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Abstract--This paper deals with the design of a nonlinear 
observer for sensorless induction motor control. It is well-
known that induction motor is one of the widely used 
machines in industrial applications. However, induction 
motor is also known as a complex nonlinear system in which 
time-varying parameters entail additional difficulties for the 
induction machine system control. Based upon the circle 
criterion approach a nonlinear observer is designed to 
estimate pertinent but unmeasurable state variables of the 
machine for sensorless control purpose. The observer gain 
matrices are computed as a solution of linear matrix 
inequalities (LMI) that ensure the stability conditions of the 
state observer error dynamics in the sense of Lyapunov 
concepts. Measured and estimated state variables can be 
used to improve the effectiveness of a state feedback control 
of the considered induction motor system. The simulation 
results are presented to illustrate the validity of the proposed 
approach for nonlinear observer design.  

 

Index Terms—Nonlinear observer, Circle criterion, LMI-
based, Lyapunov function, Induction motor. 

 

1. INTRODUCTION 

Induction motor is one of the most widely used 
machines in industrial applications. This is due to its high 
reliability, relatively low cost, and modest maintenance 
requirements. However, induction motor is also known as 
a complex nonlinear system, in which time-varying 
parameters entails additional difficulties for machine 
control, conditions monitoring and fault diagnostic 
purposes [1]. Due to technical and/or economical 
constraints only a few state variables of the machine are 
available for on-line measurement in industrial 
applications. In order to perform advanced control 
techniques there is a great need of a reliable and accurate 
estimation of key unmeasurable state variables of the 
machine. 
It is well known from control theory that a state estimator, 
called also state observer, is a dynamic system that is 
driven by the input-output of the considered system, 
estimates asymptotically its unmeasurable state variables. 
It uses an adaptive mechanism involving as input, the 
error between the measured and estimated output values 
of the system. It is a “software sensor” that plays an 

important role in the estimation of the unmeasurable 
(internal) state variables that are essential not only in 
sensorless control techniques and conditions monitoring 
but also in fault diagnosis and predictive system 
maintenance.  
 A control literature review shows that nonlinear 
observer design approaches can be roughly divided into 
three classes. The first class of approaches attempts to 
eliminate the system nonlinearities by a technique of 
linearization or a nonlinear state transformation to 
linearize the original system [2], [3]. Its drawback is a set 
of extremely restrictive conditions that can hardly be met 
by a physical system. In this context of linearization 
approach, one could mention the extended Luenberger 
observer and extended Kalman filter. The second class of 
approaches is the high-gain observer-based approach 
which attempts to dominate the system nonlinearities by a 
unique high gain output correction term [4]. High-gain 
observers are robust state estimator and disturbances 
attenuator. However, their drawbacks are the block 
triangular structures, the destabilizing effect of the 
peaking phenomenon (large oscillation in the transient 
response) and sensitivity against measurement noises. 
     The third class of approaches to design nonlinear 
observers exploits directly the system nonlinearity. 
Lipschitz and sector properties are the main nonlinearity 
properties that are exploited [5], [6], [7]. This latest class 
of approaches to design nonlinear observer for nonlinear 
systems has been recently developed. Now, it has reached 
the maturity to be exploited in the machinery application 
to benefit from its advantages.   

In the machinery community several approaches from 
control theory have been applied for the design of 
nonlinear observer to control electric machines. The main 
ones are linearization approaches, high-gain observers, 
Lyapunov-based approach, geometric algorithms [8], 
sliding-modes (variable structure) design procedures [9], 
and algebraic techniques [10]. Sliding mode observer is a 
particular type of variable structure observer. It is 
designed to force the system state estimation error to lie 
within a neighbourhood of a switching function. It 
incorporates robustness property against a range of system 
uncertainties and disturbances.  
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Our main goal here is to show that recently developed 
techniques for nonlinear observer design based upon the 
sector property, can be exploited for electric machine 
sensorless control and conditions monitoring. In this 
paper, we focus our attention on the application of the so-
called circle-criterion approach to design a nonlinear 
observer for induction motor sensorless control. The 
advantage of the circle criterion approach is that it directly 
handles the nonlinearities of the system with less 
difficulty and less restriction conditions. The circle 
criterion approach to design nonlinear observer is a new 
line of research introduced for continuous-time systems 
by [5]. An extension to multi-variable discrete-time case 
is given in [7]. In the following we recall the ingredient of 
the circle criterion nonlinear observer design approach. 
 

