure vessels.

[15] to [33] represent a wide range of recent 
research efforts encompassing topics such as 
artificial neural networks, corrosion defects in 
pipelines, failure analysis of corroded high-strength 
pipelines, and reliability prediction using MCS.

Due to their suitable high-temperature 
properties, which include high creep strength, 
resistance to low cycle fatigue and creep-fatigue 
interactions, and good resistance to environmentally 
sensitive cracking, austenitic stainless steels are 
preferred as the primary structural materials in a 
variety of industries. Their selection is supported 
by the availability of code data on mechanical 
parameters and their better weldability [12].

Making sure that the items they produce meet 
or exceed quality and performance standards 
requires a lot of work and commitment on the 
part of manufacturers. However, the effect on the 
bottom line can be enormous if faulty products 

are not performing properly. Calculating the 
product's reliability and longevity is crucial. When 
that product comes back damaged, you either 
need to repair it as a replacement. When corrosion 
resistance is desired, ferrous metals such as 304SS 
and 316SS are frequently utilized. They continue to 
offer durable solutions in many industries and are 
a superb answer in challenging conditions. Let's 
explore stainless steel in more detail and attempt to 
determine what renders 304SS and 316SS different. 
The impact of repairing or replacing 304SS material 
with a higher grade 316SS following a necessary 
repair will be examined in the sections that follow. 
Both materials' models were created.

For each material, the crack growth rates and 
times-to-initiation are compared against "DPs," 
which combine the various contributions of 
various individual parameters. The DPs used in 
this work are multiplicative relationships between 
various terms that each describe how different 
phenomena, such as the environment (specifically 
coolant temperature, dissolved oxygen content, 
and levels of impurities), applied loads (including 
both constant and variable loads to account for 
steady-state operation and, respectively, plant 
loading or unloading), residual stresses, and material 
sensitization) affect SCC behavior [5], [24], [27]. To 
accomplish this, a two-step approach is suggested.

1. ANN for DPs Estimation: In the first step, an ANN is proposed 
to estimate the DPs based on the various independent inputs. The 
ANN is trained using a dataset that includes the independent inputs 
and corresponding DPs. By learning from this dataset, the ANN can 
establish a relationship between the inputs and the DPs, allowing it to 
estimate the DPs for new sets of independent inputs. This estimation 
provides crucial input for the subsequent steps in the analysis.

2. Numerical Simulation for Crack Growth Rates, Times-to-
Initiation, and Reliability Assessment: In the second step, the 
estimated DPs obtained from the ANN are utilized in a mathematical 
simulation to determine crack growth rates, times-to-initiation, and 
the reliability of damaged material. The simulation takes into account 
various factors such as material properties, loading conditions, and 
environmental effects to model the crack growth behavior accurately.

The reliability model, which was developed 
in previous work [33], is adapted specifically for 
evaluating the probability of failure in 316SS 
piping. This model incorporates the estimated 
DPs and utilizes probabilistic methods to assess 
the reliability of the piping system. By considering 
the uncertainties and variability associated with 
the inputs and DPs, the reliability model provides 

AMS _3-2023.indd   23AMS _3-2023.indd   23 23.01.2024   16:25:4323.01.2024   16:25:43



24 VOLUME 27, No. 4, 2023

insights into the likelihood of failure under given 
conditions. By employing this two-step approach, 
combining the ANN-based estimation of DPs with 
mathematical simulations and reliability analysis, it 
becomes possible to comprehensively evaluate the 
behavior of damaged 316SS piping and assess its 
probability of failure. This methodology enhances 
understanding and decision-making regarding 
maintenance, repair, or replacement strategies for 
such piping systems.

2. Damage prediction 
 2.1 Experimental data sets

The investigation of the susceptibility of 304SS 
and 316SS to stress corrosion cracking (SCC) 
under nuclear power plant operating conditions 
is of utmost importance for ensuring the safety 
and integrity of components manufactured from 
these materials. The experimental methodology 
expounded in [3] is considered critical for this 
purpose. In this regard, representative samples of 
304SS and 316SS, specifically designed for nuclear 
applications due to their enhanced resistance to 
corrosion, were selected by the laboratory staff. To 
simulate the service conditions in nuclear power 
plants, specimens were prepared with standardized 
geometries, such as tensile bars of 50.4mm, and 
specific environmental conditions were identified. 
In some instances, high-temperature water with 
specific chemical additives or the simulation of 
primary and secondary water chemistry may be 
used in SCC initiation tests.

