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SUMMARY

This paper investigates the problem of robust fault detection observer design for nonlinear Takagi–Sugeno
models with unmeasurable premise variables subject to sensor faults and unknown bounded disturbance.
The main idea is to synthesize a robust fault detection observer by means of a mixed H�=H1 performance
index. The considered observer is used to estimate jointly states and faults. Using the technique of descriptor
system representation, we proposed a new less-conservative approach in term of a linear matrix inequality
(LMI) by considering the sensor fault as an auxiliary state variable. A solution of the problem is obtained by
using an iterative LMI procedure. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Model-based fault diagnosis techniques have shown their interest in the industrial domain. Recently,
a considerable attention is given to this context in order to cope with diverse damages resulting in
faults occurrence (see [1–6] and references therein). Faults can cause unacceptable economic loss
or hazards to human operators and can lead to catastrophic consequences on the system itself or its
environment. Therefore, it is important to provide on-line operating information by using a moni-
toring system [7–11]. In the literature, many results on fault detection observer have been reported
for linear systems [2, 12] and nonlinear ones [13–15]. Two main criteria dealing with the above
observer design must be considered. The first one is that the fault detection observers have to be
robust, that is, insensitive to disturbances. The second guarantees the sensitivity to faults. For the
two cases, a suitable performance index has to be optimized. For this purpose, several performance
indexes are considered in the literature such as H1 [12, 16, 17], H� [13], and mixed H�=H1
criteria [2, 13, 18]. In recent years, the Takagi–Sugeno (T–S) fuzzy representation has attracted a
growing interest because it is a powerful solution that bridges the gap between linear and nonlinear
control systems. The important advantage of the T–S fuzzy model is its universal approximation of
any smooth nonlinear function by a ‘blending’ of some local linear system models, which greatly
facilitates observer/controller synthesis for complex nonlinear systems. Many results on fault detec-
tion observer design for T–S fuzzy systems have been reported in the literature [9,19]. These works
generally considered that the weighting functions depend on measurable premise variables [1,2,20].
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In the field of diagnosis, this assumption forces to design observers with weighting functions
depending on the input u.t/, for the detection of the sensors faults, and on the output y.t/, for the
detection of actuator faults. Indeed, if the decision variables are the inputs, for example, in a bank
of observer, even if the i th observer is not controlled by the input ui , this input appears indirectly in
the weighting function and it cannot be eliminated. For this reason, it is interesting to consider the
case of weighting functions depending on unmeasurable premise variables, such as the state of the
system. This case makes it possible to handle a large class of physical systems [21–23].

Using descriptor approach, this work dealt with the problem of fault detection observer for
Takagi–Sugeno (T-S) model affected by both sensor faults and bounded disturbances. Although
many papers have dealt with the problem of observer design for descriptor systems, only a few works
have been carried out for simultaneous disturbance rejection and fault detection algorithms [1].
Compared with existing fault estimation schemes [24, 25], the given descriptor observer approach
leads to more suitable observer design, which is applicable to diagnosis of more general faults. The
proposed procedure has the advantage, over the ones proposed on [26, 27], to estimate different
faults types, whereas the proposed method in [26] is only able to estimate step faults. The problem
formulation in a descriptor form allows also to estimate state and sensor faults simultaneously.

This paper aims to extend the results proposed in [4] to T-S models with unmeasurable premise
variables. The present work illustrates the design of a fault detection observer for T-S model affected
by sensor faults and unknown bounded disturbances. The observer gains and the residual weighting
matrix are obtained through the minimization of anH1 norm and the maximization of anH� norm.
The main objective is to design a fault detection observer such that the resulting residual has the best
robustness to disturbances and the best sensitivity to faults. Sufficient conditions are expressed in
terms of linear matrix inequalities (LMIs), and an iterative algorithm is provided to get the solution.
This algorithm can be solved effectively using numerical optimization techniques.

This paper is organized as follows. In the next section, the class of studied systems and the
T-S fuzzy descriptor observer are presented. In Section 3, the problem of residual generation
and disturbance attenuation is expressed. Section 4 is devoted to the robustness conditions on the
fault detection observer, whereas the fault sensitivity conditions are presented in Section 5. The
multi-objective H�=H1 fault detection observer is then detailed in Section 6, and an iterative
LMI algorithm is proposed. In the last section, a numerical example and a bioreactor model are
considered to illustrate the efficiency of the proposed approach.

Notation
The following notations are considered. H.P / denotes the Hermitian of the matrix P , that is,
H.P / D P C P T. In is the identity matrix of dimension n � n, and the symbol * indicates the
transposed element in the symmetric positions of a matrix.