2. CIRCLE-CRITERION BASED NONLINEAR OBSERVER 
DESIGN 

In contrast of the linearization-based and high-gain 
approaches which attempt to eliminate the system 
nonlinearities using a nonlinear state transformation or to 
dominate them by a high gain term of correction, circle-
criterion approach to nonlinear observer design exploits 
the type of system nonlinearities. In its basic form, 
introduced by Arcak and Kokotovic [5], the approach is 
applicable to a class of systems that can be decomposed in 
linear and nonlinear parts with a condition that the 
nonlinearities satisfy the sector property.  
 

A. Basic sector property 

A memoryless function pp RRtzf →×∞+ [0[:),(  
is said to belong to the sector [0[ ∞+   if  0),( ≥tzzf . 

Let 1v  and 2v  two real positive numbers, by setting 

21 vvz −=   and )],(),([),( 21 tvftvftzf −= , the 
above sector property is equivalent to:  
 

+∈∀≥−− Rvvtvftvfvv 212121 ,0)],(),()[(   (1)   
                                               
Relation (1) states that the function ),( tzf  is a 
nondecreasing function. On the other hand if ),( tzf  is a 
continuously differentiable function the above relation is 
equivalent to [5], [6]: 

 

 Rztzf
dz
d

∈∀≥ 0),(                                          (2) 

 
If the function ),( tzf does not satisfy the positivity 
condition (2) we introduce a function ),( tzg  such that: 

Rztzf
dz
dztzftzg ∈∀+= ,),(,),(),( fρρ     (3) 

And  

Rztzf
dz
dtzg

dz
d

∈∀≥+= 0),(),( ρ              (4) 

 
In the multivariable case the sector property can be 
written as: 0),( ≥tzfzT . Where z and ),( tzf  are 
respectively vectors of an appropriate dimension. 
 

B. Nonlinear Observer Design 

The circle criterion based nonlinear observer design can 
be performed for a class of nonlinear system that the 
model can be decomposed into linear part and nonlinear 
part as the following [5], [6], [7]: 

 
)](.[)](),([)()( txHGftytutAxtx ++= φ&             (5)                       

)()( tCxty =                                                               (6) 
                                                                                                                  
Where A , C  and G  are known constant matrices with 
appropriate dimensions. The pair ),( CA  is assumed to 
be observable. The term  )](),([ tutyφ  is an arbitrary 
real-valued vector that depends only on the system 
measured control inputs )(tu  and outputs )(ty . The 
nonlinear part of the system is included in the 
term )](.[ txHf  which is a time-varying vector function 
verifying the sector property. In the following we recall 
the main theorem and conditions that are used in this work 
to study the feasibility of nonlinear observer design for 
induction motor sensorless control with respect of circle 
criterion or sector property.  A detailed proof of the 
theorem is presented. 
 
Theorem [5], [6]:  Consider a nonlinear system of the 
form (5)-(6) with the nonlinear part satisfying the circle 
criterion relations (1)-(4). If there exist a symmetric and 
positive definite matrix nxnRP∈  and a set of row 

vectors pRK∈ such that the following linear matrix 
inequalities (LMI) hold: 
 

0)()( ≤+−+− QLCAPPLCA T                       (7) 

0)( =−+ TKCHPG                                              (8) 
 
With nIQ ε=  as a defined positive known matrix, nI  is 
an n-th order unity matrix and ε  is a small positive real 
number. 
Then a nonlinear observer can be designed as: 
 

))](ˆ)(()(ˆ[
)](ˆ)([)](),([)(ˆ)(ˆ

tytyKtxHfG
tytyLtytutxAtx
−++
+−++= φ&

    (9) 

)(ˆ)(ˆ txCty =                                                             (10) 
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And 0)(ˆ)()(lim =−=∞→ txtxtet , where )(ˆ tx is the 

estimate of the state vector )(tx  of the nonlinear system.  
The nonlinear observer design refers to the selection of 
the gain matrices L  and K  satisfying the LMI 
conditions (7)-(8). One can see that the structure of the 
nonlinear observer is composed of a linear part that is 
similar to linear Luenberger observer and a nonlinear part 
that is an additional term that represents the time-varying 
nonlinearities satisfying the sector property. The circle 
criterion based nonlinear observer design takes advantage 
of the sector property by introducing a nonlinear term, in 
the structure of the observer. In the light of the summary 
proof presented in [5] and [6] we present in the following 
a detailed proof of the theorem.  
 