A regular inspection of the specimens was 
conducted to detect the presence of cracks, 
including microcracks and corrosion pits. The time 
taken for SCC cracks to initiate under the applied 
stress and environmental conditions was recorded. 
This information is vital for comprehending SCC 
initiation kinetics and determining the critical stress 
intensity factors associated with SCC initiation.

In [3], the variation of key parameters, such 
as stress levels, temperature, and environmental 
conditions, was used to assess their impact on SCC 
initiation. Statistical methods and mathematical 
models were utilized to quantify the initiation 
behavior under different conditions.

The time to crack initiation under static load 
conditions was discovered to be a function of 
the DP, as presented in Eq. (1). Hence, the time to 
crack initiation tI for a given DP was assumed to be 

log-normally distributed. The mean and standard 
deviation of Log (tI) are provided in [3].

Mean value of Log(t
l
)=C

10
-C

11
aLog(Ds)

and Standard deviation of Log(t
l
=)C

11

The damage parameter DP represents the effects 
of loading, environment, and material variables on 
IGSCC and is given by

DPs=f
1
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2
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3
(looding)

where f
1
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2
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3
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Figure 1a: displays the 304SS DPs at different temperatures 
and varying levels of applied stress. The conductivity is fixed 
at 0.51 µS/cm, and the measurements are taken under steady-
state conditions for different O2 content levels: 0.2ppm (Case 
a), 1ppm (Case b), 2ppm (Case c), 8ppm (Case d), and 16ppm 
(Case e).

Where Pa is a measure of degree of sensitization, 
given by Electrochemical Potentiokinetic 
Reactivation in C/cm2, O

2
 is oxygen concentration 

in ppm, T is temperature in degrees centigrade, 
γ is water conductivity in μs/cm, and σ is stress in 
MPa. In the above equations, C

i
 are constants whose 

values depend on the type of material.
The current study was conducted in two 

locations, namely [3] and [21]. The presented dataset 
is focused on the examination of welds in 304/316 
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SS piping following 50 years of plant operation and 
is demonstrated in Figures 1(a and b). The DPs are 
represented as numerical values that consolidate 
the individual influences of various parameters on 
crack growth rates and times-to-initiation for each 
material. Figure 1a depicts a graphical representation 
of the DPs for 304SS at different temperatures and 
levels of applied stress. The conductivity of the 
material remains constant at 0.51μS/cm, which 
is an indicator of its electrical conductivity. The 
measurements were obtained under steady-state 
conditions, signifying that the system was in a stable 
and unchanging state. Different levels of O

2
 content 

are represented by different cases, including 0.2ppm 
(Case a), 1ppm (Case b), 2ppm (Case c), 8ppm (Case 
d), and 16ppm (Case e).

Similarly, in Figure 1b, the DPs are influenced 
by varying levels of oxygen (O

2
), applied stress, 

and a constant conductivity of 0.51 μS/cm. The 
measurements were obtained under steady-state 
conditions at different temperatures, including 93°C 
(Case a), 140°C (Case b), 204°C (Case c), 260°C (Case 
d), and 288°C (Case e).

Stress 
[MPa]

Pa
[C/cm2]

O2
[ppm]

T
[°C]

Mean 325,42 31,01 5,44 216,66

Standard Deviation 33,67 35,25 5,95 79,57

Standard error of the 
mean

0,83 0,87 0,14 1,97

Upper limit of the 95% 
confidence interval of 

the mean
327,06 32,73 5,73 220,54

Lower limit of the 95% 
confidence interval of 

the mean
323,78 29,29 5,14 212,78

Number of observations 1620 1620 1620 1620

Table 1a exhibits a set of four input variables, 
namely Stress, Pa, O

2
, and T, accompanied by their 

corresponding statistical measures. Stress is gauged 
in MPa, Pa is measured in C/cm2 (Coulomb per 
square centimeter), O

2
 is measured in ppm (parts per 

million), and T is measured in degrees Celsius. The 
statistical measures presented in the table include 
Mean, Standard Deviation, Standard error of the 
mean, Upper limit of the 95% confidence interval 
of the mean, Lower limit of the 95% confidence 
interval of the mean, and Number of observations.
Table 1b: Statistics of output variables

