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Abstract – Human motion analysis has received a great
attention from researchers in the last decade due to its po-
tential use in different applications. We propose a new ap-
proach to extract human joints (Vertex positions)using a
model-based method. The gait pattern is incorporated to
aid the extraction process, where model templates are es-
tablished through analysis of gait motion. People walk nor-
mal to the viewing plane, as major gait information is avail-
able in a sagittal view. Gait periodicity and other param-
eters are estimated by finding the heel strikes. The ankle,
knee and hip joints are successfully extracted with high ac-
curacy for indoor and outdoor data. In this way, we have
established a baseline analysis which can be deployed in
recognition, marker-less analysis and other areas.

Keywords: Human motion analysis, gait analysis, marker-
less feature extraction.

1 Introduction
Much research in computer vision is directed into the

analysis of articulated objects and more specifically, the
analysis of human motion. This research is fuelled by the
wide range of applications where human motion analysis
can be deployed such as virtual reality, smart surveillance,
human computer interfaces and athletic performance. A
vision-based system for human motion analysis consists of
three main phases: detection, tracking and perception. In
the last phase, a high-level description is produced based
on the features extracted during the previous phases from
the temporal video stream. In fact, it has been revealed by
psychological studies that the motion of human joints con-
tains enough information to perceive the human motion.

Currently, the majority of systems used for motion anal-
ysis are marker-based and they are commercially available.
This is mainly due to their accuracy. Marker-based solu-
tions rely primarily on markers or sensors attached at key
locations of the human body. However, most applications
such as visual surveillance require the deployment of an au-
tomated markerless vision system to extract the joints’ tra-
jectories. On the other hand, automated extraction of the
joints’ positions is an extremely difficult task as non-rigid
human motion encompasses a wide range of possible mo-
tion transformations due to its highly flexible structure and

to self occlusion [26, 10]. Clothing type, segmentation er-
rors and different viewpoints pose a significant challenge
for accurate joint localization.

As there have been many vision approaches aimed to ex-
tract limbs, and a dearth of approaches specifically aimed to
determine vertices, we propose a new method to extract hu-
man joints with better accuracy then blobs via incorporating
priori knowledge to refine accuracy. Our new approach uses
a model-based method for modelling human gait motion us-
ing elliptic Fourier descriptors, whereby the gait pattern is
incorporated to establish a model used for tracking and fea-
ture correspondence. The proposed solution has capability
to extract moving joints of human body with high accuracy
in both indoor and outdoor environments.

1.1 Related Work
Since human motion analysis is one of the most active

and challenging research topics in computer vision, many
research studies have aimed to develop a system capable of
overcoming the difficulties imposed by the extraction and
tracking of human motion features. Various methods are
surveyed by [23] and [1].Two approaches are being used
for human motion anaylsis: model-based and non-model
based methods. For the the first one, a priori shape model is
established to match real images to this predefined model,
and thereby extracting the corresponding features once the
best match is obtained. Stick models and volumetric mod-
els [26] are the most commonly used methods. Akita [3]
proposed a model consisting of six segments comprising of
two arms, two legs, the torso and the head. Guo et al [13]
represented the human body structure in the silhouette by a
stick figure model which had ten sticks articulated with six
joints. Rohr [20] proposed a volumetric model for the anal-
ysis of human motion, using 14 elliptical cylinders to model
the human body. Recently, Karaulova et al. [16] have used
the stick figure model to build a novel hierarchical model of
human dynamics represented using hidden Markov models.
The model-based approach is the most popular method be-
ing used for human motion analysis due to its advantages
[14]. It can extract detailed and accurate motion data, as
well as having the capability to cope well with occlusion
and self-occlusion.



For the non-model based method, feature correspondence
between successive frames is based upon prediction, veloc-
ity, shape, texture and colour. Shio et al. [21] proposed a
method to describe the human body using moving blobs or
2D ribbons. The blobs are grouped based on the magnitude
and the direction of the pixel velocity. Kurakake and Neva-
tia [18] worked on the extraction of joint locations by es-
tablishing correspondence between extracted blobs. Small
motion between consecutive frames is the main assumption,
whereby feature correspondence is conducted using various
geometric constraints.