Proof.  (See [5], [6]). 
The state estimation error is given as: )(ˆ)()( txtxte −= , 
where )(ˆ tx is the estimate of the state vector )(tx  of the 
nonlinear system (5)-(6). The dynamics of the state 
estimation error are then: 
 

))](ˆ)(()(ˆ.())(.([
)()()(

tytyKtxHftxHfG
teLCAte

−+−+
+−=&

 (11) 

 
Let )(.1 txHv =  and ))(ˆ)(()(ˆ.2 tytyKtxHv −+= . 

By setting )()(21 teKCHvvz −=−= the term 
between brackets in (11) can be seen as a function of the 
variable z and then: ),()]()([ 21 tzfvfvf =− . 

The expression ),()]()()[( 2121 tzzfvfvfvv =−−  
satisfies the property of the sector Rztzzf ∈∀≥ 0),( . 
Taking into account the above result, the error dynamics 
in (11) can be rewritten as: 
 

),(.)()()( tzfGteLCAte +−=&                           (12) 
)()( teKCHz −=                                                   (13) 

 
Relations (12)-(13) show, once again, that the error 
dynamics can then be considered as a linear system 
controlled by a time-varying nonlinearity 
function ),( tzf  satisfying the sector property. Circle 
criterion establishes that the feedback interconnection of a 
linear system and a time-varying nonlinearity satisfying 
the sector property is globally uniformly asymptotically 
stable [5], [6]. Advantages of the circle-criterion approach 
are the global Lipschitz restrictions removing and high 
gain avoiding. However it introduces linear matrix 
inequality (LMI) conditions. An extension to multi-
variable discrete-time case is given in [7] for systems with 
multiple nonlinearities. 
Based upon the error dynamics, relation (12)-(13), the 
nonlinear observer design problem is then equivalent to 
stabilization of the error dynamics problem. To this end a 

candidate Lyapunov function PeeV T=  is considered. 
In order to ensure asymptotic stability of the observer the 
derivative of the candidate Lyapunov function must be 
negative or null.  
 

ePePeeV TT &&& +=                                                    (14) 
 
With the help of relation (12) and (13) the derivative of 
the Lyapunov function becomes: 
 

[ ]
),(),(

)()(
tzPGfePeGtzf

eLCAPPLCAeV
TTT

TT

++

+−+−=&
   (15) 

 
By setting: 
 

QLCAPPLCA T −≤−+− )()(   (16) 

and TKCHPG )( −−=                                           (17) 
 
With nIQ ε=  and 0fε , the derivative of the 
Lyapunov function can be rewritten as: 
 
 ),(..2 tzfzQeeV TT −−≤&                                     (18) 
 
Thus ends the proof. 
 
Note that the existence of observer (9)-(10) is conditioned 
by the solution of LMI conditions (7)-(8). By solving LMI 
constraints, observer gain matrices L  and K   that 
guarantee observer convergence are then computed. 
Restriction of the sector property ensures that the vector 
time-varying nonlinearity in the observer error system 
satisfies the sector condition of the circle criterion [5], [6]. 
In Ibrir [7], the author has investigated the study of 
globally Lipschitz systems and bounded-state nonlinear 
systems. Bounded-state nonlinear systems constitute a 
large class of system that includes electric machine 
systems. Electric machine models involve the magnetic 
flux as a key and bounded state variable that combined 
with other state variable of the machine, such as rotor 
angular velocity, leads to the nonlinear part of the 
machine model. This is due to the effect of the magnetic 
material saturation property that is similar to the sector 
nonlinearity. 
 

3. INDUCTION MOTOR NONLINEAR MODEL 

Induction motor as various electric machines constitutes a 
theoretically interesting and practically important class of 
nonlinear dynamic systems. Induction motor is known as 
a complex nonlinear system in which time-varying 
parameters entail additional difficulty for induction motor 
system control and conditions monitoring. Based on the 
fact that the nonlinear model of the induction motor 
system can be significantly simplified, if one applies the 
d-q Park transformation, different structures of the 
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nonlinear model are investigated and discussed in [1]. In 
this paper the induction motor nonlinear model is 
described, in stator fixed d-q Park reference frame, by the 
following nonlinear differential equations with, the stator 
current, rotor flux and rotor angular velocity  as selected 
state variables of the machine. 
 

sd
s

rqrrd
r

sdsd u
lT

ii
dt
d

σ
ϕωβϕβγ 1

+++−=       (19) 

sq
s

rq
r

rdrsqsq u
lT

ii
dt
d

σ
ϕβϕωβγ 1

++−−=       (20)                   

rqrrd
r

sd
r

rd T
i

T
m

dt
d ϕωϕϕ −−=

1
                          (21)                                                                                        

rq
r

rdrsq
r

rq T
i

T
m

dt
d ϕϕωϕ 1

−+=                           (22)                                                                                 

llrfsdrqsqrdr Tkkii
dt
d

−−−= ωϕϕαω )(            (23)                                                                       

 Where  
r

p

Jl
mn2

=α ,    
rsll

m
m σσ

σβ 111
=⎟

⎠
⎞

⎜
⎝
⎛ −

= , 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+=

rs TT
σ

σ
γ 111

,  
rsll

m2

1−=σ ,  
J
f

k r
f = , 

J
n

k p
l = , and rpr n Ω=ω . 