304SS (DPs) 316SS (DPs)

Mean 2,57×10-2 4,79×10-4

Standard deviation 2,79×10-2 2,99×10-4

Standard error of the mean 6,93×10-4 7,44×10-6

Upper limit of the 95% 
confidence interval of the mean

2,71×10-2 4,93×10-4

Lower limit of the 95% 
confidence interval of the mean

2,44×10-2 4,64×10-4

Number of observations 1620 1620

Table 1b provides statistical information about 
two output variables, namely "304SS (DPs)" and 
"316SS (DPs)". The statistical metrics employed are 
identical to those explicated in Table 1a.
2.2 Artificial Neural Network Model

This study introduces the basic concepts 
of ANNs, a powerful tool for solving complex 
problems that cannot be easily expressed with a 
formula. ANNs are often compared to the human 
brain due to their architecture and abilities. ANNs 
consist of a network of simple processing units 

Figure 1b: illustrates the DPs of 316SS concerning varying 
levels of O2, applied stress, and a constant conductivity of 
0.51 µS/cm. The measurements were taken under steady-state 
conditions, with the following temperature settings: T= 93°C 
(Case a), T= 140°C (Case b), T= 204°C (Case c), T= 260°C (Case 
d), and T= 288°C (Case e).

Table 1a:  Statistics of input variables
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(nodes) whose processing capacity is stored in the 
interunit connection strengths (weights) obtained 
through training on a set of patterns. Different 
learning algorithms can be used depending on the 
training data and expected output. ANNs can learn 
from samples and implicitly detect complicated 
nonlinear interactions between variables. The ANN 
is commonly used for supervised learning which 
consists of three layers (I, H, and O), with I denoting 
the number of nodes in the input layer, H denoting 
the number of nodes in the hidden layer, and O 
denoting the number of nodes in the output layer. 
These three layers are highly interconnected by 
nodes and work together to solve specific problems.

Once the data is received in the input layer the 
processed values are sent to the hidden layer. The 
hidden layer and output layer process all incoming 
signals by applying some weights to them. The ANN 
uses an algorithm for training networks where the 
error at the output layer is moved back to the input-
hidden layers for updating weights and decreasing 
errors to yield the best results. The primary objective 
of the ANN process is to decrease the total error 
between the observed and predicted values by 
adjusting the weights. These weights are combined 
and processed through an activation function and 
released to the output layer [7-8].

In looking for the best ANN model, one has 
to determine the appropriate number of hidden 
layers and the number of neurons in each one. This 
is done through training and testing of different 
network structures and the aone should ultimately 
be determined by evaluating tolerance between 
predicted and experimental data. Mean square error, 
MSE, indicator as shown in Eq. (6) was introduced 
to evaluate the training and generalization 

algorithm is used to train the network. Figure 2 
shows the resulting neural network's architecture.

performances of ANN [11] and [14].
where ti and yi are experimental and predicted 

DP values, respectively, and N is the number of data 
sets.

The ANN used in this study has forth input 
parameters (I=4), two hidden layers with ten 
hidden layer nodes (H=10), and two output layer 
nodes (O=DPs). The hyperbolic tangent transfer 
function and the linear transfer function are utilized 
as activation functions in the hidden and output 
layers, respectively. The Levenberg-Marquardt (LM) 

( )6

Figure 2: The architecture of the optimal ANN model to predict 
DPS

3. Evaluation of Piping Reliability
This section presents the methodology 

recommended by [3, 21, 22, 23, 24] for modeling 
IGSCC in stainless steel pipes, which is based on 
two-dimensional semi-elliptical interior surface 
cracks that are typically circumferentially oriented. 
The overall time to pipe leaks is separated into three 
steps: time to initiate a very small crack, time spent 
growing small cracks at an initiation velocity, and time 
spent growing larger cracks at fracture mechanics 
velocity to become through-wall cracks. The DPs, 
which are a function of material, environment, and 
loading variables, are used to determine the time to 
crack initiation. This study considers both breakage 
and leakage as potential failure modes, with part-
through initial stress corrosion cracks potentially 
growing into unstable part-through or through-wall 
cracks. 