2. T-S FUZZY MODEL

Let us consider the following T-S structure model:8<
: Pxn.t/D

rP
iD1

�i .�.t//.Aixn.t/CBiu.t//

yn.t/D Cxn.t/

(1)

where xn.t/ 2 Rn, yn.t/ 2 Rp , and u.t/ 2 Rnu represent respectively the nominal state, the mea-
sured nominal output, and the bounded input vectors. fAi ,Big are the submodels matrices with
appropriate dimensions. All Ai matrices are supposed to be stable. r is the number of submodels,
and �i .�.t// are the weighting functions depending on the variables �.t/, which can be measurable
(as the input or the output of the system) or non-measurable variables (as the state of the system).
These functions verify the convex sum property8<

:
06 �i .�.t//6 1
rP
iD1

�i .�.t//D 1 8i 2 f1, 2, � � � , rg (2)
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In this work, the considered premise variables �.t/ can be partially or completely unavailable for
measurement. We consider the continuous-time T-S fuzzy model to be affected by sensor faults and
unknown bounded disturbances. Then the T-S fuzzy system (1) becomes8<

: Px.t/D
rP
iD1

�i .�.t//.Aix.t/CBiu.t//CBdd.t/

y.t/D Cx.t/CDf f .t/

(3)

where f .t/ 2 Rs is the sensor fault vector, and d.t/ 2 Rnd is the unknown bounded disturbance
vector. Matrices Bd andDf are of appropriate dimensions, andDf is assumed to be of full column
rank. To ensure the estimation of both the state and sensor fault vectors, we first constructed an
augmented system using the descriptor technique. The faulty system given by (3) can be rewritten
as follows: 8̂<

:̂
NE PNx.t/D

rX
iD1

�i .�.t//
�
NAi Nx.t/C NBiu.t/

�
C NBdd.t/C NDhh.t/

y.t/D NC Nx.t/D C0 Nx.t/C h.t/

(4)

where

h.t/DDf f .t/ 2R
p , Nx.t/T D

�
x.t/Th.t/T

�
2RnCp (5a)

NE D

�
In 0

0 0

�
, NAi D

�
Ai 0

0 �Ip

�
, NBi D

�
Bi
0

�
, NBd D

�
Bd
0

�
(5b)

NDh D

�
0

Ip

�
, C0 D

�
C 0

�
, NC D

�
C Ip

�
(5c)

We consider an observer under the usual form:

where ´.t/ 2 RnCp is the auxiliary state vector of the observer, and ONx.t/ 2 RnCp is the estimate
state. O�.t/ is the unmeasured premise variable depending partially or completely on the estimated
state Ox.t/. Fi , E, and L are the observer gains to be determined.

3. RESIDUAL GENERATION AND DISTURBANCE ATTENUATION

Let us define the state error e.t/ and the residual signal r.t/:

r.t/D V .y.t/� Oy.t// (7a)

e.t/D Nx.t/� ONx.t/ (7b)

where V is a weighting matrix.

Definition 3.1
Given the fuzzy system (3), two scalars � > 0 and ˇ > 0. The observer (6) is called an H�=H1
fault detection observer if (6) is asymptotically stable, and the following inequalities are satisfied:Z 1

0

rT.t/r.t/dt 6 �2
Z 1
0

dT.t/d.t/dt (8)
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Z 1
0

rT.t/r.t/dt > ˇ2
Z 1
0

f T.t/f .t/dt (9)

The goal is to find an admissible observer (6) to minimize � and maximize ˇ, that is, an observer
that generates residual signals that have the best robustness to disturbances .d.t// and a maximal
sensitivity to faults .f .t//. In the following, we give conditions to design the fuzzy observer, and
we also give a bound for the estimation error.

To cope with the difficulty of expressing the augmented state estimation error dynamic in a
tractable way, Equation (4), is rewritten, on the basis of the property (2),

NE PNx.t/D

rX
iD1

rX
jD1

�i .�.t//�j

�
O�.t/

	 ��
NAi C NAj � NAj

�
Nx.t/C

�
NBi C NBj � NBj

�
u.t/

�
C NBdd.t/C NDhh.t/

(10)