 
The indexes s  and r  refer to the stator and the rotor 
components respectively and the indexes d and q  refer 
to the direct and quadrature of the fixed stator reference 
frame components respectively (Park’s vector 
components). i  and u  are the current  and voltage 
vector, ϕ  is the flux vector, r  is the resistance, l  is the 

inductance, m  is the mutual inductance.  sT   and rT  are 

the stator  and the rotor time constant respectively. rω  is 

the rotor angular velocity, rf  is the friction coefficient, 

J  is the moment of  inertia coefficient, pn  is the number 

of pair poles, rΩ  is the mechanical speed of the rotor and 

finally lT  is the mechanical load torque.  
 
The considered induction motor system model has three 
inputs, and only two state variables available for 
measurement which are the stator current components. 
The nonlinearity of the model is mainly introduced by the 
product of the rotor angular velocity and the rotor flux 
components in the four first relations and the torque in the 
fifth relation  as the product of two state variables namely 
the stator current components and the rotor flux 
components. In order to take into account certain of the 
time-varying parameters, as stator (rotor) resistance, one 
has to introduce an additional equation relating to the 

considered parameter variation. Thus leads to a state space 
model of six state variable dimensions. In this paper we 
consider only the nonlinearity effect introduced by the 
variation of the rotor angular velocity.  
This type of nonlinear model is generally used for 
performing nonlinear control, conditions monitoring and 
faults diagnosis of electric induction machine systems. 
Performing these techniques requires estimating 
unmeasured rotor flux linkage and rotor angular velocity 
state variables based on the stator current and voltage 
measurements. In this context, the circle criterion 
approach application is investigated to design a nonlinear 
observer for the machine sensorless control purpose. To 
satisfy sector conditions (1)-(4) nonlinearities of the 
machine model (19)-(23) are function of the flux state 
variable that is a bounded state variable. The 
nonlinearities of the model are of the form rdrϕω  that 
can be expressed as: 
 

rrrdrrdr ρωρωϕωϕω −+= )(                           (24) 
 
One can verify that:  
 

0)( ≥+=+
∂
∂ ρϕρωϕω
ω rdrrdr

r

                    (25) 

 
With 2≤rdϕ , then one can choose 2=ρ . 

 
Once again the system nonlinearity is decomposed into a 
nonlinearity satisfying the sector property and a linear part 
to be added to the linear part of the system expressed in 
the evolution matrix A . 
 
4. SIMULATION RESULTS AND COMMENTS 

Characteristics of the considered induction machine are 
listed in Table 1. 
 

The first step of the simulation consists of resolving the 
LMI conditions, relation (7)-(8), using an adequate LMI 
tools such as the LMI tool-box of the Matlab software. 
The obtained nonlinear observer gain matrices L  and K  
are the following: 
 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−
−−

=

0000.00000.0
7914.10000.0
0000.07914.1
3581.1320000.0

0000.03581.132

L  

 
[ ]0149.34133.51 −=K ,  [ ]4133.50149.32 −=K ,  

[ ]0085.50085.43 −=K , [ ]0085.40085.54 −=K  
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The corresponding Lyapounov matrix for this LMI 
feasibility test is:  
 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−

−−−
−−

−−−

=

0000.00000.00000.00330.00330.0
0000.00871.00080.00029.00003.0
0000.00080.00871.00003.00029.0
0330.00029.00003.01787.00995.0
0330.00003.00029.00995.01787.0

P  

 
 And 04.0=ε . 
 

TABLE I 

Characteristics of the Considered Induction Machine 

Symbol Quantity Numerical value  SI a 

P Power                    1.5 KW 

f Supply frequency                    50 Hz 

pn  Number of pair poles 2 

u Supply Voltage 220 V 

sR  Stator resistance 4.85 Ω 

rR  Rotor resistance 3.805 Ω 

m Mutual Inductance 0.258 H 

sl  Stator Inductance 0.274H 

rl  Rotor Inductance 0.274 H 

rω  Rotor angular speed 297.25 rd/s 

fk  Friction  Coefficient 0.00114  N.s/rd 

J Inertia Coefficient 0.031 Kg2/s 

T l  Load torque 5 Nm 

 
 
The second step of simulation consists of injecting the 

obtained numerical values of the gain matrix L  and the 
vectors iK  in an S-function-based Matlab program that 
interacts with the Matlab Simulink software to simulate 
the nonlinear system and the nonlinear observer as shown 
in Fig.1.  