The failure criterion for pipe leakage is defined as 
a = h, where h is the wall thickness and a is the crack 
depth, and the stability of the crack is determined by 
comparing net-section stress with the flow stress of 
the material. The net-section stress criterion applies 
to very tough material, and the failure is due to 
insufficient remaining area to support the applied 
loads given by Eqs. (7) and (8), i.e., net-section stress 
due to applied loads becomes greater than the flow 
stress of the material.

( )7

( )8

( )21 N

i i
i l
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where Ri is the internal radius of pipe, h is the 
pipe wall thickness, A

p
 is the cross-section area of 

the pipe, is the area of crack, s
LC 

and
 
s

f 
are the load-

controlled components of stress and the flow stress, 
respectively.

To predict the reliability of corroded pipes, ANNs 
with limited input parameters are used to ensure 
calculation efficiency and avoid overlearning. 
However, arbitrarily reducing parameters can 
affect the accuracy of the ANN's prediction [28]. A 
sensitivity analysis is performed to determine the 
primary parameters to retain in the ANN model. Due 
to the low probability of pipe failure, appropriate 
statistical methods, such as the Monte Carlo 
Simulation (MCS), are used to obtain sufficient data 
for reliability analysis. The entire MCS database is 
divided into three groups for ANN training, testing, 
and validation (see Figure 3).

The best ANN model is determined by evaluating 
tolerance between predicted and actual data, with 
the input variables including DP values, applied 
stress levels, steady-state temperatures, O

2
 content, 

and periods of plant operation. The output variable 
is the failure probability. The Levenberg-Marquardt 
algorithm is used to train the ANN, resulting in a 
network of one hidden layer with five neurons (See 
Figure 4).

4. Results and Discussions
4.1 Damage prediction

Figures. (5a, b - 6a, b) shows the correlation 
between the observed and predicted DPs of both 
materials versus the service operating conditions for 
both training and testing for the selected model.

Figure 3: Presents a flow chart outlining the methodology 
proposed for this study

Figure 4: The architecture of the optimal ANN model to predict 
the probability of failure

Figure 5a: Predicted DPs versus actual DPs for training data 
(304SS)

Figure 5b: Predicted DPs versus actual DPs for validation data 
(304SS)

Figure 6a: Predicted DPs versus actual DPs for training data 
(316SS)
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Figure 6b: Predicted DPs versus actual DPs for validation data 
(316SS)

The significance is a measure of how much 
the inputs influence the output. Each variable was 
investigated for the best model and presented in 
Figure 7. However, each input was seen to offer 
at least a moderate contribution to the output. 
This, therefore, confirmed that they were a good 
choice of inputs. In summary, it was important to 
find out which variables are considered to be most 
significant, or those that contributed very little 
to the output. However, it is well understood that 
many of the variables have some bearing on steel 
strength. Overall, the aim was to obtain meaningful 
inputs that allow the optimization of mechanical 
properties within a predictive framework.

Once the model was developed, its behavior 
was compared to findings in the literature. The 
aim was to show that it agrees with existing data 
and has enough complexity to describe different 
relationships. To validate this, a random 5% of the 
same database are used to estimate the damage 
levels using a nonlinear multiple regression model 
developed in [3] given by Eqs. 2 to 5 for both 
materials.

 
Figure 7: Showing a measure of the model's perceived 
significance of each input variable influencing the outputs as 
deduced from the network

Figure 8: Comparison of the predicted function of observed DP 
values for 304SS using nonlinear regression [3] and ANN

Figures. (8-9) show that the ANN (R2= 0.999) 
performs better at evaluating the DPs than the 
nonlinear regression model; (R2= 0.929) created in 
[3].

Figure 9: Comparison of the predicted function of observed DP 
values for 316SS using nonlinear regression [3] and ANN

It would be interesting to find any nonlinear 
relationships that are not captured by linear 
regression methods. This would show that the 
flexibility of ANN may be more suitable for making 
predictions. To illustrate this, 3D plot examples of 
DPs were made for total stress, temperature, and 
dissolved oxygen (Figures.10a, b-11a, b).

