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a  b  s  t  r  a  c  t

This  work  concerns  the  tracking  problem  of uncertain  Takagi–Sugeno  fuzzy  continuous  systems  with
unmeasurable  premise  variables  and  affected  by unknown  inputs.  The  aim  is  to synthesize  a  fault  tolerant
controller  (FTC)  ensuring  trajectory  tracking  of a desired  reference  model.  To  emit  the  original  plant
system,  a norm  bounded  parametric  uncertainty  is  employed  in  building  the T–S  model.  The  control
scheme  is based  on a  fuzzy  observer  to estimate  both  faults  and faulty  system  states;  a  proportional
eywords:
–S fuzzy systems
nmeasurable premise variables
ault and state estimation
2 norm

integer  (PI)  observer  to  estimate  constant  faults  is  then  adopted.  Using  descriptor  redundancy  property
and L2 optimization  to attenuate  the  unknown  inputs  effect,  a  solution  is proposed  in  terms  of bilinear
matrix  inequalities  (BMIs).  The  performances  of  the  proposed  approach  are  pointed  out by  accentuating
on  a model  of wastewater  treatment  plant  (WWTP)  through  numerical  results.

© 2012 Elsevier Ltd. All rights reserved.

astewater treatment plant

. Introduction

Design of robust control for uncertain nonlinear systems
s becoming necessary especially when systems are affected
y unknown inputs, such as disturbances, faults, or unmod-
led dynamics. The well known classical control strategies have
eported their limits to take into account faults affecting a system.
hen, if a fault occurs in any component of the system, the stability
nd the performances of the system cannot be ensured with such
ontrol laws. For this reason, several new control system techniques
ave been developed in order to guarantee the overall system sta-
ility and acceptable performances, despite the situation failure.
ecently, the adaptation of the control law on the basis of the esti-
ation of faults affecting the system is the new strategy of control

alled fault tolerant control (FTC). The problem of FTC design has
een widely investigated and many significant results have been
roposed (see [1–8] and references therein).

Regrettably, in the literature the design of FT controllers for non-
inear systems remains more complicated [1].  Moreover, a large
lass of nonlinear systems can be well approximated by T–S fuzzy

odels [9,10].  This approach provides a representation of some

onlinear systems by means of a collection of linear models which
re interconnected by nonlinear function as a convex combination.

∗ Corresponding author.
E-mail addresses: aouaouda@labged.net (S. Aouaouda),

ohammed.chadli@u-picardie.fr (M.  Chadli).

959-1524/$ – see front matter ©  2012 Elsevier Ltd. All rights reserved.
oi:10.1016/j.jprocont.2012.02.016
The interpolating functions depend either on measurable or
unmeasurable premise variables. In this context, FTC for several
kind of T–S fuzzy model has been strongly investigated and a lot of
works, involving various specifications, are now available. Among
this literature we  find FTC for uncertain and disturbed models
[11,12], time delay models with and without uncertainties [13],
uncertain descriptor delay models [14,15]. Recall that stability con-
ditions are derived systematically and most of them depend on
Lyapunov theory relaying the feasibility of a derived system of
linear matrix inequalities (LMIs) [10,16].

Despite numerous works available, none of them seem able to
define an LMI  formulation for the problem of trajectory tracking
FTC design for T–S uncertain and/or disturbed models subject to
actuators and/or sensor faults with unmeasurable premise vari-
ables. The only result available for T–S fuzzy uncertain model with
measurable premise variable subject to actuator constant fault has
been developed by [17]. Usually, the obtained conditions are only
expressed for T–S fuzzy models with measurable premise vari-
able [18,23,24,29]. In [28,29] an FT controller for T–S Models with
unmeasurable premise variables is proposed. The estimation of
the constant faults was obtained by using proportional integral
observers. Nevertheless, unknown inputs, parametric uncertainties
and external disturbances are not considered in this work. There-
fore the purpose of the proposed work is to integrate all of these

issues.

This paper is dedicated to the design of a fault tolerant control
strategy based on descriptor redundancy property. The main
idea is to ensure the trajectory tracking performance by means

dx.doi.org/10.1016/j.jprocont.2012.02.016
http://www.sciencedirect.com/science/journal/09591524
http://www.elsevier.com/locate/jprocont
mailto:aouaouda@labged.net
mailto:mohammed.chadli@u-picardie.fr
dx.doi.org/10.1016/j.jprocont.2012.02.016
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lowing scheme (Fig. 1).
With this controller structure, one can remark that fault detec-

tion and isolation are performed since an estimate of the fault
affecting the system is available.
62 S. Aouaouda et al. / Journal of

f a control scheme with a T–S observer and unknown inputs
ttenuation based on L2 optimization criterion. For that purpose, a
roportional integer (PI) observer is used to estimate jointly states
nd constant faults. From a practical point of view, many works
eported that, even if the constant faults seem to be slow varying
with regards the dynamics of the system), the proposed observer
rovides good results. The main contribution of the paper consists
f the extraction of bilinear matrix inequality (BMI) formulations
sing the well known descriptor redundancy property, in order to
erive the proposed fuzzy controllers’ laws related to the system
ith unmeasurable premise variables. These conditions are easy

o solve using existing numerical tools.
To illustrate the proposed approach a wastewater treatment