1.2 System Overview
The system proposed in this paper consists of three stages

as outlined in Figure (1). In the first stage, walking sub-
jects are detected using background subtraction. The ap-
proach we used for the segmentation of moving objects, is
the adaptive background subtraction proposed by Stauffer
and Crimson. It is assumed only one single moving sub-
ject in the scene. The heel strikes are derived in the next
stage after applying the Harris corner operator. Finally, the
evidence gathering algorithm is applied to locate the joint
positions.

Figure 1: System Overview

2 Extraction of the Anatomical
Landmarks

2.1 Human Motion Analysis
The motion of the human body is known as a form of

non-rigid and articulated motion [1], and therefore detec-
tion and tracking the right information becomes an ex-
tremely difficult task as non-rigid motion encompasses a
wide range of possible motion transformations due to the
highly flexible structure and self occlusion. During walking
and running, people have the same global gait motion pat-
tern. Therefore, gait motion can be considered as an ideal
starting point for motion analysis due to its global nature
and since it is periodic.

Psychological studies carried out by Johansson [15]
showed that people are able to perceive human motion

from Moving Light Displays (MLD). An MLD is a two-
dimensional video of a collection of bright dots attached
to the human body taken against a dark background where
only the bright dots are visible in the scene. An observer can
recognise different types of human motion such as walking,
jumping, dancing and so on. Moreover, the observer can
make a judgment of the gender of the person [17], and even
further identify the person if he or she is already familiar
with his or her gait [11]. Although the different parts of the
human body are not seen in the MLD, and no links exist be-
tween the bright dots to show the structure, the human can
recover the full structure of the moving object. Thereby,
the motion of the joints contains enough information to per-
ceive human motion [4], [8].

To analyse the human motion, the joint positions in 30
video sequences with people walking normal to the view-
ing plane of the camera, have been manually labelled. The
videos are taken from the SOTON database. In each frame
of the video sequence, the position of the right and left an-
kles, the right and left knees and the hip were labelled. The
data for the ankle between to consecutive heel strikes of the
same leg are normalized as shown in Figure 2(a). Whilst,
we have normalized the data for the knee and hip extracted
between two consecutive stances of the same leg as shown
in Figures 2(c) and 2(e). The corresponding horizontal dis-
placement for each joint is plotted against the motion graph
of the joint in Figure (2).

(a) Ankle Motion Graph. (b) Horizontal Ankle Displace-
ment

(c) Hip Motion Graph. (d) Horizontal Hip Displacement.

(e) Knee Motion Graph. (f) Horizontal Knee Displacement.

Figure 2: Motion Analysis of the Joints.



It can be observed that people have more or less the same
ankle motion pattern. Another graph 2(b) is plotted showing
the horizontal displacement of the ankle, where it is noted
that the graphs for all subjects nearly coincide, leading to
the suggestion that for a normalized data set, subjects move
their ankles forward with the same velocity. Figures 2(c)
and 2(e) show the hip and knee motions respectively for the
normalized extracted data. In contrast to the smooth graphs
of the ankle, there is noise in the data for the hip and knee
due the difficulties encountered during the manual labelling.
Nevertheless, it can be observed that walking people have
the same global pattern for the hip and knee motions. The
horizontal displacement for the hip and knee are shown in
Figures 2(d) and 2(f). The hip forward velocity is decimated
to be constant for all subjects, in contrast to the knee veloc-
ity, which varies for all subjects. However, with the data
normalized, people have more or less the same knee hori-
zontal velocity.

2.2 Heel Strike Extraction
The detection of the human gait period can provide im-

portant information to determine the positions of the hu-
man joints. Cutler et al [7] proposed a real time method
for measuring periodicity for periodic motion based on self-
similarity. Instead, the heel strikes of the subject can pro-
vide an accurate measure for gait periodicity as well as the
gait stride and step length. Moreover, the extraction of heel
strikes can be used as a strong cue to distinguish walking
people from other moving objects in the scene [5].

During the strike phase, the foot of the striking leg stays
at the same position for half a gait cycle, whilst the rest
of the human body moves forward as shown in Figure (3).
Therefore, if we use a low-level feature extraction method (
edges or corners), then a dense region will be accumulated
at the heel strike regions.

