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Abstract. A new Stochastic Process Algebra called S-LOTOS is investigated, it extends LOTOS in order 

to specify the durations of actions in terms of generally distributed functions. We present its operational 

semantics and its underlying semantic model, called Maximality-based Labeled Stochastic Transition System 

(MLSTS). With regards to performance properties, we show that MLSTS and ST-semantics (Start-

Termination) based models are equivalent, but the former brings more compact structure. 
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1. Introduction 

The importance of studying the stochastic temporal behaviors of concurrent (stochastic) systems is 

widely recognized, e.g. [1, 12, 15]. In stochastic systems, the durations of actions are expressed 

probabilistically through probability distribution functions. Among the specification languages, the extension 

of the Process Algebras called Stochastic Process Algebras (SPAs) take advantage from its compositionality 

(model a system as the interaction of its components) and abstraction aspects (build up complex models from 

detailed components but disregarding internal behavior when it is appropriate to do so), whereas providing a 

formal description context. 

Two main approaches have been adopted for expressing random time properties of stochastic systems. 

The first one considers exponential distributions for action durations. Markovian Process Algebras (MPAs) 

are SPAs where expressiveness is limited to exponential distributions for specifying the durations of actions, 

but are useful for many applications. MPA models accord with the interleaving semantics [1, 6, 9], such that 

the parallel execution of two actions a and b (see the expression E in Figure 1) is assumed to be equivalent to 

their interleaving execution (see the expression F). The semantic model of a MPA is a transition system 

wherein each transition is labeled with a pair (a, λ) representing the execution of the action a and the rate λ 

of the exponential distribution function governing the duration of a. Because of the memoryless property, 

exponential distributions yield analytically tractable models in the form of Continuous Time Markov Chains 

(CTMCs) [2, 16]. 

In the second approach, the durations of actions are specified by general distributions. In fact, 

exponential distribution appears to be not realistic in many concrete phenomena. It is only appropriate 

whether the mean values of random variables are known.  This is not the case, for instance, when only the 

minimum and maximum values of the random variables are known.  

                                                           
  Corresponding author. Tel.: (00213) 662 736 739 

   E-mail address : mokdad.a@gmail.com 

2012 International Conference on Computer and Software Modeling (ICCSM 2012) 

IPCSIT vol. 54 (2012) © (2012) IACSIT Press, Singapore 

DOI: 10.7763/IPCSIT.2012.V54.08 

41



Contrary to exponential laws, general distributions allow handling the residual durations of running 

actions. In Figure 1, it turns out that the two presented expressions are not behaviorally equivalent with 

regards to the temporal properties, although the same graph structure. This distinction is not possible under 

the memoryless property of the exponential distribution, since both models yield the same CTMC hence the 

same performance properties. 

 

Fig. 1: Behaviors of E and F according to the interleaving semantics 

For specifying generally distributed durations, the choice of true concurrency semantics appears to be 

more appropriate [7]. Actually, the system behaviors are never more represented like totally ordered 

sequences, but more adequately like partial order ones, allowing one to consider non-atomic actions. 

Therefore, many SPA papers adopt both, the general probability distributions and the true concurrency 

semantics, e.g. IGSMP (Interactive Generalized Semi-Markov Process) [10, 12], GSMPA (Generalized 

Semi-Markovian Process Algebra) [11, 12], SPADES (Stochastic Process Algebra for Discrete Event 

Simulation) [7, 14]. All approaches introduce an explicit representation (in the semantic models) of the start 

and end events of the running actions, hence accords with a specific true concurrency semantics called ST-

Semantics (for Start and Termination). However, as a drawback, these approaches suffer from an increasing 

exponential blow up implied by the combinations of the start and termination events. 

Alternatively, our approach [8] aims at handling true concurrency notions without being attacked by the 

state space explosion problem inherent to the splitting of actions. It is based on the true concurrency 

maximality semantics, proposed in [3, 4]. In this paper, we show how this approach is pragmatic and can 

solve the same performance properties as the ST-Semantics models, with a more compact structure. 