Using (6a)–(6c), we get

NE PNx.t/�E
PONx.t/D NE PNx.t/�E

�
Ṕ.t/CL NC PNx.t/

�
It follows �

NE CEL NC
�
PNx.t/�E

PONx.t/D NE PNx.t/�E Ṕ.t/

Then taking account (10) and (6a), we get

�
NECEL NC

�
PNx.t/�E

PONx.t/D

rX
iD1

rX
jD1

�i .�.t//�j

�
O�.t/
	��
NAiC NAj� NAj

�
Nx.t/C . NBiC NBj� NBj /u.t/

�

C NBdd.t/C NDhh.t/�

rX
iD1

�i . O�.t//
�
Fi´.t/C NBiu.t/

�
which is equivalent to

�
NE CEL NC

�
PNx.t/�E

PONx.t/D

rX
iD1

rX
jD1

�i .�.t//�j

�
O�.t/

	 �
NAj e .t/C

�
NAi � NAj

�
Nx .t/

C NBdd.t/�
�
Fj � NAj

�
ONx.t/CFjLC0 Nx.t/

C
�
NBi � NBj

�
u.t/C

�
FjLC NDh

�
h.t/

�
(11)

Consider the following matrices Fj 2R.nCp/..nCp/, L 2Rn.p , and E 2R.nCp/..nCp/

Fj D

�
Aj 0

�C �Ip

�
, LD

�
0

Ip

�
, E D

�
InCQC Q

RC R

�
(12)

where Q 2Rn.p and R 2Rp.p are chosen as non-singular, and we have

E D NE CEL NC , Fj D NAj CFjLC0, FjLD� NDh (13)

Then from (11), we obtain:

E Pe.t/D

rX
iD1

rX
jD1

�i .�.t//�j

�
O�.t/

	 �
.FjLC0C NAj /e.t/

C
�
NAi � NAj

�
Nx.t/C

�
NBi � NBj

�
u.t/C NBdd.t/

� (14)

also �
NAi � NAj

�
Nx.t/D

�
Ai �Aj

0

�
x.t/ (15)
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Therefore, (14) is equivalent to

Pe.t/D

rX
iD1

rX
jD1

�i .�.t//�j

�
O�.t/

	 �
Sj e.t/C QAijx.t/C QBiju.t/CGd.t/

�
(16)

where

E�1 D

�
In �QR�1

�C R�1CCQR�1

�
(17)

Sj DE
�1Fj D

�
Aj CQR

�1C QR�1

�CAj � .R
�1CCQR�1/C �R�1 �CQR�1

�
(18)

QAij DE
�1

�
Ai �Aj

0

�
D

�
Ai �Aj

�C.Ai �Aj /

�
(19)

QBij DE
�1
�
NBi � NBj

�
D

�
Bi �Bj

�C.Bi �Bj /

�
(20)

G DE�1 NBd D

�
Bd
�CBd

�
(21)

Consequently, the augmented state estimation error responds to the following nonlinear system:

r.t/D V.C0e.t/C h.t// (22a)

�
Pe.t/
Px.t/

�
D

rX
iD1

rX
jD1

�i .�.t//�j

�
O�.t/

	
�


�
Sj QAij
0 Ai

�
�

�
e.t/

x.t/

�
C

�
QBij G

Bi Bd

�
�

�
u.t/

d.t/

��
(22b)

e.t/D
�
InCs 0

� �e.t/
x.t/

�
(22c)

Remark 1
R and Q are free matrices, which must be chosen to ensure the non-singularity of matrix E. In
addition, the dynamics of the residual signal depends not only on fault f .t/ but also on the state
x.t/, input u.t/, and disturbance d.t/. Thus the problem of designing the observer can be described
as designing matrices R, Q (i.e., finding the observer gain E) and V such that

� the generated residual r.t/ is as sensitive as possible to fault f .t/ and as robust as possible to
unknown disturbance d.t/;
� the L2 gain from the input u.t/ to the state and fault estimation error e.t/ is minimized; and

� the matrices

�
Sj QAij
0 Ai

�
are quadratically asymptotically stable.

When d.t/D 0, we have

rf .t/D V
�
C0ef .t/CDf f .t/

�
(23a)

�
Pef .t/
Px.t/

�
D

rX
iD1

rX
jD1

�i .�.t//�j

�
O�.t/

	
�


�
Sj QAij
0 Ai

�
�

�
ef .t/

x.t/

�
C

�
QBij
Bi

�
� u.t/

�
(23b)
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and when f .t/D 0, we have

rd .t/D VC0ed .t/ (24a)

�
Ped .t/
Px.t/

�
D

rX
iD1

rX
jD1

�i .�.t//�j

�
O�.t/

	
�


�
Sj QAij
0 Ai

�
�

�
ed .t/

x.t/

�
C

�
QBij G

Bi Bd

�
�

�
u.t/

d.t/

��
(24b)

In the following two sections, expressions (23) and (24) will be independently used to study the
problems of robustness and sensitivity.