lant (WWTP) is chosen as an application. Due to its nonlinear
ynamics, i.e., the variations of the wastewater flow rate and
omposition, large uncertainty, multivariable structure, and mul-
iple time scales in the internal process dynamics, the WWTP  is
lassified as a highly complex system. In addition, rather lim-
ted measurements are available during plant operation. Hence,
perating optimization and safety improvement has become an
nteresting research area. For modeling the complex bio-chemical
rocess, several models are proposed [21,22]. Widespread use of
SM1 (activated sludge process model no. 1) in many applications
as proven that it is adapted to describe and predict wastewater
reatment plant behavior. However, to deal with the complexity
f the ASM1 model, different versions of the reduced model are
roposed in the literature [19,20,25,26].  In this study, a nonlinear
educed model with five states given by [34] is chosen, since lower
omplexity is required for observer/controller design.

The paper is presented as follows: in the next section, the prob-
em of FT controller design for T–S models with unmeasurable
remise variables is formulated. The observer and T–S fuzzy uncer-
ain faulty model is then presented. In Section 3, the proposed FTC
onditions for the whole closed-loop system are derived in BMI
ormulation. The effectiveness of the proposed approach is illus-
rated by an application to a model of wastewater treatment plants
ASM1) in Section 4. Finally, Section 5 concludes the paper.

In the sequel, the time variable will be omitted for space conve-
ience. The following notations are considered: H(S) denotes the
ermitian of the matrix S, i.e. H(S) = S + ST .

The symbol * indicates the transposed element in the symmetric
ositions of a matrix and diag(l1, . . . , lr) is a block diagonal matrix

n which diagonal entries are defined by l1, . . . , lr . The following
emma  is needed.

emma  1 ([27]). Consider two real matrices X, Y and F(t) with appro-
riate dimensions, for any positive scalar ı, the following inequality is
erified:

T FY + YTFTX ≤ ıXTX + ı−1YTYı > 0 (1)

. Problem statement

A T–S fuzzy model is a set of linear time invariant (LTI) systems,
lended together with nonlinear membership functions. Actually,
ifferent ways to perform a T–S model from non linear models
xisted. An interesting approach is the well known nonlinear sec-
or transformation [10]. In fact, this technique allows obtaining an
xact T–S representation without information loss on a compact
et of the state space.

The faulty uncertain system is inferred as follows:

r

ẋf =
∑
i=1

�i(�f )((Ai + �Ai)xf + (Bi + �Bi)uf + Bf
i
f + Tid)

yf = Cxf + Gd(t) + Df

(2)
s Control 22 (2012) 861– 872

where r is the number of submodels, �i(�(t)) are the weighting
functions depending on the vector of the scheduling variables �(t),
which can be measurable (as the input or the output of the sys-
tem) or unmeasurable (as the state of the system). These nonlinear
functions satisfy the convex sum property:⎧⎪⎨⎪⎩

0 ≤ �i(�) ≤ 1
r∑
i=1

�i(�) = 1 ∀i ∈ {1, 2, . . . , r} (3)

where xf (t) ∈ R
n, yf (t) ∈ R

p, uf (t) ∈ R
m and d(t) ∈ R

d≤n are respec-
tively the faulty state, faulty measured output vectors, the fault
tolerant control signal, and the bounded unknown input vectors.
f (t) ∈ R

q represents the faults vector affecting the system. �Ai and
�Bi are the uncertainty matrices with appropriate dimensions, cor-
responding to the ith subsystem.

Assumption. The parameter uncertainties considered here are
norm-bounded, in the form: �Zi = Mz

i
Fz
i
Nz
i
, where Z ∈ {A, B, C, D},

Mz
i

and Nz
i

are known real constant matrices of appropriate dimen-
sion. Fz

i
is a known Lebesgue measurable matrix which satisfy:

∀t ≥ 0 : FzTt (t)Fzi (t) ≤ I (4)

in which I is the identity matrix of appropriate dimension. The aim is
to design a fault tolerant controller ensuring the tracking trajectory
performance of the faulty uncertain system to the reference one.
The FTC law is given by the following structure:

uf =
r∑
i=1

�i(�̂f )(Ki(x − x̂f ) + u − Kf
i
f̂ ) (5)

where Ki ∈ R
m×n, Kf

i
∈ R

m×q are the state feedback gain matrices
to be determined. In order to derive the FTC law an additional PI
observer is added and has the usual form:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

˙̂xf =
r∑
i=1

�i(�̂f )(Aix̂f + Biuf + Bf
i
f̂ + H1

i (yf − ŷf ))

˙̂f =
r∑
i=1

�i(�f )(H
2
i (yf − ŷf ))

ŷf = Cx̂f + Df̂

(6)

where H1
i

∈ R
n×p and H2

i
∈ R

m×p are the observer’s gain matrices to
be determined in order to estimate f(t) and xf(t). For simplification
we assume that:

Āi = (Ai + �Ai), B̄i = (Bi + �Bi) (7)

The FT controller design methodology is illustrated by the fol-
Fig. 1. Tracking fault tolerant controller design methodology.
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itive scalars ı1, ı2, ı3, ı4, Jb
ik
, k = 1, . . . , 14, and Ja

ik
, k = 1, . . . , 3

that minimize the scalar �̄ such that the following BMI constraints
i, j = 1, . . . , r are satisfied, then the system (15) is stable guarantying
the tracking performance under the L2-gain norm:

M̃ij < 0 (18)

where

˜ ˜ [
F(1,1)
ij

(∗)
]

S. Aouaouda et al. / Journal of 

. Fault tolerant controller design

To specify the desired trajectory, let us consider the following
–S structure corresponding to the reference model:

ẋ =
r∑
i=1

�i(�)(Aix + Biu)

y = Cx

(8)

here x(t) ∈ R
n, y(t) ∈ R

p, and u(t) ∈ R
m represent respectively the

eference state, the measured output and the bounded input vec-
ors. {Ai, Bi} are the submodels asymptotically stable matrices. For
he simplicity of the notation, the computation is presented for the
ase when measurement matrices are common for all the rules, i.e.
1 = C2 = · · · = C.

Let us respectively define the state and fault estimation errors,
tate tracking error, and the output estimation error as:

et

es

ef

ey

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
x − xf

xf − x̂f
f − f̂
yf − ŷf

⎤⎥⎥⎥⎦ (9)

Adding and subtracting Kixf and Kf
i
f , Eq. (5) can be rewritten as:

f =
r∑
i=1

�i(�f )(Kiet + Kies + Kf
i
ef + u − Kf

i
f ) (10)

Let us quote that two cases are distinguished: (i) the scheduling
ector �(t) does not depend on the estimation states, i.e., �̂f (t) =
f (t) and (ii) �(t) depends on completely or partially on estimated
tates. In the following, we assume that the scheduling vector
epends on the estimated states. It is important to note that for the
TC problem of T–S systems with actuator faults, it is more interest-
ng to use the output of the system as a premise variable. However,
n the simultaneously occurring actuator and sensor faults, better
esults are obtained by using the state of the system as a premise
ariable. In this case, the dynamics of et and es are given by Eqs. (11)
nd (12). To take the advantage of a descriptor redundancy formu-
ation, a “virtual dynamics” is introduced in the output error ey to
void the crossing terms resulting from the observer’s gains H1

i
and

ystem matrices (Ci and Di) multiplication [32,33]. The latter can be
xpressed as given by Eq. (13), where 0 ∈ Rp×p is a zero matrix.

˙ t =
r∑
i=1

r∑
j=1

�i(�f )�j(�̂f )[(Ai − B̄iKj)et − B̄iKjes − B̄iKfj ef

− �Aixf − �Biu − Tid + (B̄iK
f
j

− Bf
j
)f ] + ϕ (11)

˙ s =
r∑
i=1

r∑
j=1

�i(�f )�j(�̂f )[B̃ijKjet + (Aj + B̃ijKj)es + (Bf
j
+ B̃ijKfj )ef

− H1
j ey + Ãijxf + B̃iju + (Bf

i
− Bf

j
− B̃ij)f + Tid] (12)

¯
i − Aj = Ãij, B̄i − Bj = B̃ij (11a)

r∑

 =

i=1

(�i(�) − �i(�f ))(Aix + Biu) (11b)

ėy = Ces + Def − ey + Gd (13)
s Control 22 (2012) 861– 872 863

In this work the faults affecting the system are supposed to be
constant i.e. ḟ (t) = 0, the dynamics of the fault estimation error can
be written as:

ėf =
r∑
i=1

r∑
j=1

�i(�f )�j(�f )(−H2
j Ces − H2

j Def − H2
j Gd)  (14)

The concatenation of the previous derived dynamic errors
(11)–(14) allow the descriptor formulation of the dynamics by
considering the extended state vector x̃T = [etesef eyxf ]. Thus, the
closed loop dynamics can be expressed as:

E ˙̃x =
r∑
i=1

r∑
j=1

�i(�f )�j(�̂f )(
∨
Aijx̃ + B̃ij� ) (15)

with E = diag
[
I I I 0m I

]
, �T =

[
u d f ϕ

]
(16)

and

∨
Aij =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(Ai − B̄iKj) −B̄iKj −B̄iKfj 0 −�Ai
B̃ijKj (Aj + B̃ijKj) (Bf

j
+ B̃ijKfj ) −H1

j
Ãij

0 −H2
j
C −H2

j
D 0 0

0 C D −I 0

B̄iKj B̄iKj B̄iK
f
j

0 Āi

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

B̃ij =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−�Bi −Ti (B̄iK
f
j

− Bf
j
) I

B̃ij Ti (Bf
i
− Bf

j
− B̃ijKfj ) 0

0 −H2
j
G 0 0

0 G  0 0

B̄i Ti Bf
i
− B̄iKfj 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(17)

Consequently, Eq. (2) is stabilized via the control law (10),
if Eq. (15) is stable guaranteeing the tracking performance for
all B̃ij . A straightforward result is summarized in the following
theorem.