The paper is organized as follows: In section 2, we present the principle of our modeling approach, 

namely S-LOTOS (for Stochastic LOTOS), and the semantic model of their expressions called Maximality-

based Labeled Stochastic Transition System. The operational semantics of S-LOTOS is presented in Section 

3, based on maximality principles. In Section 4, we show that our maximality semantics based model, is 

equivalent to the ST-semantic ones, up to some stuttering equivalence property, then our conclusion in 

Section 5 opens the discussion by comparing model conciseness and performance characteristics. 

2. Principles of S-LOTOS 

In this section, we introduce the main syntactical elements of S-LOTOS, and then we present its 

underlying maximality semantics. The reader is assumed to be familiar with the syntax of Basic LOTOS, a 

standard process algebra (PA), from which S-LOTOS derives. Let us first recall the Syntax of S-LOTOS. 

See [8] for details about the semantics of the different operators. 

Considering some concurrent system, let A be the set of observable actions ranged over a, b, … and L 

denote any subset of A. The set of all actions that is finally considered, is denoted by Act (Act = A {i, δ}) 

where δA is a particular observable action used to notify the successful termination of processes, and i 

denotes any internal (unobservable) action. Introduce DF as the set of (continuous) probability distribution 

functions (  [0, 1]), ranged over f, g,… Then, define the set B ranged over E, F... of the behavior 

expressions that can specify the studied system, according to the following syntax of expressions: 

E ::=  stop  |  exit  |   (a, f) ; E   |  (i, f) ; E  |  E [] E  |  E |[L]| E  |  hide L in E  |  E [b1/a1, ... , bn/an] 

In S-LOTOS, stochastic time is handled by using arbitrary distribution functions. An action is 

represented by a pair (a, f), where a is the action name and f is the probability distribution function that 

governs the duration of a.  

F= (a,); (b, ); stop [] (b, ); (a, ); stop 

(b, ); stop 

(a, ) 

(a, ); stop 
 

(b, ) 

stop 

(b, ) (a, ) 

E= (a, ); stop |[]| (b, ); stop 

stop |[]| (b, ); stop (a, ); stop |[]| stop 

(b, ) 

stop |[]| stop 

(b, ) (a, ) 

(a, ) 
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The semantic model of an S-LOTOS expression is a Labeled Transitions System (LTS), called 

Maximality-based Labeled Stochastic Transition System (MLSTS). Within this model, each transition only 

represents the start of an action execution. Since actions are not considered as atomic, the concurrent 

execution of multiple actions can be represented, and distinguishing between sequential and parallel 

executions is possible.  

In the semantic model of S-LOTOS, the running actions are represented at the states level. Each instance 

of running actions is called a maximal event and is identified by a distinct name. In fact, each state of the 

system is featured by a unique configuration [3]. The configuration of a state s is denoted M[E] s.t. M is the 

set of maximal events in s and E is the behavior expression of s. In addition, a distinct clock is associated 

with each maximal event of M, to represent the time evolving. Every transition defined from s is labeled by 

C(a, f)x whenever a is an action that can be activated from E iff. the maximal events of the subset CM are 

terminated. Further C is called the causality set of the transition. The symbol x is the name identifying the 

start event of the new execution of a. The event identification is required to avoid confusion since several 

instances of running actions can have the same action name.  

To illustrate the principles of S-LOTOS and both concepts of maximality and configuration, consider the 

following two behavior expressions: E= (a,f); stop |[]| (b,g); stop and F= (a,f); (b,g); stop [] (b,g); (a,f); stop. 

Their respective MLSTSs, obtained by applying the maximality semantics, are represented in Figure 2. 

Initially, no action has yet been executed, then the set of maximal events is empty, and the initial 

configurations associated with E and F respectively, are [E] and [F]. By assuming that the action a 

happens first from E and F, the corresponding transitions are respectively: 

[E]   xfa ),(

{x}[stop] |[]| [(b,g); stop] 

[F]   xfa ),(

{x}[(b,g); stop]. 

x is the event name identifying the starting of a, and it represents a counting down clock which is 

initially set according to the distribution function f of the duration of a. In both new resulting configurations, 

x is said maximal. 

From the new state of E (according to the semantic of the parallel operator []), the following transition 

occurs in case b starts: {x}[stop] |[]| [(b,g); stop]   ygb ),(

{x}[stop] |[]| {y}[stop], where y is the maximal 

event name identifying the start of b, and it represents a clock set according to the distribution function g of 

the duration of b. In the resulting state, the clock of y starts counting down while the clock of x continues 

recording the time of a. 

