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Abstract Conjugate gradient methods are an important class of methods for unconstrained
optimization, especially for large-scale problems. Recently, they have been much studied. In
this paper, a new hybrid conjugate gradient algorithm is proposed and analyzed. The proposed
method inherits the features of the HS, DY and NHS conjugate gradient methods. The method
can generate the descent direction at every iteration, moreover, this property doesn’t depend on
any line search. Under the strong Wolfe line search, the global convergence of the proposed
method is established. The numerical results also show the feasibility and effectiveness of our
algorithm. Furthermore, the proposed algorithm EHD was extended to solve problem of mode
function.

1 Introduction

The optimization model is a needful mathematical problem since it has been connected to dif-
ferent fields such as economics, engineering and physics. Today there are many optimization
algorithms, such as Newton, quasi-Newton and bundle algorithms. Note that these algorithms
fail to solve large-scale optimization problems because they need to store and calculate relevant
matrices. In contrast,Conjugate gradient (CG) method is one of iterative techniques prominently
used in solving unconstrained optimization problems due to its simplicity, low memory stor-
age, and good convergence analysis. In this work, we consider the unconstrained optimization
problem

min{f(z): 2z € R"}, (1.1

where f is continuously differentiable and bounded from below and its gradient g, = V f(xy)
is available.

Conjugate gradient methods are very important methods for solving (1.1), especially when
the dimension n is large. The iterative process of a conjugate gradient method for solving (1.1)
is given by

Tpy1 = T + apdy, (1.2)

where x, is the current iterate point and dy, is the search direction generated by the following
rule

do = —g0; dk+1 = —Gr+1 + Brdk, (1.3)
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where [y is a parameter known as the conjugate gradient coefficient. The step-length ay is
very important for global convergence of conjugate gradient methods, one often requires the line
search to satisfy the standard Wolfe conditions

f(k + ardi) — f(2x) < daggl d, (1.4)

and

ngHdk > ag,zdk. (1.5)

Also, the strong Wolfe conditions consist of (1.4) and

| 1| < —ogf dy. (1.6)

where 0 < §d <o < 1.

Now, we denote yr = gr+1 — gk, ||-|| the Euclidean norm and s, = x4+ — xg.

The scalar . is chosen so that the methods (1.2) and (1.3) reduces to the linear conjugate
gradient method in the case when f is convex quadratic and exact line search, since the gradient
are mutually orthogonal, and the parameters (3 in these methods are equal. For general nonlinear
function, however, a different formula for scalar 3 result in distinct nonlinear conjugate gradient
methods. Some of these methods as Polak- Ribiere and Polyak (PRP) method [28, 29], Hestenes-
Stiefel (HS) method [17] and Liu-Storey (LS) method [23]

T T T
PrP _ Je+1Y%  ms _ k1Y% ,ns _ Ye+1Yk
k T

- 9 k - 9 k 9
x| i di —9i di

in general may not be convergent, but they often have better computational performances.
Moreover, although Fletcher-Reeves (FR) method [13], Dai-Yuan (DY) method [8] and Con-
jugate Decent (CD) proposed by Fletcher [14]

2 2 2
FR llgr+1ll DY — gkl OD — lgk+1]]
) P .
lge* Y di —gi dx

These methods have strong convergence properties, but they may not perform well in practice
due to jamming [1] and [4].

Naturally, people try to devise some new methods, which have the advantages of these two
kinds of methods. Touati-Ahmed and Storey [32] introduced one of the first hybrid conjugate
gradient algorithms, where the parameter 3, is computed as

TaS . FR ,PRP
B “ :mln{ﬁk s B }

The authors proved that 37 %% has good convergence properties and numerically outperforms
both the BF2 and BFRP algorithms. Soon afterwards, Hu and Storey [18], Gilbert and No-
cedal [15] further studied other hybrid schemes about PRP and FR methods. Dai and Yuan
[9] combined DY method with HS method, proposing the following two hybrid methods

BrPY = max {—cpY, min {85, 57V }},

ﬁ]};DYz — max {O, min {5;?57 BI?Y}} )

where ¢ = % For the standard Wolfe conditions (1.4) and (1.5), under the Lipschitz
continuity of the gradient, Dai and Yuan [9] established the global convergence of these hybrid
computational schemes.
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Another hybrid conjugate gradient is a convex combination of the different conjugate gradient
algorithms. Recently, Andrei [2] introduced a new hybrid conjugate gradient method based
on HS and DY methods (denoted as HYBRID method) for solving unconstrained optimization
problem (1.1), calculating the parameter 3¢ as a convex combination of 37 and BPY i.e.