Figure 3: Foot Displacement during one Gait Cycle [24]

Since the primary aim of this research is the perception
of human motion, we have chosen to use corners instead of
edges, as they maintain enough information to perceive the
human motion, in contrast to edges which may cause ambi-
guity in the extraction process due to the excess data they
may contain. Furthermore, a robust vision system based on
corner detection can work for low-resolution applications.
We have applied the Harris corner detector on every frame
t from the video sequence and then accumulated all the cor-
ners into one image using equation (1):

Ci =
N∑

t=1

H(It) (1)

Where H is the output of the Harris corner detector, It is
original image at frame t. Because the striking foot is stabi-
lized for half a gait cycle, as result, a dense area of corners
is detected in the region where the leg strikes the ground.
In order to locate these areas, we have estimated a measure
for density of proximity. The value of proximity at point p
is dependent on the number of corners within the region Rp

and their corresponding distances from p. Rp is assumed
to be a square area with centre p, and radius of r that is
determined as the ratio of total image points to the total of
corners in Ci which is about 10. We have first computed
proximity value dp of corners for all regions Rp in Ci us-
ing equation (2). This is an iterative process starting from a
radius r. The process then iterates to accumulate proximity
values of corners for point p.{

dr
p = Nr

r

di
p = di+1

p + Ni

i

(2)

where di
p is the proximity value for rings of radius i away

from the centre p, and Ni is the number of corners which
are of distance i from the centre, rings are single pixel wide.
Afterwards, we accumulate all the densities for the subre-
gions Rp for all points p into one image to produce the cor-
ners proximity image using (3).

D =
X∑

x=0

Y∑
y=0

shift(dp) (3)

where X and Y are the width and height of the image re-
spectively. dp is the corners proximity value for region Rp.
The shift function places the proximity value dp on a blank
image of size X × Y at the position p. An output of the
corner proximity for an example image is shown in Figure
(4). The input image contains points spread all over the im-
age with a number dense regions. The resulting image has
darker areas which correspond to the crowded regions in the
input image.

(a) (b)

Figure 4: Example Results for the Corner Proximity Mea-
sure: (a) Input Image, (b) Corner Proximity Image.

Figure (5) shows the corner proximity images for two
walking subjects being captured in different environments.
The first subject is walking in the sagittal plane near the



camera, whilst the second subject is recorded in an oblique
view walking away from the camera. A similar algorithm
to [9] is used to derive the positions of the peaks as local
maxima.

(a) (b)

Figure 5: Heel Strike Extraction using the Proximity Mea-
sure: (a) Sagittal Indoor View, (b) Oblique Outdoor View.

2.3 Moving Joints Extraction
A new model-based approach is proposed to extract the

joints trajectories of walking people. Although, the Fourier
series is the most accurate way for modelling gait motion,
most previous methods adopted simple models [6] to ex-
tract gait angular motion via evidence gathering using a few
parameters. This is mainly due to complexity and compu-
tational cost. In our method, human gait is modelled us-
ing the Fourier series. The heel strike data were used to
reduce the number of parameters and therefore reduce sig-
nificantly the computational cost. Model templates which
describe joints’ motions are constructed from the analysis
of manually labelled data.

The mean patterns for gait motion are represented using
elliptic Fourier Descriptors [2]. The Fourier analysis pro-
vides a means for extracting features or descriptors from
images which are useful characteristics for image under-
standing. These descriptors are defined by expanding the
parametric representation of a curve in Fourier series. Let
f be the function for the boundary of the motion models,
the function f is represented using elliptic Fourier Descrip-
tors [12, 2], where the Fourier series is based on a curve
expressed by a complex parametric form as shown in equa-
tion (4):

f(t) = x(t) + jy(t) (4)

where x(t) and y(t) are approximated via the Fourier sum-
mation by n terms as shown in equation (5) :

x(t) =
n∑

k=1

axk
cos(kt) + bxk

sin(kt)

y(t) =
n∑

k=1

ayk
cos(kt) + byk

sin(kt)
(5)

where axk
,ayk

, bxk
and byk

are the set of the elliptic phasors
which can be computed by a Riemann summation [2]. In or-
der to obtain a flexible motion model sufficient to describe

gait motion, spatial model templates are created via repre-
senting f in a parametrized form by applying appearance
transformations (rotation, scaling and translation). A spa-
tial model template M describing gait motion is described
in equation (6): M = T + Rα (sxx(t) + syy(t)i)

T = a0 + b0i
Rα = cos(α) + sin(α)i

(6)

where T is the translation transform whose vector is
(a0, b0). R is the rotation transform of angle α. sx and
sy are the scaling factors across the horizontal and vertical
axes respectively.