The brown, green and blue color ranges shown 
in figures (10a, b-11a, b) respectively indicate the 
ranges of damage variation, which can be classified 
into three categories: high, medium and low.
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Figure 10a: Predicted DPs of 304SS material versus DO and 
temperature (Pa=10 C/cm2 and Stress=350 MPa)

In Figure 10a, a graph is presented that shows 
the predicted damage parameters (DPs) of 304 
SS material. The graph plots the DPs against two 
variables, dissolved oxygen, and temperature, 
under specific conditions, including a stress of 350 
MPa and a pitting corrosion potential of 10 C/cm2. 
The graph shows that under low DO values of less 
than 0.2 ppm, an increase in temperature results 
in low damage, while high DO values and high 
temperatures result in high damage.

Figure 10b also presents a graph that shows the 
predicted DPs of 304 SS material with DPs plotted 
against pressure and temperature. The stress applied 
to the material is 300 MPa, and the dissolved oxygen 
concentration is 0.2ppm. As per Figure 7, 304 SS 
material is sensitive to Pa, and Figure 10b confirms 
that low Pa values of less than 20 C/cm2 result in low 
damage.

Figure 10b: Predicted DPs of 304SS material versus Pa and 
temperature (Stress=300 MPa and DO=0.2 ppm)

Moving on to Figure 11a, it displays the 
predicted DPs of 316SS material, illustrating how 

the DPs vary as the stress and temperature change. 
The prediction is based on specific conditions, 
including a Pa of 8 C/cm2 and a dissolved oxygen 
concentration of 0.2 ppm. It shows that low damage 
is always a result of a combination of minimum load 
and temperature.

 Figure 11a: Predicted DPs of 316SS material versus total stress 
and temperature (Pa=8 C/cm2 and DO=0.2 ppm)

Finally, Figure 11b portrays the predicted DPs 
of 316 SS material, plotting the DPs against two 
variables: total stress and dissolved oxygen. The DPs 
are measured at Pa of 8 C/cm2, and the temperature 
is set at 325 °C. The graph shows that the 5E-4 iso-
value line delimits weak damage. 

Figure 11b: Predicted DPs of 316SS material versus total stress 
and DO (Pa=8 C/cm2 and T=325°C)
4.2 Reliability Evaluation

This section aims to investigate the impact 
of modifying environmental parameters, such as 
oxygen concentration and temperature during 
operation, as well as the replacement of 304SS 
material with higher-grade 316SS material after 
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repair. While the model was initially developed for 
304SS, adapting it for 316SS was a straightforward 
process of defining new damage parameters using 
relevant laboratory data. The underlying structure 
of the model remained the same. The theoretical 
model, developed by comprehending the cracking 
mechanism, effectively predicts observed damage 
accumulation [2], as depicted in Figure 12.

Figure 12: Effect of crack initiation, coalescence, and growth 
during subcritical cracking in aqueous media [2]

The reliability model used in this investigation 
is tested using original data from [2]. The results are 
shown in Figure 13. The resulting predictions had 
a much more rational basis and were in very good 
agreement with operational data for periods beyond 
6 years. The less satisfactory level of agreement for 
periods less than 6 years can be attributed in a large 
measure to the lack of observed failure events for 
the early periods of plant operation.

Figure 13: Probability as a function of time of stress corrosion 
crack initiation in 4-inch diameter sensitized stainless steel in 
288 ° C, 8 ppm hydrogen peroxide; original data from [2]

In this part our main objective is to study the 
relative behavior of different types of materials 
under otherwise nominally identical conditions 
presented in Table 2:

A service life of 50 years is simulated and the results 
are printed every two years. The maximum time 
step for stress corrosion crack growth is limited to 
0.1 years, which means that even during a long 
period of steady-state operation, the crack size, 
stress intensity factors, and other calculations are 
updated every 0.1 years. In the output file, there is a 
description of the data. In addition to the initiation 
probability, the leakage probabilities as a function 
of time and the rupture probability are obtained in 
the same run.
4.2.1 Comparative Study of the Effect of Changing the O