Theorem 1. If there exist symmetric and positive definite matrices
X, P2 = I, P3, P5, matrices P4, H̄1

i
, H̄2

j
, Kj, and Kf

j
jointly with pos-
Mij is defined by : Mij =
F(2,1)
ij

F(2,2)
(19)

with
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(1,1)
ij

= H(AiX) − H(BiKjX) + (J21i)
−1
Mai M

aT
i

+ (Jb6i)
−1
NbTi N

b
i + Jb1iM

b
i M

bT
i

(2,1)
ij

= −KTj BTi + P2(Bi − Bj)KjX + Jb2iM
b
i M

bT
i

(2,2)
ij

= H(P2Aj) + H(P2(Bi − Bj)Kj) + I

(3,2)
i

= BfT
j
P2 + KfT

j
(Bi − Bj)

TP2 − H̄2
i C

(4,2)
i

= −H̄1T
j + PT4C; �(5,2)

ij
= (Ai − Aj)

TP2

(3,3)
j

= −H(H̄2
j D) + I + Jb4iM

b
i M

bT
i ; �(4,4)

i
= −H(P4) + I

(5,5)
i

= H(P5Ai) + (Ja1i + Ja2i + Ja3i)N
aT
i N

a
i

nd

 = −diag[ �̄Im + Jb6iM
b
i M

bT
i + (Jb11i + Jb14i)N

bT
i N

b
i �̄Ind + Jb7iM

b
i M

bT
i

¯ Iq �̄Inϕ ]

F(2,2) = −diag
[
I (Jb1i + Jb3i + Jb5i) Jb2i (Jb7i + Jb4i) ı1 (Jb10i + Jb8i)(

Jb12i + Jb11i + (Jb3i)
−1 + (Jb8i)

−1
)

Ja9i Ja2i ı2 (Jb9i)
−1

Jb13

ı3 (ı1)−1 Ja3i (ı2)−1
(
Jb14i + Jb15 + (Jb10i)

−1 + (Jb5i)
−1

)
(Jb13i)

−1

(ı3)−1 (ı4)−1 ı4

(
(Jb12i)

−1 + (Jb15i)
−1

)]
(2,1)
ij

= diag
[
l1ij l2ij l3ij 0 l5ij 0 0 l8ij

]

s Control 22 (2012) 861– 872

with

l1ij =

⎡⎢⎢⎢⎢⎢⎢⎣

X

Nb
i
KjX

Nb
i
Kj

Nb
i
Kf
j

BiKjX

⎤⎥⎥⎥⎥⎥⎥⎦ , l2ij =

⎡⎢⎢⎢⎢⎢⎢⎣

Nb
i
Kj

MbT
i
P2

MbT
i
P3

MaT
i
P2

BiKj

⎤⎥⎥⎥⎥⎥⎥⎦ , l3ij =

⎡⎢⎣N
b
i
Kf
j

MbT
i
P5

BiK
f
j

⎤⎥⎦ ,

l5ij =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P5

MaT
i
P5

P5

MbT
i
P5

P5

Nb
i
Kf
j

P5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, l8ij =

[
KfT
j
BT
i

Nb
j
Kf
j

]

The observer gains are obtained by:

[
H1
j

H2
j

]
=

[
(PT2 )

−1
(H̄1
j

)
T

(PT3 )
−1
H̄2
j

]
(20)

Proof. See proof in Appendix A.
When the decision variables vector � does not depend on the

estimated states, i.e., �̂f = �f , new BMI  conditions can be provided
from the ones given in Theorem 1. This result is given in Corollary
1.

Corollary 1. The system that generates tracking error et(t), fault ef(t)
and the state es(t) estimation errors is stable and the L2-gain of transfer
from � (t) to x̃(t) is bounded by

√
�̄, if there exists some symmet-

ric positive definite matrices X, P2, P3, P5, matrices P4, H̄1
i
, H̄2

j
, Kj, Kf

j
,

jointly with positive scalars ı1, ı2, ı3, Jb
ik
, k = 1, . . . , 14, and Ja

ik
, k =

1, . . . , 3 that minimize the scalar �̄ under the following BMI constraints
i, j = 1, . . . , r:

Mij < 0 (21)

[
�(1,1)
ij

(∗)
]

where Mij is defined by Mij = �(2,1)
ij

�(2,2)
(22)

with
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(1,1)
ij

= H(AiX) − H(BiKjX) + (Ja1i)
−1Mai M

aT
i + (Jb6i)

−1
NbTi N

b
i

+ Jb1iM
b
i M

bT
i ;  (4,4)

ij
= −H(P4) + I

(2,2)
ij

= H(P2Ai) + I + Jb2iM
b
i M

bT
i ;  (3,2)

i

= BfT
i
P2 − H̄2

j C;  (4,2)
i

= −H̄1T
j + PT4C

(3,3)
j

= −H(H̄2
j D) + I + Jb4iM

b
i M

bT
i ;  (5,5)

ij

= H(P5Ai) + (Ja1i + Ja2i + Ja3i)N
aT
i N

a
i

nd

�2,2 = −diag[I (Jb1i + Jb3i + Jb5i) Jb2i (Jb7i + Jb4i) ı1 (Jb10i + Jb8i)

(Jb12i + Jb11i + (Jb3i)
−1 + (Jb8i)

−1
) Jb9i Ja2i ı2 (Jb9i)

−1
Jb13 ı3

(ı1)−1 Ja3i (ı2)−1 (Jb14i + Jb15 + (Jb10i)
−1 + (Jb5i)

−1
) (Jb13i)

−1

(ı3)−1 ((Jb12i)
−1 + (Jb15i)

−1
)]

(2,1)
ij

= diag[l1ij l2ij l3ij 0 l5ij 0 0 Nbi K
f
j
]

The observer gains are obtained by Eq. (20).

emark 1. The proposed approach concerns the uncertain T–S
ystems also affected by unknown inputs and external distur-
ances. Based on descriptor redundancy property, the given
bserver structure allows to estimate state variables, faults and
nknown inputs. Recall that, even if the constant faults seem to be
low varying (with regards the dynamics of the system), the pro-
osed observer provides good results. The given conditions are in
MI  form because of the products BiKjX and Nb

i
KjX in the elements

(1,1)
ij

and l1ij of the matrix (19). Notice that solving a BMI  problem
s much harder than solving an LMI  problem [41,42].  For nominal
–S systems, the obtained design conditions are in LMI  terms [40].

