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Abstract. This research work is related to study a class of hybrid integro-differential
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1 Introduction

Boundary value problems (BVPs) are important for characterizing a wide
range of real world engineering and physical research challenges. Much re-
search has been done in the field of BVPs, which correspond to both ordinary
and fractional order differential equations. Using functional analytic tools
for qualitative theory, researchers have examined many BVPs. We refer [12],
[34] and references there in for more details about BVPs. In [29], authors
accumulated various BVPs concerned to real world problems of mathemat-
ical physics. Applications for BVPs with integral boundary conditions can
be found in a wide range of fields, including population dynamics, chemical
engineering, thermo-elasticity, blood flow issues, physical systems, thermo-
dynamics, and other dynamics (see [2]). In recent decades, FDEs have gained
much attention due to their wide use in these branches of science. Being the
generalization of classical derivatives,the importance of fractional calculus is
started at the same time as ordinary calculus were [21]. Using such types of
fractional order derivatives have numerous benefits [22] Various definitions
were defined by some researchers but the prominent role is of Riemann-
Liouvile and Coputo arbitrary order [3, 25].

Recently, Atangana in [4] introduced the fractal-fractional derivatives
(FFDs). Moreover, a relationship established between fractional and fractal
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calculus. However the application of Atangana Balenue Fractal derivatives
in neuroscience has been considered [13]. The qualitative theory of fraction
DE in CFD,s very recent. Using fixed point results, for developing sufficient
conditions we must see [31]. For the study of existence and stability of CFD
one can see [3]. For the justification of our results, Ulam-Hyers (U-H) and
U-H Rassias (U-H-R) theory as tools are helpful. The various applications to
the real world problems of the CFDs [38] can strengthen our problem. The
first ever used of chain rule by Khalil introduce the definition known as con-
firmable fractional order derivative (CFD). The properties of CFD is much
similar with integer order [26]. The two operators Confirmable Derivatives
and Fractal Derivatives have prominent role in theory and applications [15].
Researchers have investigated various results for different problems of frac-
tional calculus, we refer to [9, 32]. Combining the two operators confirmable
and fractal fractional derivatives were used recently for different problems.
See some details for fractals fractional derivatives, we refer to [5, 36].

For physical applications, we refer to [8, 33]. Hybrid problems and systems
of FDEs have been analyzed by researchers using different tools of mathe-
matical analysis. In this regards, the significant contributions are cited as
[16, 14, 28, 30].

Recently, many authors focus on the development of techniques for dis-
cussing the solutions of fractional integro-differential equations. For example:

The nonlinear fractional integro-differential equation with nonlinear con-
ditions: {

cDαu (t) = f (t, u (t)) +
∫ t
0
k (t, s, u (s)) ds, t ∈ (0, T ] ,

u (0) = u0 − g (u) ,

was investigated in [1], where cDα is the standard Caputo fractional deriva-
tive of order 0 < α < 1, u0 ∈ R, g, f and k are given continuous functions.
By employing the Krasnoselskii and Banach fixed point theorems, Ahmad
and Sivasundaram obtained the existence and uniqueness results.

Unhaley and. Kendre (2019), in [37] established the existence and unique-
ness of solution for iterative integro-differential equations of the type:{

Dαu (t) = f (t) +
∫ t
0
h (t, s)u (λu (s)) ds,

u (0) = u0.

In [20] A. A. Hamoud (2021), discuss the uniqueness and stability results for
nonlinear fractional Volterra–Fredholm integro-differential equation

cDαu (x) = f (x) +

∫ x

0

h (x, s)u (u (s)) ds+

∫ T

0

k (x, s)u (u (s)) ds,

x, s ∈ J := [0, T ] ,

with the boundary condition

au (0) + bu (T ) = c, a, b, c ∈ R, a+ b 6= 0,
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where 0 < α < 1, f (t), h (x, s) and k (x, s) are given continuous functions.
For some other results on fractional integro-differential equation, we refer

the reader to the papers [6, 7, 17, 18, 19, 23, 24].
In [27], S. Khan studied a class of hybrid differential equations using

conformable fractal-fractional derivative{ CFFDα,β [µ (t)− f (t, µ (t))] = g (t, µ (t)) , t ∈ [0, b] = J ,