The evidence gathering process [6] is usually used in
conjunction with the Hough Transform consisting of two
phases: i) global pattern extraction, and ii) local feature
extraction. The aim of the global extraction is to find the
best motion pattern based on the predefined model rep-
resented using in a parametric form based on the elliptic
Fourier Descriptors. The Hough Transform is used as a
first stage to extract the spatial motion path of the joints
using model templates. Because a 5-dimensional accumu-
lator is needed to to store the votes for the set of parameters
< a0, b0, α, sx, sy >, the algorithm would be computation-
ally intensive and infeasible to implement. In spite of the
fact that some methods were proposed to reduce the pro-
cessing time of the Hough Transform [19, 2], the computa-
tional load of these methods does not meet the requirements
of most applications [2]. Alternatively, the heel strike data
could be incorporated to reduce the complexity of the pa-
rameter space and therefore, dramatically reduce the com-
putational cost. The search for the ankle motion model is
reduced to only one parameter sy , while it is reduced to two
parameters b0 and sy for the case of the hip and knee motion
models.

The second stage of the process is to apply a local search
within every frame to determine the position of the joints.
The local search is guided by the motion of the joints ex-
tracted in the first stage.

3 Experimental Results
To demonstrate the efficacy of this approach, we have run

the algorithm on a set of 100 different subjects from the SO-
TON database [22]. all subjects are filmed in an indoor en-
vironment with controlled conditions. subjects walked from
left to right normal to the viewing plane. From a total of
514 strikes, the algorithm extracted successfully 510 strikes
with only four strikes being missed. The mean error for
the positions of 65 strikes extracted by the algorithm com-
pared to strikes manually labelled is %0.52 of the person
height. The error is measured by Euclidean distance nor-
malized to a percentage of the person’s height. Figure (6)
shows the results of heel strike extraction by the described
method compared with the data labelled manually for one
video sequence and it can be observed that the match is in-
deed close.



(a) (b)

Figure 6: Experimental Results for Heel Strikes Extraction:
(a) Walking subject. (b) Extracted strikes compared with
data manually labelled

We have extracted the joints for the ankles, knees and
hip as shown in Figure (7). The mean error for the posi-
tions of the extracted joints compared with manual data of
10 subjects manually labelled is %1.36 of the height of the
subject. The algorithm is tested on a subject wearing Indian
clothes which covered the legs. The joints positions are ex-
tracted successfully as shown in Figure 7(b) which reveals
the potentials of this approach to handle occlusion.

(a) Subject : 009a020s00R.

(b) Subject : 012a031s00R.

Figure 7: Joints Extraction for Indoor Data.

Figure (8) shows the relative angle for both the hip and
knee computed from the extracted joints of 10 subjects. The
graphs show the results obtained via this approach are con-
sistent with the biomechanical data by Winter [25] shown
in bold in Figure (8).

We have conducted further experiments in outdoor envi-

(a) (b)

Figure 8: Gait Angular Motion during one Gait Cycle: (a)
Hip, (b) Knee

ronment to confirm the robustness of the proposed method.
The algorithm is tested on outdoor data containing 20 sub-
jects from the SOTON database. The heel strikes are ex-
tracted successfully. The mean error for the positions of the
joints extracted is estimated to %2 of the height of the per-
son. Figure (9) shows the extraction results of the joints in
outdoor data.

Figure 9: Joints Extraction for Outdoor Data.

4 Conclusions
We have proposed a new method to extract the positions

human joints using a model-based method. The gait pattern
is deployed to aid the extraction process, where model tem-
plates are established through the analysis of gait motion.
Gait periodicity and other parameters are estimated through
the finding of the heel strikes. The joints of the ankle, knee
and hip are successfully extracted with high accuracy for
indoor and outdoor data.
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