B = (1= 0k) B + 002",

where 0, is a scalar parameter satisfying 0 < 6, < 1. Convergence with the standard Wolfe
condition was established. In 2009, this author [4] presented a new hybrid conjugate gradient
algorithm between PRP and DY methods (denoted as CCOMB method) with the 3, is obtained
by

Br=(1—0k) BEEE + 080

Under the strong Wolfe line search, he proved the global convergence of this method. Re-
cently, Liu and Li [22] proposed another hybrid conjugate gradient method as a convex combi-
nation of LS and DY method ( denoted as HLSDY method) given by

B[g{LSDY — (1 . ek) I?S 4 akﬁkDY

The global convergence was established under strong Wolfe line search. Numerical result
show that the method is efficient for the standard unconstrained problems in a CUTE library [3] .

In 2019, Mtagulwa and Kaelo [26] introduced another hybrid and three-term conjugate gra-
dient method which computes 3EFF as

. 2
EPF _ PEE i e | > |9kT+19k’
b (1 —6;,) BNPRP 4 g, BFR | otherwise

where SN FPEP given in Zhang [34] by

2
gNPRP _ g1 [I” = L=l |gT' g
NPRP _

2
gkl

and direction d, defined as

dT
do = —go; dr+1 = — (1 + BEPE ” k9k4|-|12> g1 + BEFE dy..
Gk+1

The authors proved this method has global convergence under the strong Wolfe line search
conditions.

This paper aims to propose new hybrid conjugate gradient algorithm. We establish, under
a strong Wolfe line search, convergence properties of the proposed conjugate gradient method.
Numerical results show that the EHD method is efficient and robust and outperforms as seven
conjugate gradient methods famous. Finally, an application of our method in nonparametric
mode estimator is also considered.

The rest of this paper is organized as follows. In section 2, we propose another hybrid con-
jugate gradient method, with combines the features of the DY method and HS method. In this
section we also present the new algorithm and we prove the search direction of our method sat-
isfies the sufficient descent condition. Section 3 includes the main convergence properties of the
proposed method with strong Wolfe line search. The preliminary numerical results are presented
in section 4. In section 5, we focus an application of the new method in statistics nonparametric.
Finally, we make a summary of our paper.



A new hybrid HS-DY conjugate gradient - - - 811

2 Modified HS-DY hybrid conjugate gradient method

In this section, we construct a new hybrid conjugate gradient method relating to the HS and DY
methods. Dai and Yuan [8] proved that the DY method always generate descent directions and
converges globally with the Wolfe line conditions (1.4) and (1.5). On the other hand, the HS
method is generally regarded to be one of the most efficient conjugate gradient methods, but
their convergence property is not so good.

In the latest years, many works have devoted their time and effort to come up with new
formulae in order to increase the efficiency and effectiveness of the DY and HS methods.

Yao et al. [33] gave a variant of the HS method which we call the MHS method. The
parameter (3 in the MHS method is given by

BMHS _ gl - Hﬁ;rj\llugkﬂgk
k: —_ .

kdk

If o < 5 in the strong Wolfe line search (1.6), Yao et al. [33] proved that the MHS method
also can produce sufficient descent direction and global convergence. More recently, Zhang
[34] took a little modification to the MHS method and constructed the NHS method as follows

2 X
s _ Josal ~ bl g7 gl
F k

g
yid

Under the strong Wolfe line search (1.6) with the parameter o is restricted in (0, %) , it has
been shown that the NHS method can generate sufficient descent directions and converges glob-
ally.

Motivated by the ideas on the hybrid methods [2] and [26], this paper introduce a new hybrid
choice for parameter [ as follows

. 2
EHD _ 9 it lgel” > |9;€T+1gk’ ) @
(1 —0y) BNHS 10, 8PY | otherwise, :

where 6y, is a scalar parameter satisfying 0 < 6, < 1 and the direction dj, defined as
d
do = —g0; dis1 = — ( + BEHDH”’“*”I> g1 + BEHP dy. (2.2)
gk+1

For convenience, we call this method as EHD method.

2.1 The conjugate condition

In conjugate gradient method, the traditional conjugacy condition d7. +1¥x = 0, plays an impor-
tant role in the convergence analyses and numerical calculation. To select the parameter 65 we
consider the following Lemma.