. Application to a wastewater treatment plant model

In this section, we illustrate the proposed design approach on
 simulation model of a WWTP. The system under consideration
s the ASM1 model adopted from [31,35], and mainly treated as

 multi-model system in [36,37]. First the wastewater treatment
rocess and the reduced model used are detailed.

.1. Process description and ASM1 model
In the search of the biodegradation processes, the ASM1 is one
f the widely used model to describe the wastewater treatment
rocesses, with assistance of microorganisms [31,35–39].  Standard
ctivated sludge processes consist of an aerated tank (bioreactor)
s Control 22 (2012) 861– 872 865

in closed-loop with a secondary settler (see the simplified diagram,
given in Fig. 2). The carbonated pollution is degraded by ventila-
tion in the aerobic tank, and a pollutant like ammoniacal nitrogen
is degraded into gaseous nitrogen following a two-step treatment
called nitrification–denitrification.

In this work, a reduced ASM1 model is considered. Simplifica-
tion assumptions with respect to components and hydrodynamics
are considered [34,35]. Only the components necessary for the
main reactions are kept and lead to 5 state variables: two types
of microorganisms: heterotrophic biomass (XBH), autorotrophic
biomass (XBA), and dissolved oxygen (S0). XI, SI, XP and Salk have no
biological influence and are removed. The ammonia nitrogen frac-
tion (SNH) is relatively simple to measure which leads to remove
the SND and XND fractions under constraint. At last, since XS and SS
are difficult to measure separately, a new variable: XSS = XS + SS is
created. Consequently, four processes are considered: the carbon
oxidation, the biomasses decays and nitrification.

The following state vector is considered:

x = [XSS, S0, XBH, SNH, XBA]T (23)

Reduced process rates expressions are:

rXSS = �H	1XBH + (1 − fp)(bHXBH + bAXBA)

rXBH = �H	1XBH − bHXBH

rXBA = �A	2XBA − bAXBA

rSNH = −iXB�H	1XBH −
[
iXB + 1

YA

]
�A	2XBA

+ (iXB − fP iXP)(bHXBH + bAXBA)

rSo = −
[

1 − YH
YH

]
�H	1XBH −

[
4.75 − YA
YA

]
�A	2XBA

(24)

with
Fig. 2. Diagram of activated sludge wastewater treatment process.
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emark 2. In conformity with the benchmark of European Pro-
ram COST 624, the inflow oxygen and autorotrophic biomass
oncentrations So,in, XBA,in are neglected [31,34].

emark 3. In practice the concentration XSS,in, SNH,in, and XBH,in
re not measured online. Hence, often approximation is used to
eplace these concentrations with their respective daily mean val-
es. Another option exists that is to consider these concentrations
s unknown inputs [38].

The reduced model of the ASM1 may  be represented by the
ollowing nonlinear system [34,35]:

ẊSS = qin
V

·  (XSS,in − XSS) + rXSS

ṠO = qin
V

·  (−SO) + K · qa · (SO,sat − SO) + rSO

ẊBH = qin
V

·
[
XBH,in − XBH + fR

1 − fW
fR + fW

XBH

]
+ rXBH

ṠNH = qin
V

·  (SNH,in − SNH) + rSNH

ẊBA = qin
V

·
[
−XBA + fR

1 − fW
fR + fW

XBA

]
+ rXBA

(26)

here q is the flow of effluent and qa the airflow. The indexes in and
ut correspond respectively to the input and output of the reactor.
R and qW are respectively the clarifier recycled and the rejected
ow representing fractions of the input flow qin as:

R = fRqin, 1 ≤ fR ≤ 2 (27)

W = fWqin, 0 < fW < 1 (28)

The volume of reactor is assumed to be constant V = 1333 m3, and
hus: qout = qin + qR. The clarifier is supposed to be perfect i.e. with
o internal dynamic process and no biomass in the effluent. The
ifferent coefficients involved in (24) and (26) are given in Table 1.

.2. Takagi–Sugeno model identification

A(�) =

⎡⎢⎢⎢⎢⎢⎣
−�1(t) �H�2(x) (1 − fp)bH

0 a22 0 

0 �H�2(x) a33

0 a42 (iXB − fP iXP)bH

0 �A�2(x) 0 
Since the derivation of a T–S model is not unique for a given non-
inear system, the subsequent steps are followed. Let us first define
he measurement vector, the control vector and the unknown

able 1
arameters for ASM1 model (in 20 ◦C) [37].