µ (0) =
∫ b
0
h (µ (s)) ds,

We discuss our following single hybrid problem using confirmable fractional
derivative. We consider the following BVP of CFFIDE with integral bound-
ary condition given by{

CFFDα,β [µ (t)− f (t, µ (t))] = g
(
t, µ (t) ,

∫ t
0
K (t, s, µ (s)) ds

)
, t ∈ J ,

µ (0) =
∫ b
0
h (µ (s)) ds,

(1)
where f : J × R → R, g : J × R × R → R are continuous functions, and
K : 4× R→ R, 4 = {(t, s) : 0 ≤ s ≤ t ≤ b} .

Adopting the renowned fixed point theorems of Banach and Krasnoselkii
[30], adequate criteria are formulated for the uniqueness and existence of a
solution. It is important to highlight that fixed point theory is a useful in-
strument for examining a range of issues related to the qualitative analysis.
Through applications, the stability problem has attracted significant atten-
tion in a number of research domain [35] and [10]. Furthermore, stability has
recently been extensively investigated as a useful tool for various problems of
U-H type. Recently, stability analysis of multiple types by employing various
fractional differential operators has been explored by authors in [11] and [3]
utilizing the U-H idea. Considering the importance of the aforementioned
stability, we also look at some results for U-H and generalized U-H stabilities
for our topic under consideration. Examples are given to demonstrate the
results of this study.

2 Preliminaries

Here, we accumulate some definitions and results regarding conformable frac-
tal fractional derivatives required in our analysis.

Definition 2.1 ([4]) The conformable derivative of a function f (t) defined
on the interval [0,∞) and for all t > 0, with order α ∈ (0, 1], is defined as
follows:

C
0 D

α
t f (t) = lim

ζ→0

f
(
t+ ζt1−α

)
− f (t)

ζ
.

Importantly, when the function f is differentiable, we have:

C
0 D

α
t f (t) = lim

ζ→0

f
(
t+ ζt1−α

)
− f (t)

ζ
= t1−αf ′ (t) .
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Definition 2.2 ([4]) The fractal derivative of a function f with order α is
given by:

F
0 D

α
t f (t) = lim

t→t1

f (t)− f (t1)

tα − tα1
.

The most general case is given as:

F
0 D

α,β
t f (t) = lim

t→t1

fβ (t)− fβ (t1)

tα − tα1
, α, β > 0.

For differentiable mapping f , one has

F
0 D

α
t f (t) = lim

t→t1

f (t)− f (t1)

tα − tα1
=
t1−α

α
f ′ (t) =

1

α
C
0 D

α
t f (t) .

Related integration is described as follows:

F
0 I

α
t f (t) = α

∫ t

0

tα−1f (t) dt.

Lemma 2.3 ([5]) Let H ∈ L [0, T ], then the solution of{
CFFDα,βµ (t) = H (t) , t ∈ J ,
µ (0) = µ0,

is given by

µ (t) = µ0 +

∫ t

0

βsβ−1 (t− s)α−1H (s) ds.

3 Main Results

In this section, we present our main results.

3.1 Integral representation of Problem (1)

The CFFIDE BVP (1) is equivalent to the following integral equation

µ (t) = µ (0) +

∫ t

0

βsβ−1 (t− s)α−1 g
(
s, µ (s) ,

∫ s

0

K (s, τ, µ (τ)) dτ

)
ds

+f (t, µ (t)) , t ∈ J , (2)

Let us define a Banach space say X = C (J ) with norm defined by

‖µ‖ = max
t∈[a,b]

|µ (t)| .

Now, we present some hypothesis which are helpful in building our main
existence results.
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(H1) There exists constants Lg1 , Lg2 , Lf > 0 and µ1, µ2, µ̄1, µ̄2 ∈ X such
that

|f (t, µ1 (t))− f (t, µ2 (t))| ≤ Lf |µ1 − µ2| ,

|g (t, µ1, µ2)− g (t, µ̄1, µ̄2)| ≤ Lg1 |µ1 − µ̄1|+ Lg2 |µ2 − µ̄2| ,

for each t ∈ J .