Lemma 2.1. If the conjugacy condition d}. 1Yk = O s satisfied at every iteration, we get

n— CﬁNHS
Ok = Ciﬂk’ (2.3)
\ng+1\||g |
k+19k
where 1 = yii ger1, ¢ = yj dy, — nugg’ﬁl’z and i = ”"’“'L T
Proof. : If || gt |I* < |gF.19x| . we have BFHP = gNHS 4 g, (BPY — BNHS) | then from

(2.2) we get

d;,
i1 = —grer + [BYTS + 60, (BPY — BYT9)] [dk | gjggm]. 24)
gk+1
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We multiply both sides of the relation (2.4) by the vector yi , we obtain

d¥ gi,
Vi Gt — B [y,fdk - ”g’fﬁy%gm}
~ (RDY _ gNH T Al grir T ’
(87" = 8Y") [y di = 2T g |
From the above equality of 52Y and BY# 9 after some algebra, we get the result. o

Remark 2.2. Having in view the relation (2.3) , we define

0 if =B 0 -0
1 Cu <0Oor(pu )
NHS NHS
. 7CﬁNH§l
1 if Tepk—>1

2.2 EHD Algorithm and the sufficient descent condition

The framework of the proposed EHD algorithm is given as follows

Step 1: Initialization.

Choose an initial point zzyp € R™ and the parameters 0 < § < o < 1. Compute f(zy) and go.
Set dy = —go.

Step 2: Test for continuation of iterations.

If ||gx||, < 107°, then stop. Otherwise, go to the next step.

Step 3: Line search.

Compute oy, by the strong Wolfe line searches (1.4), (1.6) and update the variables z; =
T + apdy.

Step 4: Compute 60}, using (2.5).

Step 5: Compute SEHP using (2.1).

Step 6: Compute the search direction. If the restart criterion of Powell condition

gE 19| > 0.2 ||| (2.6)

is satisfied, then set di1 = —gi+1, otherwise generate dy.1 by (2.2).

Step 7: Set k = k + 1 and go to Step 2.

Now, we prove that it generates search direction dj, obtained by new hybrid conjugate gradi-
ent method satisfying in some condition the sufficient descent conditions.

Theorem 2.3. Let the sequences {dy},~, and {gi.},~, be generated by EHD method. Then the
search direction dy, satisfies the sufficient descent for all k

gidi =~ llgsll”- @7
Proof. Multiplying (2.2) by ng+1 from the left, we get

dTgk 1 2
g dpr = — <1+6EHD|’“+”2 lgrrt||” + BEHL gL, dy..
gk+1

So, we can get

2
ggﬂdkﬂ == ||9k+lH .

Hence true for k£ > 1. The proof is completed. O

3 Global convergence

To analyze the global convergence property of our hybrid method, the following Assumptions
are required. These assumptions have been used extensively in the literature for the global con-
vergence analysis of conjugate gradient methods.
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Assumption A. The level set

S={zcR": f(z) < f(x0)},

is bounded.
Assumption B. In some open convex neighborhood N of S, the function f is continuously dif-
ferentiable and its gradient is Lipschitz continuous, namely, there exists a constant L > 0 such
that

IVf(x) = V@) < Lle—yll VeyeN. 3.1)

These assumptions imply that there exists a positive constant I' > 0 such that

| Vf(z) |<T,forall z € N. (3.2)

The following result was essentially proved by Dai et al. [7].

Lemma 3.1. Let Assumptions A and B hold. Let the sequence {x}},~, be generated by (1.2)
and search direction dy, is a descent direction, and oy, is received from the strong Wolfe line
search. If

S =
AR

k>0
then
lim inf||gx|| = 0.
k—o0
The following Lemma gives some interesting properties of the EHD method.

Lemma 3.2. Let Assumptions A and B hold. If dy, is a descent direction and «y, satisfies the
standard Wolfe condition (1.5). Then

(1—0) gl

o — 33
S APAT: e
Proof. See the proof of Lemma 3.2 in Liu and Li [22]. o

Remark 3.3. From (1.6) and (2.7), the step-size oy, obtained in the EHD algorithm satisfies (3.3).
This indicates, the step size «;, obtained in EHD method is not equal to zero, i.e., there exists a
constant A > 0, such that

ap > A, forall k> 0. 3.4

The following Theorem establishes the global convergence of EHD method with the strong
Wolfe line search.