From the new state ({x}[(b,g); stop]) of F and the semantic of the prefix operator (;) expressing the 

sequentiality in execution, we deduce that the start of b is constrained by the causality dependence against x. 

Actually, it is submitted to the end of the execution of a, inducing that the clock of x has expired. This results 

in the following transition: {x}[(b, g); stop]
    yx gb ),(

{y}[stop], In the resulting state, the only maximal event 

is the one identified by y, representing the start of b, and the value of the associated clock is set according to 

the distribution function g of the duration of b.  

 

Fig. 2: Behaviors of E and F according to the maximality semantics 

As this can be seen in Figure 2, the behaviors represented by the configurations {y}[stop] and 

{x}[stop]|[]|{y}[stop] are rather different, in particular there is a single maximal event (identified by y) in the 

first one, whereas two maximal events appear in the second (identified by x and y). Observe that a symmetric 

scenario happens when the action b happens first. 

[(a,f);(b,g); stop [] (b,g); (a,f); stop] 

(a,f)x 

{y}[(a,f); stop] 

 

{y}[stop] 

{y}(a,f)x 

{x}[stop] 

{x}[(b,g); stop] 

 

(b,g)y 

{x}(b,g)y 

[(a,f); stop |[]| (b,g); stop] 

{x}[stop] |[]| [(b,g); stop] 

(a,f)x 

[(a,f); stop] |[]| {y}[stop] 

(b,g)y 

(a,f)x (b,g)y 

{x}[stop] |[]| {y}[stop] 

43



3. Formal Aspects of S-Lotos 

We briefly recall the definition of configurations [3], and then an operational semantics is defined for S-

LOTOS to derive the possible transitions linking the configurations.  

3.1. Configurations 

Let M be the set of event names, ranged over x, y … Further, the notation  represents the set of finite 

subsets of a set X.  

Definition 1. Configurations. 

The set C of configurations is given by: 

 EB,  M  : M[E]  C 

 PPN,  M   : M[P]  C 

if C then : hide L in   C 

if , FC then :  []F  C,  |[L]|F  C 

if C and {a1, ... , an}, {b1, ..., bn} , then: [b1/a1, ..., bn/an]  C     

3.2. Derivation Rules 

Let S be the set of states; transitions between states are also projected between configurations of these 

states. The transition relation between configurations is denoted →. →  C×Atm×C, where the set of atoms 

of support (ActDF) is Atm= ×(ActDF)×M. For any subset of event names M , (a,f)(Act×DF) and 

xM, the atom (M, (a, f), x) will be denoted M(a,f)x. The choice of an event name can be realized 

deterministically by using any function get:  \{}→M satisfying get(M)M, for all M
 
\{}. The 

operational semantics of S-LOTOS is summarized in Table 1. Function ψ: S   is the function that 

associates every state with the finite set of its maximal events, and the predicate Wait: →{true, false} 

characterizes the termination of maximal actions: Wait(M)=true if there is at least one running action 

referenced in M. 

Table. 1: Operational Semantics of S-LOTOS 

 

4. Models based on Maximality Semantics vs. ST-Semantics 

We briefly present the principles of some well-known ST-semantic models, and then show its 

equivalence with our performance model working under the maximality semantics.  

4.1. ST-Semantics 
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The ST-semantics is used to describe the behavior of a concurrent system in terms of running actions, 

each one for a specific duration. Contrary to standard interleaving semantics, actions are not considered as 

atomic. The running of an action is split into two distinguished events, representing the start of the running 

and the corresponding end. Since the same actions can be launched several times concurrently (auto-

concurrency), supplementary information is included in the semantic models to avoid confusion: maintain 

the correspondence between each start event of an action and its termination. In that purpose, two naming 

strategies were proposed for events. 

The first one is based on static names, where names are defined at compiling time, according to their 

syntactical position (left or right) in the description of the initial parallel process specifying the whole system. 

The second strategy is based on dynamic names, that is: under a fixed rule, dynamically assign a different 

name to each new action that becomes active, assuming the names of the currently active actions are known. 