2
 

Concentration After Repair
Table 3 shows the damage for a given 

temperature of 288°C as a function of the 
concentration of O

2
 in the range of 0.05 to 8 ppm, 

corresponding to the cases studied.
Table 3: Damage as a function of DO

DO [ppm] 0.05 0.2 2 8

Damage 304SS 1.24E-3 1.59E-3 1.27E-3 3.09E-3

Damage 316SS 2.83E-4 3.94E-4 6.85E-4 9.55E-4

Figures 14 to 15 provide an example of information 
on the number of cracks that are initiated at the 
start of the time increment during that trial, and 
the number of cracks that are initiated within the 
time increment (Total initiated cracks by initiation 
and coalescence). Such results are printed out 
for each evaluation time. Note that initiation in a 
304SS weld reaches its maximum after only about 
4 years of operation, while in the 316SS type, this 
threshold is crossed only after 12 years. The reason 
for this difference is clear from Figures 14 to 15, 
which show the initial and total number of crack 
initiations in 304SS and 316SS materials. Note also 
that cracks begin to initiate in 304SS during the 
first year of operation; by the time the first initiation 
occurs in 316SS (about four years), nearly 4640 
cracks have initiated in the lower strength material.

The ratio of 316SS initiated cracks to 304SS 
initiated cracks for a temperature of 288°C and an O

2 

level of 0.05 ppm drops to less than 287 at two years 
and less than 3 at ten years and less than one at the 
end of the plant's life (see Figure 16). In any case, 
316SS has good corrosion resistance mainly because 
fewer initiated cracks than in 304SS, and those that 
are initiated generally contribute later in the life 
span. However, once a crack has been initiated, its 
subsequent growth rate is not significantly affected 
by material type.
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Table 2: Input values for parametric calculation

304SS 316SS

Pipe geometry [mm] Inner radius = 364
Wall Thickness = 21.3

Pipe loading values [MPa] Stress due to OP = 35.21
Total applied stress = 176.61

Material flow stress [MPa]
Normally Distribute:
Mean value = 314.3

Standard deviation = 13.3

SCC Parameters

O2 at startup [ppm] = 8.00
O2 at steady state [ppm] = as per Tabe 3
Temp. at steady state [°C] = as per Tabe 4

Heat up (38-288[°C]) Time [HRS] = 5.00
Coolant conductivity [µS/cm] = 0.20

Initial flow distribution [mm]
Lognormal distribution

Deterministic flaw depth = 0.025
Mean flaw length =3.2
Shape parameter =0.85

Figure 15: Number of cracks total initiated in the two types of 
materials for a temperature of 288°C and different DO values

Figure 14: Number of cracks initially initiated in the two types 
of materials for a temperature of 288°C and different DO values

Figure 17 shows, the cumulative leakage 
probabilities of the four cases treated. The results are 
given for both the original 304SS material and the 
replacement 316SS material. In 304SS piping, a leak 
should occur after two years of operation (i.e., the 

Figure 16: Total initiations of both 304SS and 316SS materials 
for a temperature of 288 °C and oxygen reduction to 0.01 ppm. 
(Monte-Carlo simulation of 10000 replications)

cumulative probability of leakage approaches this). 
While it is important to keep in mind the conservatism 
of the analysis, this result is nevertheless reasonably 
consistent with some field observations [2, 4]. 
Assuming the original piping configuration remains 
unchanged, replacing 304SS with 316SS results in 
virtually no leakage probabilities up to 6 years (with 
DO, at 0.2 ppm) and up to 12 years (with DO, at 0.05 
ppm) of operation.

The leakage probability of 316SS first exceeds 
10-4 after about 6 years, increasing to about (1,38E-
01 for DO=0.05 ppm to 2,97E-01 for DO=0.2 ppm) at 
30 years of the service life.

In the case of replacement by 316SS, the 
probability of leakage at the 30-year drops by 
about a factor (4.27 for a DO level of 0.2 ppm, 5.4 
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for a DO level of 0.05ppm, 6.26 for an oxygen 
level of 0.01ppm).Failure of 304SS piping is always 
dominated by initiated cracks (i.e., resulting from 
stress corrosion), in 316SS, initiated cracks dominate 
the probability of leakage only after about 6 years. 
Once cracks are present, the growth rates are 
nominally the same in both materials. Therefore, 
the expected difference in behavior between the 
two materials is due to differences in the number of 
initiated cracks and their subsequent initiation time, 
rather than how these cracks would grow once 
initiated.
4.2.2 Comparative Study of the Effect of Changing the 
Temperature After Repair

Table 4 shows the damage for a given 
concentration of DO of 0.2 ppm as a function 
of temperature in the range of 232 to 305°C, 
corresponding to the cases studied.