Paramètres Signification 

YA Taux de conversion substrat/biomasse autotrophe
YH Taux de conversion substrat/biomasse hétérotrop
fP Taux de conversion biomasse/matière organique 

iXP Fraction d’azote dans la matière organique inerte
iXB Fraction d’azote dans la biomasse hétérotrophe 

�H Taux de croissance maximal de la biomasse hétér
�A Taux de croissance maximal de la biomasse autot
bH Coefficient de mortalité de la biomasse hétérotrop
bA Coefficient de mortalité de la biomasse autotroph
KS Coefficient de demi-saturation en substrat rapide
KOA Coefficient de demi-saturation de l’oxygène pour
SO,sat Oxygen saturation concentration 

K Control gain of oxygen 

fR Fraction of the input flow
fW Fraction of the input flow 
s Control 22 (2012) 861– 872

inputs vector in order to build the T–S model of the biological pro-
cess that will be used to apply the proposed fault tolerant controller.
Indeed, the output vector is y = [XSS, SO, SNH]T, the known input vec-
tor is u = [XBH,in, qa]T, and the unknown input vector is d = [XSS,in,
SNH,in]T. Using the well-known sector nonlinearity approach [10],
a T–S model structure is obtained where the nonlinear entries of
the input and state matrices are considered as “premise variables”
and denoted �j(.)(j = 1, . . . , q). For q premise variables, r = 2q sub-
models will be obtained. The above model is constituted by three
nonlinearities:

�1(t) = qin(t)
V

�2(x) = XSS
Ks + XSs

1
KOH + SO

SNH
KNH + SNH

XBH

�3(x) = 1
KNH + SNH

SO
KO,A + SO

XBA

(29)

Notice that several choices of these premise variables are pos-
sible, due to the existence of different equivalent quasi-LPV forms
[37]. For the premise variables choice (29), only �1(t) is measurable.

The system (26) can be rewritten as:

ẋ = A(�)x + B(�)u + T(�)d (30)

where �(t) = [�1(t) �2(x) �3(x)]T and the matrices
A(�(t)), B(�(t)) and T(�(t)) are expressed as follows:

(1 − fp)bA

0

0

(iXB − fP iXP)bA

a55

⎤⎥⎥⎥⎥⎥⎦ , B(�) =

⎡⎢⎢⎢⎢⎢⎣
0 0

0 KSO,sat

�1(t) 0

0 0

0 0

⎤⎥⎥⎥⎥⎥⎦ (31)

T(�) =

⎡⎢⎢⎢⎢⎢⎣
�1(t) 0

0 0

0 0

0 �1(t)

0 0

⎤⎥⎥⎥⎥⎥⎦ (32)

where

a22 = −�1(t) − K · qa −
[

1 − YH
YH

]
�H�2(x), a23 = −

[
4.75 − YA
YA

]
�A�3(x)[ ] [ ]
a33 = �1(t) fR
1 − fW
fR + fW

− 1 − bH, a44 = −�1(t) − iXB + 1
YA

�A�3(x)

a42 = −iXB�H�2(x), a55 = �1(t)

[
fR

1 − fW
fR + fW

− 1

]
− bA

(33)

Valeurs par défaut

 0.24
he 0.67
inerte 0.08

 0.06 [g N in endogenous mass]
0.086[g N in biomass]

otrophe 3.733 [1/24 h]
rophe 0.3 [1/24 h]
he 0.4 [1/24 h]

e 0.05 [1/24 h]
ment biodégradable 20 [g/m3]

 la biomasse autotrophe 0.4 [g/m3]
10 [g/m3]
2.3[1/m3]
1.1
0.04
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Under the assumptions:

�min
1 ≤ �1(t) ≤ �max

1

�min
2 ≤ �2(x) ≤ �max

2

�min
3 ≤ �3(x) ≤ �max

3

(34)

The local weighting functions are defined by

W0
1 = �1 − �min

1

�max
1 − �min

1

, W1
1 = �max

1 − �1

�max
1 − �min

1

W0
2 = �2 − �min

2

�max
2 − �min

2

, W1
2 = �max

2 − �2

�max
2 − �min

2

W0
3 = �3 − �min

3

�max
3 − �min

3

, W1
3 = �max

3 − �3

�max
3 − �min

3

(35)

Finally, the weighting functions of the derived T–S model are
iven by (Fig. 4)

�1(�) = W0
1W

0
2W

0
3 , �2(�) = W0

1W
0
2W

1
3 ,

�3(�) = W0
1W

1
2W

0
3 , �4(�) = W0

1W
1
2W

1
3

�5(�) = W1
1W

0
2W

0
3 , �6(�) = W1

1W
0
2W

1
3 ,

�7(�) = W1
1W

1
2W

0
3 , �8(�) = W1

1W
1
2W

1
3

(36)

Considering definitions (36), the reader should remark that
hese functions respect the conditions (3).