Whatever the technique used to name the events, the ST-semantic model appears to be an LTS wherein 

states are labeled by pairs E, X mentioning for each state, the behavior expression E and the set X of 

activities under execution. Moreover, transitions between these states are of two types: start transitions 

labeled by  where x is the name associated to the running action a, and termination transitions labeled by 

 where the name x determines exactly which action a is terminating. 

4.2. Performance Equivalence 

Regarding to any system specification P, we now prove that there is a stuttering equivalence between its 

maximality semantic model MP and ST-semantic model STP, under the following hypothesis. 

Hypothesis 1: The durations of transitions in semantic models are assumed to be null.    

The considered stuttering equivalence consists in aggregating the states of STP up to preserve its 

temporal properties. Such aggregations emerge from the observation of the start events, without regarding 

the end ones. From a performance view point, when focusing on STP, it appears that two successive states 

linked by a termination event are stutter, thus can be aggregated. Roughly speaking, when considering any 

transition E, X E', X', s.t. t is a terminated event, we deduce that both source and target states preserve 

the same temporal properties because E=E’ and duration(t)=0 (according to Hypothesis 1). This adjacency 

relation can be extended to transitions sequence, hence the application of the stuttering equivalence on words, 

as follows: two words are stuttering equivalent if both can be partitioned into n blocks (having possibly 

different lengths), so that the states in the k
th
 block of one word are labeled the same as the states in the k

th
 

block of the other word.  

As an example, Figure 3-a presents the ST-semantic model corresponding to a system that concurrently 

runs two actions a and b, having f and g as respective duration distribution functions. The dashed lines bring 

out different groups of stutter states. A state aggregation w.r.t. these equivalences results in the graph of 

Figure 3-b, which can be obtained directly by considering the maximality semantics. 

Considering the model STP of a concurrent system specification P, let Start and End be the two disjoint 

subsets of start and end events with regards to the behavior of P. Let LP be the language generated by STP 

and w=s0s1…sn be any word of LP corresponding to the transition sequence s0s1…sn enabled in P. The 

notation w(i) and w(last) respectively represent the i
th
 and the last state of w. Further, we consider the 

observational language  of LP built from the observation of the start transitions as follows: 

Definition 2: Observational language for ST-semantic model 

Let w = s0s1…sn be a word in LP, =01…m   is the observation of w w.r.t. Start iff. each i 

corresponds to a sub-word of w, such that: 

 

 

       

Lemma: Given a system specification P, let MP and STP be the semantic models of P respectively based 

on the maximality and ST-semantics, then MP and STP are stuttering equivalent with respect to the 

performance properties considered for P.         
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We proceed the proof by induction on the length of transitions sequences of MP and STP. A word w = 

s0s1…sn is a sequence of (labeled) states such that there is a transitions sequence s0s1s2…sn in the 

transition system. For sake of simplicity, we assimilate the performance properties that hold on some state to 

the state itself. 

 

Fig. 3: Example of ST-semantic model and the equivalent maximality-based semantic model. 

Proof:  

First, the property of stuttering equivalence straight fully holds, whether paths are reduced to their initial 

states, i.e. {}[P] in MP and P, {} in STP. 

Consider now that the following two words, w1= s0s1…sn in STP and w2= s'0s'1…s'm in MP, are stuttering 

equivalent with respect to the performance properties of P. From the fact that w1(last) and w2 (last) are 

labeled by the same behavior expression, say E, we prove that the stuttering equivalence still holds after 

considering the next transitions in both models.  

1) If the behavior expression E allows the execution of an action a with duration distributed by function 

f yielding to a behavior expression E': E a
 E’, then we obtain in STP the transition: sn

xa

 sn+1, and 

in MP the transition : s'm  xa

s'm+1 

Both new states sn+1 and s'm+1 are labeled by the same behavior expression E'. Therefore, both new paths: 

w1’= s0s1…snsn+1 and w2’= s'0s'1… s'ms'm+1 are stuttering equivalent, because we construct, in each path, a new 

block of one state labeled by the same behavior expression E’, and executed action have same duration. 