For low damage (Table 4) the temperature 
variation does not influence the initiation process. 
Notice that initiation in a 304SS weld reaches its 
maximum after only about 4 years of operation, 
while in 316SS, this threshold is not crossed until 
after 12 years, this difference is justified from Figures. 
18 to 19, which shows the initial and total number of 
crack initiations in 304SS and 316SS materials.
Table 4: Damage as a function of temperature

Temperature 
[°C]

232 249 288 305

Damage 
304SS

1.13E-3 1.42E-3 1.59E-3 1.61E-3

Damage 
316SS

3.26E-4 3.47E-4 3.94E-4 4.01E-4

Note also that cracks begin to initiate in 304SS 
during the first year of operation; by the time the 
first initiation occurs in 316SS (about four years), 

Figure 17: Cumulative leakage probabilities of the two types 
of materials for a temperature T=550 and different DO values

Figure 18: Number of cracks initially initiated in the two types 
of materials for a DO= 0.2 ppm and different temperature

Figure 19: Number of cracks total initiated in the two types of 
materials for a DO= 0.2 ppm and different temperature

nearly 4640 cracks have initiated in the lower 
strength material. The ratio of 316SS initiated cracks 
to 304SS initiated cracks for DO of 0.2 ppm and at 
the lower temperature of 232°C drops to less than 
340 at two years, less than 57 at four years, less than 
4 at ten years, and less than one (1) at the end of the 
structure's life (see Figure 20). For DO of 0.2 ppm and 
a temperature decrease to 249°C drops to less than 
69 at four years and less than 5 at ten years and less 
than one (1) at the end of the structure's life.

Figure 20: Total initiations of both 304SS and 316SS materials 
for a DO= 0.2 ppm and temperature reduction to 232 °C. 
(Monte-Carlo simulation of 10000 replications)
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Figure 21:  Cumulative leakage probabilities of the two types 
of materials for a DO= 0.2 ppm and different temperature

Figure 21 shows, the cumulative leakage 
probabilities of the four cases treated. The results 
are given for both the original 304SS material and 
the replacement 316SS material. In the 304SS 
piping, leakage is expected to occur after two years 
of operation. If 304SS is replaced by 316SS while 
maintaining the original piping configuration the 
corresponding leakage probabilities are nominally 
zero before 6 years of operation. The leakage 
probability first exceeds 10-4 after about 4 years and 
increases to about (5.00E-04 for T=232°C to 4,30E-
03 for T=288°C) at 10 years of the service life. In the 
case of replacement by 316SS, the probability of 
leakage at the 30-year drops by about a factor (8.69 
for T=232°C, 4.27 for T=288°C).

5. Conclusion
In this study, ANN soft computing tool is used 

to predict the SCC damage level of welded piping. 
Out of 1620 experimental data sets, 2/3 of the data 
sets are used for training and testing the network 
models and 1/3 of the data sets are used to validate 
the network models.  An ANN model for fourth 
input nodes and two output nodes with two hidden 
layers starting from the tenth node was constructed 
and analyzed by using the LM algorithm. For the 
architecture of 4-5-5-2, the ANN model gave an 
optimum result. Further with the increase in the 
number of hidden layer nodes, the output remains 
the same or slightly improves, this could be owing 
to overfitting the output values. Here we obtained 
higher CC and lower MSE values by using only 5 
nodes in 2 hidden layers. The proposed method is 
illustrated by several examples of 304SS and 316SS 
pipes subject to SCC. This optimal ANN can be used 
to effectively and accurately estimate the damage 
and the reliability of damaged pipes in the same 
service conditions. 

The analysis of results from the treated cases 
reveals how changes in environmental parameters 
significantly impact the probability of a leak. The 
figures mainly display statistics related to cracks 
that were initiated over time. While many cracks 
were predicted to start forming, none managed to 
develop into through-thickness cracks during the 
entire 50-year simulated life of the pipe. Regarding 
low-damage situations, we observed that variations 
in temperature and oxygen concentration do not 
affect the crack initiation process. However, reducing 
these factors does contribute positively to lowering 
the probability of a leak occurring. In aggressive 
environments, it is advisable to use grade 316SS or 
higher-quality materials for optimal performance 
and longevity. Additionally, for damaged materials, 
we recommend replacement under specific, well-
defined conditions that are deemed favorable for 
effective replacement.
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