Theorem 3.4. Suppose that Assumptions A and B hold. Consider the sequences {gi},~, and
{dx} k>0 generated by EHD algorithm. Then this method converges in the sense that -

lim inf ||gx|| = O. (3.5)
k—o0

Proof. For the sake of contradiction, assume that (3.5) doesn’t hold. Then there exists a positive
constant «y such that

llgrll = ~, forall k. (3.6)

We have for the definition of 35 and Cauchy Schwarz inequality, that

0< g < BPY. (3.7
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From (2.1) and (3.7), we have

|BEP| < |85 + B
For all % sufficiently large. By using (1.6) and from the sufficient descent condition we obtain
diye = df (i1 = ge) = (1= 0) gl (3.8)
So, using (3.6) we get
dfye > (1-0)y". (3.9)
On the other hand, using the Cauchy Schwarz inequality, (3.1) and (3.2), we obtain

|9k 19| < llgrstll llyell < TLD,

where D is a diameter of the level set NV.
Now we use (3.9), we have

I'LD
HS
|ﬁk | < A=t (3.10)
On the other side,
2 2
py _ gkl < I"
S iy ST GAD
From (3.10) and (3.11) , we have
pup| o T I = 12
B0 < gy WD+ D) = E. (3.12)

Thus, it follows from (2.2) that

df g | sk |l
ldks1ll <Nl grrr || + [BEP (’ : | + :

||91c+1|| Qp

Cauchy Schwarz inequality, (3.4) and (3.12) yields

‘ldk+1|| S M7

where M =T +2E2.
By take the summation k& > 0, we get

Y=
e

k>0

So, applying Lemma 3.1, we conclude that which impels that (3.5) is true. This is a contra-
diction with (3.6), so we have proved (3.5). i

4 Numerical Experiments

In this section, we present some numerical experiments obtained with the new proposed con-
jugate gradient method with the hybridization parameter 3 given by (2.1). The test problems
have been taken to the CUTE library [3] and [6] . All the algorithms have been coded in MAT-
LAB 2013 and compiler settings on the PC machine (2.5 GHz, 3.8 GB RAM memory) with
windows XP operating system. We compare the computational results of our method (EHD
method) against the NHS [34], DY [8], hDYz [9], CCOMB [4], HYBRID [2], HLSDY [22] and
CG_DESCENT [16] methods. In this numerical result, all algorithms implement the strong
Wolfe line search condition with § = 10~* and o = 1073, The iteration is terminated if one of
the following conditions is satisfied (i) ||gx|l,, < 107, where |.|| is the maximum absolute
component of a vector, (i7) The number of iterations exceeded 2000, (i4:) The computing time
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is more than 500 s. We show the performance difference clearly between our method EHD and
seven conjugate gradient algorithms. We choose the performance profile introduced by Dolan
and Mor¢ [10] to compare the performance according to the number of iteration and CPU time
with rule as follows. Let S is the set of methods and P is the set of the test problems with
np ,Ms are the number of the test problems and the number of the methods, respectively. For
each problem p € P and solver s € S, denote 7, ¢ be the computing time of iteration or CPU
time required to solve problems p € P by solver s € S. Then comparsion between different
solvers based on the performance ratio is given by

_ Tp,s
min{7,;, 1 <i<ng}

Tp,s

Suppose that a parameter ry; > 1, 5 for all problem and solvers chosen, and ry; = 7, 5 if and
only if solver s does not solve problem p. The overall evaluation of performance of the solvers
is then given by the performance profile function given by

F () = size{p: 1 <p<mny, rps < t}’

Np

where¢ > land size{p: 1 <p <m,, r,s < t}isthe numberof elementsintheset{p: 1 <p < mny,, rp,
function Fj : [1,00[ — [0, 1] is the distribution function for the performance ratio. The value of
F (1) is the probability that the solver will win the rest of the solvers.

In this numerical study, Table 1 lists the names of the test functions and Table 2 shows the
performance of the eight methods which gives the number of the test problems (N°), the dimen-
sion of functions (Dim), the total number of iterations (NI), the CPU time in seconds (CPU) and
"INF’ indicates that the algorithm failed to solve the problem. Table2, Figure 1 and Figure 2
give a performance comparison of the EHD method with those for the number of iterations and
the CPU time. From these Figures and Table 2, we can see that the new method EHD performs
better than NHS [34], DY [8], hDYz [9], CCOMB [4], HYBRID [2], CG_DESCENT [16] and
HLSDY [22] methods, for the given test problems. These obtained preliminary results are indeed
encouraging.

Table 1: The test functions.