2) If some running action a terminates, this simply has an effect to retiring the corresponding event 

from the set of running events. We have the following transition in STP: sn

xa

 sn+1, where state sn+1  is 

labeled by the behavior expression E. However, this transition is not represented explicitly in MP. Hence, 

both paths w1 and w2 still stuttering equivalent, because we have not change their blocks. 

Generally, If the behavior expression E have to terminate some actions bi, 1≤ i ≤ k, before the start event 

of an action a with duration distributed by function f yielding to a behavior expression E',  

E 

1b

E 

2b

… 

kb

E
xa

  E’ 

then we have in the STP the transitions:  

sn



1b

sn+1



2b

… 

kb

sn+k 
xa

  sn+k+1 

and in the MP the transitions: 

s’m

    xkiib a     1, 

s’m+1 

where the new states sn+i, 1≤ i ≤ k, are labeled by the behavior expression E (because, according to the 

ST-semantics, termination events does not alter the behavior expression), and the states sn+k+1 and s’m+1 are 

{}[((a, f) ; stop |[]|  (b, g)); stop] 

{a}[ stop |[]| (b, g); stop] 

{}a 

{b}[ (a, f); stop |[]| stop] 

{}b 

{}a {}b 

{a, b}[stop |[]| stop] 

(a) ST-semantic model and states aggregation for  

(a, f); stop |[]|(b, g); stop 

 

(b) Maximality-based semantic model for  

(a, f); stop |[]| (b, g); stop 

 ((a, f) ; stop |[]|(b, g)); stop, {}  

 stop |[]| (b, g); stop, {a}  

 

a+ 

 (a, f); stop |[]| stop, {b}  

 

b+ 

a+ b+ 

 stop |[]| stop, {a, b}  

 
 (a, f); stop |[]| stop, {}  

 

b- a- 

 stop |[]| stop, {b}  

 

 stop |[]| stop, {a}  

 

b+ b- a- a+ 

a- b- 

 stop |[]| stop, {}  

 

 stop |[]| (b, g); stop, {}  
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both labeled by the behavior expression E'. Therefore, the new paths w1’= s0s1 snsn+1…sn+k+1 and w2’= s'0s'1… 

s'ms'm+1 stay stuttering equivalent because we increase the last block of w1 by states sn+i, 1≤ i ≤ k, which are 

labeled by the same behavior expression than states in this block, and we construct a new block in each path 

of one state labeled by E’, and the duration added to total time of execution is the same in both models 

because termination event have null duration.         

Consequently, models MP and STP for a specification expression P are stuttering equivalent, where 

blocks in a path of MP are constructed each one of one state, and the corresponding blocks in STP are 

constructed according to the observational language on start transitions. The following transitions (1) in MP 

and (2) in STP indicate the sequence of states of blocks constructed in both models. Termination transitions 

which are explicitly represented in STP (2) are abstracted in MP. These transitions are in fact implicitly 

formalized in MP through the notions of maximal events attached to states (i.e. a running action can 

terminate), nevertheless the transition can give the information about the termination of some running action 

if this last one belongs to the causality set C of the transition (1). 

       (1)                                                                                                                                                        '' EE M

a

M
xC  

         (2)        ' ,.... , ,                        ','  , ...  ,  , 3211
21 xCMMbbbCMECMEbMEME abb




 

In order to obtain its equivalent MP, for some STP, we only observe the start transitions, thus aggregating 

states which are connected by termination transitions. In fact, the equivalence between points (1) and (2) 

defines the basis of the formal transformation from one model to the other. 

4.3. Conclusion and Perspectives 

The stochastic algebra named S-LOTOS extends existing LOTOS specification language by introducing 

general distribution functions to govern the action durations. By adopting the maximality-based semantics, 

we gave to S-LOTOS the ability to conform with the true concurrency paradigm of concurrent systems.  

We showed that there is a stuttering equivalence between our Maximality-based Stochastic Labeled 

Transition System (MLSTS) and the existing ST-semantics based models. This allows one to re-use existing 

techniques and tools for performance evaluations with general distribution functions.  

Our next perspective is to derive the performance properties from the MLSTS representations directly. 

Actually, the fact that these representations are less prone to the state space explosion problem due to the fact 

that the terminations of actions is no more explicit, made them attractive to deal with stochastic model 

checking problem.  
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