(H2) There exist a function k (t, s) ∈ C (4,R+) , as follows:

|K (t, s, µ1 (s))−K (t, s, µ2 (s))| ≤ k (t, s) |µ1 (s)− µ2 (s)| .

(H3) There exist nonnegative and continuous functions Bg (t) , Cg (t) , Dg (t) >
0 with B∗g = ‖Bg‖, C∗g = ‖Cg‖, and D∗g = ‖Dg‖ such that

|g (t, µ1 (t) , µ2 (t))| ≤ Dg (t) + Cg (t) |µ1 (t)|+ Bg (t) |µ2 (t)| ,

for each (t, µ1, µ2) ∈ J × R× R.

(H4) For µ1, µ2 there exists constant Ch > 0 such that

|h (µ1)− h (µ2)| ≤ Ch ≤ |µ1 − µ2| .

We denote:

σK (t) =

∫ t

0

|K (t, s, 0)| ds,

σ∗K = max
t∈J

σK (t) ,

βk = max
t∈J

∫ t

0

k (t, s) ds,

C0 = max
t∈[0,1]

∫ b

0

h (µ (0)) ds.

Theorem 3.1 The problem (1) has a unique solution, if

Ω =
(
Chb+ β (Lg1 + Lg2βk)B (α, β) bα+β−1 + Lf

)
< 1. (3)

Proof. Let N : X → X be the operator defined by

Nµ (t) =

∫ b

0

h (µ (s)) ds

+

∫ t

0

βsβ−1 (t− s)α−1 g
(
s, µ (s) ,

∫ s

0

K (s, τ, µ (τ)) dτ

)
ds+ f (t, µ (t)) .
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Let µ1, µ2 ∈ X, then

‖Nµ1 −Nµ2‖

= max
t∈[0,b]

∣∣∣∣∣
∫ b

0

h (µ1 (s)) ds

+

∫ t

0

βsβ−1 (t− s)α−1 g
(
s, µ1 (s) ,

∫ s

0

K (s, τ, µ1 (τ)) dτ

)
ds+ f (t, µ1 (t))

−
∫ b

0

h (µ2 (s)) ds

−
∫ t

0

βsβ−1 (t− s)α−1 g
(
s, µ2 (s) ,

∫ s

0

K (s, τ, µ2 (τ)) dτ

)
ds− f (t, µ2 (t))

∣∣∣∣ ,
from condition (H2), we get∣∣∣∣∫ t

0

K (t, s, µ1 (s)) ds−
∫ t

0

K (t, s, µ2 (s)) ds

∣∣∣∣
≤
∫ t

0

k (t, s) |µ1 (s)− µ2 (s)| ds

≤ βk ‖µ1 − µ2‖ , (4)

by (H1) and (4) we have,∣∣∣∣g(t, µ1 (t) ,

∫ t

0

K (t, s, µ1 (s)) ds

)
− g

(
t, µ2 (t) ,

∫ t

0

K (t, s, µ2 (s)) ds

)∣∣∣∣
≤ Lg1 ‖µ1 − µ2‖+ Lg2βk ‖µ1 − µ2‖ , (5)

hence, by (H4) and (5) we obtain

‖Nµ1 −Nµ2‖

≤
∫ b

0

|h (µ1 (s))− h (µ2 (s))| ds+

∫ t

0

βsβ−1 (t− s)α−1

×
∣∣∣∣g(s, µ1 (s) ,

∫ s

0

K (s, τ, µ1 (τ)) dτ

)
− g

(
s, µ2 (s) ,

∫ s

0

K (s, τ, µ2 (τ)) dτ

)∣∣∣∣ ds
+ |f (t, µ1 (t))− f (t, µ2 (t))|

≤ Ch ‖µ1 − µ2‖ b+ (Lg1 + Lg2βk) ‖µ1 − µ2‖
∫ t

0

βsβ−1 (t− s)α−1 ds+ Lf ‖µ1 − µ2‖

≤
(
Chb+ β (Lg1 + Lg2βk)B (α, β) bα+β−1 + Lf

)
‖µ1 − µ2‖

≤ Ω ‖µ1 − µ2‖ .