The constant matrices Ai,Bi and Ti(i = 1, . . . , 23) defining the 8
ubmodels, are determined by replaycing the premise variables

j in the matrices A(�), B(�1) and T(�1) with the scalars �
∂j
i
j
, i =

, . . . , 2q and j = 1, . . . , q:

i = A

(
�
∂1
i

1 , �
∂2
i

2 , �
∂3
i

3

)
i = 1, . . . , 8 (37)

i = B

(
�
∂1
i

1

)
i = 1, . . . , 8 (38)
i = T

(
�
∂1
i

1

)
i = 1, . . . , 8 (39)
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Fig. 3. Real inputs of wastewa
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In definitions (37)–(39), the indexes ∂j
i
(i = 1, . . . , 8 and j =

1, . . . , 3) are equal to min  or max, and indicate which partition
of the jth premise variable (W0

j
or W1

j
) is involved in the ith

submodel. Consequently, the nonlinear model (26) affected by the
unknown inputs d(t), can be proposed as:⎧⎪⎨⎪⎩ ẋ(t) =

8∑
i=1

�i(�(t))(Aix(t) + Biu(t) + Tid(t))

y(t) = Cx(t)

(40)

with

C =

⎡⎣ 1 0 0 0 0
0 1 0 0 0

0 0 0 1 0

⎤⎦ (41)

Recall that the activating functions �i depend on the scheduling
vector �(t) including a dilution rate variable �1(t) = qin(t)/V which
is measurable and the system state x(t) that is not available to the
measurement.

4.3. Faulty uncertain T–S model

In order to point up the proposed approach additional faults are
used with respect to time expressed in (day), and are injected to
the T–S model (40) representing the ASM1 as:

- A fault f1 affected the first output y1 = XSS and appears from 1.5
[day].

- A fault f2 affected the second output y2 = XS0 and appears from 2
[day].

It is assumed that faults have constant amplitude, approxi-
mately equal to 10% of the maximum amplitude related to each

output. From another side, the structure of the T–S model (40) rep-
resenting the ASM1 model involved parameter uncertainties of bH

and bA in some coefficient of the matrix A. The variation of these
parameters is 20% for bH and 25% for bA of their nominal values [35].
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T
i

�

f

he uncertain part �A  separated from the perfectly known part A
s given by:

⎡⎢⎢⎢
0 0 0.2�bH 0 0.25�bA

0 0 0 0 0

⎤⎥⎥⎥

A  = ⎢⎢⎣ 0 0 0.2�bH 0 0

0 0 0.2�bH 0 0.25�bA

0 0 0 0 0.25�bA

⎥⎥⎦ (42)

Moreover the uncertainties structure �A  is written under the
orm �A  = MaFaNa with the matrices:
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-2

0

2

4

6

8

10

12

Time (day)

f1(t)

estimated f1(t)

-

0 0.5 1 
0

20

40

60

0 0.5 1 
0

5

10

Fig. 5. Faults and their estimates (Top), n
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Ma =

⎡⎢⎢⎢⎢⎢⎣
1 1

0 0

1 0

1 1

0 1

⎤⎥⎥⎥⎥⎥⎦ , Fa =
[

0.2�bH 0

0 0.25�bA

]
,

Na =
[

0 0 1 0 0

0 0 0 0 1

]
(43)

where Fa(t) has the following property Fa(t)FaT (t) ≤ I. Thus, the Eq.
(40) is modified as follows:⎧⎪⎨⎪⎩ ẋf =

8∑
i=1

�i(�)((Ai + �A)xf + Biu + B1if + Tid)

yf = Cx + Df

(44)

where

f = [f1 f2]T , B1i =

⎡⎢⎢⎢⎢⎢⎣
0.25 0

0 0.25

0 0

0 0

0 0

⎤⎥⎥⎥⎥⎥⎦ ,

i = 1, · · ·,  8 and D =

⎡⎢⎣ 1 0 0

0 1 0

⎤⎥⎦ (45)
0 0 0

Let us see in the next section the system control response,
state and fault estimation results obtained by the proposed FTC
approach.
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.4. Fault tolerant control synthesis and simulation results
In this section, numerical simulations have been performed
o demonstrate the effectiveness and the applicability of the
roposed approach described in Section 2 on the ASM1 model (26).
he T–S model constructed in Sections 4.2 and 4.3 representing
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the ASM1 model with premise variables depend on unmeasurable
state variable is used to build the observer. In order to represent

a realistic behavior of a WWTP, the data used for simulation are
generated with the complete ASM1 model (n = 13) [39]. Applying
Theorem 1, the observer (6) and the fault tolerant controller (5)
are designed by finding symmetric and positive definite matrices
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¯̇ 2.2 = −diag

[
�2Im �2Ind �2Iq �2Inϕ

]
(A.7c)
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, P2, P3, P5, matrices P4, H̄1
i
, H̄2

i
, Kj , and Kf

j
jointly with positive

calars ı1, ı2, ı3, ı4, Jb
ik
, k = 1, . . . , 14,  and Ja

ik
, k = 1, . . . , 3 that

re not given here-such that the convergence conditions given in
heorem 1 hold. The value of the attenuation rate from the input
ector � (t) to the state vector x̃(t) is �̄ = 6.32. The applied input
volutions are given in Fig. 3.

The top of the Fig. 5 shows the time evolution of the faults
ith their estimate values, whereas the bottom part illustrates the
ominal control inputs together with the FT controllers. The state
stimation errors together with the state tracking errors are given
y Fig. 6. Fig. 7 allows the comparison of the reference model states,
o the faulty uncertain and estimated model states. From the lat-
er, one can see that the synthesized observer and FTC controller
howed their effectiveness, since the fault and the system states are
stimated and the tracking between the faulty system states and
he reference model ones is ensured. One should note that concern-
ng the states XSS and SNH the tracking errors are essentially due to
he minimization of the unknown input effect although the two
tates are highly affected by the substrate and ammonia nitrogen
nput concentrations with a high sensitivity index [20].