Number function Number function
1 Beale 21 Himmelbleau
2 Booth 22 Liarwhd
3 Branin 23 Penalty
4 Lion 24 Perquadratic
5 Matyas 25 Power
6 Almost Perturbed Quadratic 26 Qing
7 Almost Perturbed Quartic 27 Quadratic
8 Alpine 1 28 Quartic
9 Chung 29 Rastring
10 DIAG 30 Raydan 1
11 Diag-aup 1 31 Raydan 2
12 Diagonal 1 32 Ridge
13 Diagonal 2 33 Rosenbrock
14 Diagonal 4 34 Schwefel
15 Dixon 35 Schwefel 220
16 Engval 1 36 Schwefel 221
17 Exponential 37 Schwefel 223
18 Extended Hiebert 38 Styblinski
19 Greinwak 39 Sumsquares
20 Hager 40 Zakharov
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Table 2 (Continued),
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5 Application in mode function

The conjugate gradient method has played an important role in solving large scale
unconstrained optimization problems that may arise in statistics nonparametric [19, 25],
portfolio selection [20, 5] and image restoration problems [12, 24].

Estimation nonparametric has received a great deal of attention in both theoretical and applied
statistics literature. For the historical and mathematical survey, we refer the reader to Sager
[30]. In statistics, it is always interesting to study the central tendency of the data, that is usually
quantified using the location parameters (mean, mode, median). The problem of estimating the
mode function of a probability density function (p.d.f.) has taken considerable attention in the
past for both independent and dependent data, and a number of distinguished papers deal with
this topic. For example, Parzen [27] and Eddy [11] for estimation of the unconditional mode in
the independent and identically distributed (i.i.d.) case.

In this section, we consider the problem of estimating the mode of a multivariate uni-modal
probability density f with support in R™ from i.i.d. standard normal random variables

D C T , X, with common probability density function f. This problem has been investigated
in numerous paper. To quote a few of them, Konakov [21] and Samanta [31]. We assume that
density f has an unique mode denoted by 6 and defined by

£(0) = max f (z). (5.1)

FISING

A kernel estimator of the mode 6 is defined as the random variable § which maximizer the
kernel estimator f,, (z) of f (z), that is

fa (8) = max £, (@), (52)
where
1 L 174’)Q
fo(z) = o ZK( e ) : (5.3)

i=1

The bandwidth (h,,) is a sequence of positive real numbers which goes to zero as n goes to
infinity and the kernel K is a p.d.f. on R"™.

In this simulation, we choose between two different types of kernel: while standard Gaussian
kernel defined by

K@= ep| 532
(2m)* par
and Epanechnikov kernel obtained by

K (z)= (i)nﬁ(l — 7).

j=1

The selection of the bandwidth & is an important and basic problem in kernel smoothing
techniques. In this simulation, we choose the optimal bandwidth by the cross-validation
method.

In this context, we employ our proposed method to solve the problem (5.2) under strong Wolfe
line search technique and compare the computational results of the EHD method against the
CG_DESCENT method [16]. We choose some initial points and we obtain the result as in the
Table 3. According to these results, it is clear that the EHD method more efficient than
CG_DESCENT method based on the number of iterations and CPU time for solving the
problem (5.2).
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Table 3: The simulation result of EHD and GC-DESCENT methods for solving problem

(5.2).

- NI cPU NI CcPU
{0.001,...,0.001) 90 6 4.7730 b 2.8770

120 8 10.5020 7 18.8140

200 2 7.1660 3 8.9070

{0.025,...,0.025) 40 3 0.4610 2 0.1400
50 17 3.7430 18 8.6610

250 3 16.4670 ! 14.4060

400 2 16.5270 3 23.0380

(-1.01,..-1.01) 110 11 11.2970 38 205470
130 2 2.8750 6 4.5460

270 33 114.0290 34 214.3980

(0.25,...,0.25) 50 & 1.3740 2 0.4370
180 5 17.1650 3 9.7560

350 2 25.1610 3 32.9640

(-0.45,...,-0.45) 45 4 0.6800 7 1.2180
120 2 2.5300 i 4.9830

220 9 38.6710 5 22.0620

[-0.75,...,-0.75) 30 5 0.3510 7 0.5470
70 16 6.6420 2 0.8280

100 10 8.5350 7 5.9990

120 3 3.9400 19 23.8080

300 2 14.9650 i 32.0633

{0.005,...,0.005) 15 29 0.6580 35 0.8620
40 5 0.9720 6 1.0430

220 4 17.2210 5 21.4220
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6 Conclusion

We have presented a new hybrid conjugate gradient algorithm. The proposed method possesses
a good descent search direction at each iteration and this is independent of the line search. The
global convergence properties of the proposed method have been established under strong
Wolfe line search conditions. We present the computational evidence that the performance of
our method EHD is better than to some well-known conjugate gradient methods. The practical
applicability of our method is also explored in nonparametric estimation of the mode function.
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