Hence, by inequality (3) operator N is a contraction. So by Banach contrac-
tion principle, the problem (1) has a unique solution.
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Theorem 3.2 Under the hypothesis (H1−H4) the problem (1) has at least
one solution.

Proof. Let defined the space E = {µ ∈ X : ‖µ‖ ≤ ρ} and taking two
operators P,Q : X → X defined by

Qµ (t) = f (t, µ (t)) ,

Pµ (t) =

∫ b

0

h (µ (s)) ds+

∫ t

0

βsβ−1 (t− s)α−1 g
(
s, µ (s) ,

∫ s

0

K (s, τ, µ (τ)) dτ

)
ds.

Then for µ1, µ2 ∈ X, one has

‖Qµ1 −Qµ2‖ = max
t∈J
|Qµ1 (t)−Qµ2 (t)|

= max
t∈J
|f (t, µ1 (t))− f (t, µ2 (t))|

≤ Lf ‖µ1 − µ2‖ ,

then the operator Q is a contraction. Now, we show that the operator P is
bounded and continuous. Let µ ∈ E, then

‖Pµ‖ = maxt∈[0,1]

∣∣∣∫ b0 h (µ (s)) ds

+

∫ t

0

βsβ−1 (t− s)α−1 g
(
s, µ (s) ,

∫ s

0

K (s, τ, µ (τ)) dτ

)
ds

∣∣∣∣
by using (H2), we find∣∣∣∣∫ t

0

K (t, s, µ (s)) ds−
∫ t

0

K (t, s, 0) ds+

∫ t

0

K (t, s, 0) ds

∣∣∣∣
≤
∫ t

0

|K (t, s, µ (s))−K (t, s, 0)| ds+

∫ t

0

|K (t, s, 0)| ds

≤ ‖µ‖max
t∈J

∫ t

0

k (t, s) ds+ max
t∈J

σK (t)

≤ ρβk + σ∗K , (6)

and by (H3) and (6) we get,∣∣∣∣g(t, µ (t) ,

∫ t

0

K (t, s, µ (s)) ds

)∣∣∣∣
≤ Dg (t) + Cg (t) ‖µ‖+ Bg (t) (‖µ‖βk + σK (t))

≤ Dg (t) + (Cg (t) + Bg (t)βk) ‖µ‖+ Bg (t)σK (t)

≤ D∗g +
(
C∗g + B∗gβk

)
ρ+ B∗gσ

∗
K .
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and from (H4) we have∣∣∣∣∣
∫ b

0

h (µ (s)) ds−
∫ b

0

h (µ (0)) ds+

∫ b

0

h (µ (0)) ds

∣∣∣∣∣
≤ Ch ‖µ‖+ C0

≤ ρCh + C0.

Which implies that

‖Pµ‖
≤ ρCh + C0 + βB (α, β) bα+β−1

(
D∗g +

(
C∗g + B∗gβk

)
ρ+ B∗gσ

∗
K

)
≤
[(
βB (α, β) bα+β−1

) (
C∗g + B∗gβk

)
+ Ch

]
ρ

+ C0 +
(
βB (α, β) bα+β−1

) (
D∗g + B∗gσ

∗
K

)
≤ ρ,

where

ρ ≥
C0 +

(
βB (α, β) bα+β−1

) (
D∗g + B∗gσ

∗
K

)
1−

[
(βB (α, β) bα+β−1)

(
C∗g + B∗gβk

)
+ Ch

] .
Hence ‖µ‖ ≤ ρ ⇒ µ ∈ E is Bounded. In the same way , we have ‖Pµ‖ ≤ ρ
which mean P (E) ≤ E.