. Conclusion

In this paper, the problem of fault tolerant tracking control
as been considered for faulty T–S uncertain models subject to
nknown inputs. Both measurable and unmeasurable premise vari-
bles cases are considered. An efficient control law is then designed
n order to ensure, from one side, the tracking between the faulty
ncertain system and one healthy reference model, and from the
ther side, the stability convergence of the closed loop system.
sing Lyapunov theory and L2 optimization, BMI  design conditions
re given. The proposed results are then applied to a real process
f a wastewater treatment plant subject to parameter uncertain-
ies, unknown inputs and faults. Simulation results show that the
roposed approach was able to cope with the system faults.

ppendix A. Proof of Theorem 1

roof. Considering the following candidate quadratic Lyapunov
unction

(x̃) = x̃T EPx̃ (A.1)

¯̇ 2.1
ij =

⎡⎢⎢⎢⎢⎣
0 (Bi − Bj)

TP2

−TT
i

TT
i
P2

KfT
j
BT
i

− BfT
j

(BfT
i

+ BfT
j

− KfT
j
BT
i

+ 

I 0 
J(1,1)
ij

= H(AiX) − H(BiKjX) + XX; J(2,1)
ij

= −KT
j
BT
i

J(2,2)
ij

= H(P2Aj) + H(P2(Bi − Bj)Kj) + I; J(3,2)
i

= B

J(5,2)
ij

= (Ai − Aj)
TP2 + P5BiKj; J(3,3)

j
= −H(H̄2

j
D)
s Control 22 (2012) 861– 872

with

EP = PTE ≥ 0 (A.2)

P = diag[ P1 P2 P3 P4 P5 ] (A.3)

According to (A.2) and (16), it follows that P1 = PT1 ≥ 0, P2 =
PT2 ≥ 0, P3 = PT3 ≥ 0, P5 = PT5 ≥ 0, and P4 is a free slack matrix. The
derivative of the Lyapunov function (A.1) is expressed as:

V̇(x̃) =
r∑
i=1

r∑
j=1

�i(�f )�j(�f )x̃
TH(PT

∨
Aij)x̃ + H(x̃T PB̃ij� ) (A.4)

The objective is to find the gains Ki, H1
i
, H2

i
from Ãij that mini-

mize the L2-gain from � to the tracking error and to the state and
fault estimation errors. It is well known that the L2-gain from � to
x̃ is bounded if:

V̇(x̃) + x̃TQx̃ − �2(uTu + dTd + f T f + ϕTϕ) < 0 (A.5)

where Q = diag [I I I I 0]. This condition is negative definite
if

r∑
i=1

r∑
j=1

�i(�f )�i(�̂f )

[
H(PT

∨
Aij + Q (∗)

B̃TijP −�2I

]
< 0 (A.6)

By considering the bijective variable changes (H1
�)
T
P2 =

H̄1
�, P3H2

� = H̄2
�, multiplying inequality (A.6) left and right by

diag(X I I I I I I I I ), with X = P−1
1 , and isolating the

time varying entries �A2, �Bi, inequalities (A.6), becomes:

r∑
i=1

r∑
j=1

�i(�f )�i(�̂f )

[
x̃

�

]T ([
¯̇ 1,1
ij

∗
¯̇ 2.1
ij

˙2.2

]
+
[
�˙1,1

ij
(∗)

�˙2.1
ij

(0)

])[
x̃

�

]
< 0

(A.7)

where

¯̇ 1,1
ij

=

⎡⎢⎢⎢⎢⎢⎣
J(1,1)
ij

∗ ∗ ∗ ∗
J(2,1)
ij

J(2,2)
ij

∗ ∗ ∗
−KfT

j
BT
i

J(3,2)
i

J(3,3)
j

∗ ∗
0 J(4,2)

i
PT4D −H(P4) + I ∗

J(5,1)
ij

J(5,2)
ij

P5BiK
f
j

0 H(P5Ai)

⎤⎥⎥⎥⎥⎥⎦ (A.7a)

0 0 BT
i
P5

−GT H̄2T
i

GTP4 TT
i
P5

)P 0 0 (BfT − KfTBT )P

⎤⎥⎥⎥⎥ (A.7b)
with

+ P2(Bi − Bj)KjX; J(5,1)
ij

= P5BiKjX;

fT
j
P2 + KfT

j
(Bi − Bj)

TP2 − H̄2
i
C; J(4,2)

i
= −H̄1T

j
+ PT4C

 + H(H̄3
j

) + I
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Using the uncertainties structure defined in (4) and the well
nown Lemma 1, �˙ij can be bounded as follows:
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Finally, applying Schur complement [30] on the BMI  terms of
A.8), terms in J(1,1)

ij
, J(5,1)

ij
, J(5,2)

ij
, J(5,3)

ij
and defining �̄ = �2, the

nequality (A.6) becomes:

r

i=1

r∑
j=1

�i(�f )�j(�̂f )M̃ij < 0 (A.9)

It follows that (A.9) is satisfied if the BMI (18) holds, which
chieves the proof.
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