The simulation results of the designed nonlinear 
observer are presented in the following. Fig.2 and Fig.3 
show the measured and estimated stator current and rotor 
flux components respectively. Fig.4 and Fig.5 show the 
measured and estimated rotor angular velocity and the 
corresponding load torque respectively with 
corresponding estimation error. One can see that the 
estimated state variables of the machine follow the desired 
trajectories. 

To highlight these results a load torque is introduced in 
the simulation at time of 1.5 sec., the simulation results 
show that all the state variables of the machine are 
modified accordingly. Thus demonstrate that the 
effectiveness of the circle criterion based nonlinear 
observer design for the induction machine system state 
estimation. 

 

 
           Fig.1: Matlab-Simulink Simulation Scheme 
 

 
Fig.2: Measured and observed stator current components 

 

 
Fig.3: Measured and observed rotor flux components 
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Measured and estimated state variables of the considered 
induction machine can be used to control the machine 
system via an adequate state feedback control of the 
machine. Evaluation of the performance of the designed 
observer in the low speed region and even at zero speed, 
with and without, load torque that effectively opens a 
large variety of applications of sensorless induction motor 
drive, will be investigated in the forthcoming paper.  

 
Fig.4: Measured and observed rotor angular velocity 

 
Fig. 5: Measured and estimated electromechanical  

torque of the machine 
 

5. CONCLUSION 

A circle criterion based nonlinear observer design for 
induction motor sensorless control has been presented.  
The main advantage of the circle criterion approach is that 
it permits to exploit directly the nonlinearities of the 
system without attempt to eliminate them. Linear matrix 
inequalities are solved to determine the gain matrices of 
the nonlinear observer. A nonlinear induction machine 
model with stator current, rotor flux, and rotor angular 
velocity as selected state variable has been simulated. 
Simulation results show that the circle criterion based 
nonlinear observer design can effectively be performed 
for induction motor sensorless control.  
 

 

 

 

REFERENCES 
[1] B. Bensaker, H. Kherfane, A. Maouche and R. Wamkeue, Nonlinear 

modeling of induction motor drives for nonlinear sensorless 
control purposes. Preprints 6th IFAC Symposium on Nonlinear 
Control Systems. Stuttgart, Germany. Vol.3. Sep. 01-03, 2004, 
1475-1480. 

 
[2] A. J. Krener and A. Isidori, Linearization by output injection and 

nonlinear observers. Systems & Control Letters, (3), 1983, 47-52. 
 
[3] A. Isidori, Nonlinear control systems: An introduction. Lecture Notes 

in Control and Information Sciences. Springer-Verlag, 1985, 178-
253. 

 
[4] A. N. Atassi and H. K. Khalil, Separation results for the stabilization 

of nonlinear systems using different high-gain observer designs. 
Systems & Control Letters. 39, 2000, 183-191. 

 
[5] M. Arcak and P. Kokotovic, Nonlinear observers: a circle criterion 

design and robustness analysis. Automatica. Vol. 37, (12), 2001, 
1923-1930 

 
[6] M. Arcak, Certainty-equivalence output-feedback design with circle-

criterion observers. IEEE Transactions on Automatic Control, 
Vol.50, (6), June 2005, 905-909. 

 
[7] S. Ibrir, Circle-criterion approach to discrete-time nonlinear observer 

design. Automatica,   43, 2007,1432 – 1441 
 
[8] M. Bodson and J. Chiasson: Differential-geometric methods for 

control of electric motors. International Journal of Robust and 
Nonlinear Control. Vol.8, 1998, pp.923-954. 

 
[9] B. Castillo-Toledo, S. Di Gennaro, A. G. Loukianov and J. Rivera: 

Discrete-time sliding mode control with application to induction 
motors. Automatica. Vol.44, 2008,  pp.3036-3045. 

 
[10] M. G. Campbell, J. Chiasson, M. Bodson and L. M. Tolbert: Speed 

sensorless identification of the rotor time constant in induction 
machines. IEEE Transactions on Automatic Control. Vol. 52, (4), 
2007, pp.758-763. 

 
 

 