If t1 < t2, then

|Pµ (t2)− Pµ (t1)|

=

∣∣∣∣∫ t2

0

βsβ−1 (t2 − s)α−1 g
(
s, µ (s) ,

∫ s

0

K (s, τ, µ (τ)) dτ

)
ds

−
∫ t1

0

βsβ−1 (t1 − s)α−1 g
(
s, µ (s) ,

∫ s

0

K (s, τ, µ (τ)) dτ

)
ds

∣∣∣∣
=

∣∣∣∣∫ t1

0

[
(t1 − s)α−1 − (t2 − s)α−1

]
βsβ−1g

(
s, µ (s) ,

∫ s

0

K (s, τ, µ (τ)) dτ

)
ds

+

∫ t2

t1

βsβ−1 (t2 − s)α−1 g
(
s, µ (s) ,

∫ s

0

K (s, τ, µ (τ)) dτ

)
ds

∣∣∣∣
≤
∫ t1

0

[
(t1 − s)α−1 − (t2 − s)α−1

]
βsβ−1

∣∣∣∣g(s, µ (s) ,

∫ s

0

K (s, τ, µ (τ)) dτ

)∣∣∣∣ ds
+

∫ t2

t1

βsβ−1 (t2 − s)α−1
∣∣∣∣g(s, µ (s) ,

∫ s

0

K (s, τ, µ (τ)) dτ

)∣∣∣∣ ds
≤
∫ t1

0

[
(t1 − s)α−1 − (t2 − s)α−1

]
βsβ−1

[
D∗g +

(
C∗g + B∗gβk

)
‖µ‖+ B∗gσ

∗
K

]
ds
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+

∫ t2

t1

βsβ−1 (t2 − s)α−1
[
D∗g +

(
C∗g + B∗gβk

)
‖µ‖+ B∗gσ

∗
K

]
ds

=
(
D∗g +

(
C∗g + B∗gβk

)
ρ+ B∗gσ

∗
K

) [∫ t2

0

βsβ−1 (t2 − s)α−1

+

∫ t1

0

βsβ−1 (t1 − s)α−1 ds
]

= β
(
D∗g +

(
C∗g + B∗gβk

)
ρ+ B∗gσ

∗
K

)
B (α, β)

[
tα+β2 − tα+β1

]
.

Now as t1 → t2, we see that right side gives us zero. Thus ‖Pµ (t2)− Pµ (t1)‖ →
0 as t1 → t2. Hence P is equi-continuous. Thus by Arzelá-Ascoli theorem
the operator P is compact. Consequently, it follows that problem (1) has at
least one solution.

3.2 Stability Theory

Let us define a function π : J → R independent of µ, such that for any ε > 0.

Remark 3.3

(i) π (t) ≤ ε,
(ii){

CFFDα,β [µ (t)− f (t, µ (t))] = g
(
t, µ (t) ,

∫ t
0
K (t, s, µ (s)) ds

)
+ π (t) ,

µ (0) =
∫ b
0
h (µ (s)) ds,

(7)
where f : J × R → R, g : J × R × R → R are continuous functions. The
solution of (7) is given by

µ (t) = f (t, µ (t)) +

∫ b

0

h (µ (s)) ds

+

∫ t

0

βsβ−1 (t− s)α−1 g
(
s, µ (s) ,

∫ s

0

K (s, τ, µ (τ)) dτ

)
ds

+

∫ t

0

βsβ−1 (t− s)α−1 π (s) ds. (8)

In view of Theorem 3.1, and using Remark 3.3, one has from (8)

µ (t) = Nµ (t) +

∫ t

0

βsβ−1 (t− s)α−1 π (s) ds.

|µ (t)−Nµ (t)| ≤
∫ t

0

βsβ−1 (t− s)α−1 |π (s)| ds

≤ bα+β−1βB (α, β) ε

‖µ (t)−Nµ (t)‖ ≤ 4ε.
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where
4 = bα+β−1βB (α, β) .

Theorem 3.4 The solution of (1) is U-H stable and consequently generalized
U-H stable if the condition Ω < 1 holds.

Proof. Consider µ1 be any solution of (1) and µ2 be a unique solution
of (1), then taking

‖µ1 − µ2‖ = max
t∈J
|µ1 (t)− µ2 (t)|

≤ max
t∈J
|µ1 (t)−Nµ (t)|+ max

t∈J
|Nµ (t)− µ2 (t)| .

Using Theorem 3.1, we have

‖µ1 − µ2‖ ≤ 4ε+ Ω ‖µ1 − µ2‖ .

After, rearrangement one has from above relation

‖µ1 − µ2‖ ≤
4

1− Ω
ε.

Hence the solution of (1) is U-H stable.
In addition, let there exist a non-decreasing function ω : J → R such

that ω (0) = 0, then from above inequality we have

‖µ1 − µ2‖ ≤
4

1− Ω
ω (ε) ,

where ω (ε) = ε, we see that the condition of generalized U-H stability is also
holds.

Consider the given remark

Remark 3.5 For function π : [0, b]→ R independent of µ, we have

|π (t)| ≤ λ (t) ε,

then the solution of

CFFDα,β [µ (t)− f (t, µ (t))] = g

(
t, µ (t) ,

∫ t

0

K (t, s, µ (s)) ds

)
+ π (t) , ‘(9)

µ (0) =

∫ b

0

h (µ (s)) ds, (10)

has

µ (t) = f (t, µ (t)) +

∫ b

0

h (µ (s)) ds

+

∫ t

0

βsβ−1 (t− s)α−1 g
(
s, µ (s) ,

∫ s

0

K (s, τ, µ (τ)) dτ

)
ds

+

∫ t

0

βsβ−1 (t− s)α−1 π (s) ds.



A Class of Generalized Caputo-Type Fractional Volterra Systems 257

Proof. In view of Theorem 3.1 yields

µ (t) = Nµ (t) +

∫ t

0

βsβ−1 (t− s)α−1 π (s) ds, t ∈ J .

|µ (t)−Nµ (t)| ≤
∫ t

0

βsβ−1 (t− s)α−1 |π (s)| ds

≤
∫ t

0

βsβ−1 (t− s)α−1 λ (s) εds

= ε

∫ b

0

βsβ−1 (b− s)α−1 λ (s) ds

= ελα,β,b,

where λα,β,b =
∫ b
0
βsβ−1 (b− s)α−1 λ (s) ds. Hence, one has

|µ (t)−Nµ (t)| ≤ ελα,β,b.

Theorem 3.6 The solution of (1) is U-H Rassias stable if Ω < 1.

Proof. Consider µ1, µ1 ∈ X, then using Theorem 3.1, we have

‖µ1 − µ2‖ = max
t∈J
|µ1 (t)− µ2 (t)|

≤ max
t∈J
|µ1 (t)−Nµ (t)|+ max

t∈J
|Nµ (t)− µ2 (t)|

≤ ελα,β,b + Ω ‖µ1 − µ2‖ .

So

‖µ1 − µ2‖ ≤
λα,β,b
1− Ω

ε.

Hence the solution of (1) is U-H Rassias stable. Further there exist a solution
ψ : [0, b]→ R non-decreasing function such that ψ (ε) = ε, then

‖µ1 − µ2‖ ≤
ελα,β,b
1− Ω

ψ (ε) ,

which implies that the solution of considered problem is generalized U-H
Rassias stable.

4 Applications

Here, we present examples regarding illustration of essential main results.



258 C. Kechar, A. A. Hamoud and A. Ardjouni

Example 4.1 Consider{
CFFD

1
2 ,

1
4 [µ (t)− f (t, µ (t))] = g

(
t, µ (t) ,

∫ t
0
K (t, s, µ (s)) ds

)
, t ∈ [0, 1] ,

µ (0) =
∫ 1

0
h (µ (s)) ds,

(11)
where

f (t, µ (t)) =
|µ (t)|+ 1

t4 + 35
, h (µ (t)) =

exp (− |µ (t)|)
t2 + 90

,

g (t, µ1, µ2) =

(
cos3 πt

t+ 13

)(
µ2
1 + |µ1|
|µ1|+ 1

+ e−t
)

+
1

1 + t2
µ2,

(t, µ1, µ2) ∈ [0, 1]× R× R,

and

K (t, s, µ) =
s

3 (1 + t4)
sinµ.

Firstly, it can be easily proved that

|g (t, µ1, µ2)− g (t, µ̄1, µ̄2)| ≤
(

cos3 πt

t+ 13

)
|µ1 − µ̄1|+

1

1 + t2
|µ2 − µ̄2| ,

also

|K (t, s, µ1 (s))−K (t, s, µ2 (s))| ≤ s

3 (1 + t4)
|µ1 (s)− µ2 (s)| ,

thus,

βk = max
t∈[0,1]

∫ t

0

k (t, s) ds = max
t∈[0,1]

∫ t

0

s

3 (1 + t4)
ds =

1

12
,

Clearly

h (µ1 (t))− h (µ2 (t)) ≤ 1

90
|µ1 − µ2| ,

and

|f (t, µ1 (t))− f (t, µ2 (t))| ≤ 1

35
|µ1 − µ2| .

So, we have α = 1
2 , β = 1

4 , b = 1, Lf = 1
35 , Lg1 = 0.0769, Lg2 = 1, Ch = 1

90 .
And

Ω =
(
Chb+ β (Lg1 + Lg2βk)B (α, β) bα+β−1 + Lf

)
= 0.24975 < 1

Hence, Theorem 3.1 implies that problem (11) has a unique solution. Also,
assumptions of Theorem 3.4 holds, consequently the solution of (11) is U-H
stable. In the same way, we can deduce the other kinds of U-H stability also.
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Example 4.2 Consider{
CFFD

1
3 ,

1
2 [µ (t)− f (t, µ (t))] = g

(
t, µ (t) ,

∫ t
0
K (t, s, µ (s)) ds

)
, t ∈ [0, 1] ,

µ (0) =
∫ 1

0
h (µ (s)) ds,

(12)
where

f (t, µ (t)) =
sin |µ (t)|+ 5

t4 + 22
, h (µ (t)) =

|µ (t)|
t5 + 150

,

g (t, µ1, µ2) = t+
µ1

5et (1 + µ1)
+

1

1 + t4
µ2,

(t, µ1, µ2) ∈ [0, 1]× R× R,

and

K (t, s, µ) =
s

9 (1 + t6)
sinµ.

Firstly, it can be easily proved that

|g (t, µ1, µ2)− g (t, µ̄1, µ̄2)| ≤ 1

5
|µ1 − µ̄1|+

1

1 + t4
|µ2 − µ̄2| ,

also

|K (t, s, µ1 (s))−K (t, s, µ2 (s))| ≤ s

9 (1 + t6)
|µ1 (s)− µ2 (s)| ,

thus,

βk = max
t∈[0,1]

∫ t

0

k (t, s) ds = max
t∈[0,1]

∫ t

0

s

9 (1 + t6)
ds =

1

36
,

Clearly

h (µ1 (t))− h (µ2 (t)) ≤ 1

150
|µ1 − µ2| ,

and

|f (t, µ1 (t))− f (t, µ2 (t))| ≤ 1

22
|µ1 − µ2| .

So, we have α = 1
3 , β = 1

2 , b = 1, Lf = 1
22 , Lg1 = 1

5 , Lg2 = 1, Ch = 1
150 .

And

Ω =
(
Chb+ β (Lg1 + Lg2βk)B (α, β) bα+β−1 + Lf

)
= 0.5312 < 1.

Hence, Theorem 3.1 implies that problem (12) has a unique solution. Also,
assumptions of Theorem 3.4 holds, consequently the solution of (12) is U-H
stable. In the same way, we can deduce the other kinds of U-H stability also.
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5 Conclusion

This word was devoted to investigate a class of HIDEs with CFFD. We have
deduced sufficient results for the existence theory and different kinds of U-H
stability using fixed point theory and functional analysis tools. Some perti-
nent examples were given to demonstrate the establish results. The CFFD
is a powerful tool and can be used as another alternative in investigation of
various dynamical problems. We concluded that the presented analysis will
provide basis for deducing new results for more general nonlinear problem
using CFFD. Therefore, in the future for useful results, various problems can
be examine through this type of analysis.
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