4. H1 ROBUSTNESS CONDITIONS

In this section, only robustness against disturbance is studied by considering the H1 performance
index.

Lemma 1
If there exist symmetric positive definite matrices P1 2 R.nCs/�.nCs/ and P2 2 R.nuCnd /�.nuCnd /

for a given constant � > 0 , such that the following conditions are satisfied for i , j D 1, � � � , r2
6664
Zj � � �
QAT
ijP1 H.P2Ai / � �

QBT
ijP1 BT

i P2 ��2Inu �

GTP1 BT
d
P2 0 ��2Ind

3
7775< 0 (25)

with

Zj DH.P1Sj /CC T
0 V

TVC0C In (25a)

Then the system (24) is stable with �-disturbance attenuation and the L2-gain from u.t/ to ed .t/ is
bounded by �.

Proof
Let V.ed .t/, x.t// denote the following candidate Lyapunov function:

V.ed .t/, x.t//D

�
Ped .t/
Px.t/

�T

�

�
P1 0

0 P2

� �
ed .t/

x.t/

�
(26)

where P1, P2 are symmetric positive definite matrices. By respecting the criterion (8), that is,R1
0 rT

d
.t/rd .t/6�2

R1
0 dT.t/d.t/dt , the L2 gain from u.t/ to ed .t/ is bounded by � if

PV .ed .t/, x.t//C e
T
d .t/ed .t/C r

T
d .t/rd .t/� �

2uT.t/u.t/� �2dT.t/d.t/ < 0 (27)

Considering the Lyapunov function (26) and the trajectory of ed .t/ defined by (24b), the inequality
(27) can be written as

rX
iD1

rX
jD1

�i .�.t//�j

�
O�.t/

	264
ed .t/

x.t/

u.t/

d.t/

3
75

T

�

2
6664
Zj � � �
QAT
ijP1 H.P2Ai / � �

QBT
ijP1 BT

i P2 ��2Inu �

GTP1 BT
d
P2 0 ��2Ind

3
7775
2
64
ed .t/

x.t/

u.t/

d.t/

3
75< 0

(28)
It follows that (28) is satisfied if the LMI (25) holds. The following result derived in LMI terms
guarantees the robustness against the disturbance. �
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DOI: 10.1002/acs



MULTI-OBJECTIVEH�=H1 FAULT DETECTION OBSERVER DESIGN

Theorem 1
Consider the system (3) with observer (6), system (24) is asymptotically stable satisfying (8), for
a given constant � , and minimizing the L2 gain � if there exist some symmetric positive definite
matrices P11,P12,P2, matrices N1,N2, and V such that the following LMI are satisfied:

M1ij 6 0 for i , j D 1, � � � , r (29)

where M1ij is defined by

M1ij D

2
66666664

�1j � � � � �
�2j �H.N2/ � � � �
QAT
ijP11 �

QAT
ijC

TP12 H.P2Ai / � � �

Kij � QBT
ijC

TP12 BT
i P2 ��2Inu � �

BT
d
P11 �BT

dC
TP12 BT

d
P2 0 ��2Ind �

VC 0 0 0 0 �In

3
77777775

(30)

with 

�1j DH.P11Aj /CH.N1C/C In
�2j DN

T
1 �P

T
12CAj �N2C

(31a)



N1 D P11QR

�1

N2 D P12.R
�1CCQR�1/

(31b)

and 8<
:
QAT
ij D A

T
i �A

T
j , QBT

ij D B
T
i �B

T
j

Kij D
�
BT
i �A

T
j

	
P11

(31c)

Proof
On the basis of Lemma 1 and by using the Schur complement, we get2

666664

H.P1Sj /C In � � � �
QAT
ijP1 H .P2Ai / � � �

QBT
ijP1 BT

i P2 ��2Inu � �

GTP1 BT
d
P2 0 ��2Ind �

VC0 0 0 0 �I

3
777775< 0 (32)

By considering P1 D diag
�
P11 P12

�
, and Equations (18)–(21), the inequality (32) becomes2

6666666664

�
1,1
j � � � � �

�
2,1
j �2,2 � � � �

QAT
ijP11 �

QAT
ijC

TP12 �3,3 � � �

Kij � QBT
ijC

TP12 BT
i P2 ��

2Inu � �

BT
d
P11 �BT

dC
TP12 BT

d
P2 0 ��2Ind �

VC 0 0 0 0 �I

3
7777777775
< 0 (33)

where 8̂̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂ˆ̂̂̂:

�
1,1
j DH.P11Aj /CH

�
P11QR

�1C
�
C In

�
2,1
j D .QR

�1/TP11 �P
T
12CAj �P12

�
R�1CCQR�1

�
C

�2,2 D�H.P12
�
R�1CCQR�1/

�
QAT
ij D A

T
i �A

T
j , QBT

ij D B
T
i �B

T
j

Kij D
�
BT
i �A

T
j

	
P11

�3,3 DH.P2Ai /

(34)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2012)
DOI: 10.1002/acs



S. AOUAOUDA ET AL.

Unfortunately, conditions (33) are not jointly convex because of the coupling of P11,P12,Q, and
R. By introducing the variable changes defined by (31b), we obtain LMI (29). �

Remark 2
As Df is assumed to be of full column rank, the sensor faults estimation can be obtained by

Of .t/D
�
DT
fDf

	�1
DT
f
Oh.t/ (35)

This assumption seems to be too strong in some cases, and the condition can be omitted using finite
frequency domain method [28, 29].

5. H� FAULT SENSITIVITY CONDITIONS

This section is devoted to the sensitivity problem of the residual r.t/ with respect to fault f .t/. In
fact, our objective is to make the residual as sensitive as possible to fault. To achieve this goal, the
H� index is used hereafter.

Theorem 2
Consider the system (3) with observer (6), system (24) is asymptotically stable satisfying (9), for
a given positive constant ˇ, and minimizing the L2 gain � if there exist some symmetric positive
definite matrices P11,P12,P2, matrices N1,N2, and V such that the following LMI are satisfied:

NM1ij 6 0 for i , j D 1, � � � , r (36)

where NM1ij is defined by

NM1ij D

2
66666664

�1j � � � � �
�2j H.N2/ � � � �
QAT
ijP11 �

QAT
ijC

TP12 �H .P2Ai / � � �

Kij � QBT
ijC

TP12 BT
i P2 ��2Inu � �

L 0 0 0 M �
VC 0 0 0 0 �I

3
77777775

(37)

with �1j and �2j are defined by (31a) and N1 and N2 are given by (31b).

Proof
Let V.ef .t/, x.t// denote the following candidate Lyapunov function:

V.ef .t/, x.t//D

�
Pef .t/
Px.t/

�T �
P1 0

0 P2

� �
ef .t/

x.t/

�
(38)

where P1,P2 are symmetric positive definite matrices. Note that we seek to minimize the L2-gain
of the transfer from u.t/ to the estimation error vector ef .t/; this is formulated by:

kuk2 ¤ 0,

��ef ��2
kuk2

< �2 (39)
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Then we get by considering (23)

J� D

Z 1
0

rT
f rf d� � ˇ2

Z 1
0

f Tf d� D
Z 1
0

�
rT
f rf � ˇ

2f Tf �
d.V .ef , x//

dt

�
d� C V.ef , x/

D

Z 1
0

 
ŒC �ef CDf f 	

TV TV ŒC �ef CDf f 	� ˇ
2f Tf

�

rX
iD1

rX
jD1

�i .�.t//�j

�
O�.t/

	
�

(�
ef
x

�T

H
 �
Sj QAij
0 Ai

�T �
P1 0

0 P2

�!�
ef
x

�

C

�
ef
x

�T

H
 �
P1 0

0 P2

�T � QBij
Bi

�
� u.t/

!�
ef
x

�)!
d� C V.ef , x/

D

Z 1
0

0
BB@

rX
iD1

rX
jD1

�i .�.t//�j

�
O�.t/

	
�

8̂̂<
ˆ̂:
2
64
ef
x

u

f

3
75

T

Iij

2
64
ef
x

u

f

3
75
9>>=
>>;

1
CCA d� C V.ef , x/

(40)
where

Iij D

2
6664
NZj � � �

� QAT
ijP1 �H.P2Ai / � �

� QB
T
ijP1 �BT

i P2 �2Inu �

L 0 0 M

3
7775 (41)

with

LD .VDf /
T.VC0/, NZj D�H.P1Sj /CC T

0 V
TVC0C In, M D�ˇ2Is C .VDf /

T.VDf /

Hence if Iij > 0, it follows that J� > 0, that is,2
6664
� NZj � � �

� QAT
ijP1 H.P2Ai / � �

� QB
T
ijP1 �BT

i P2 ��2Inu �

L 0 0 �M

3
7775< 0 (42)

By considering P1 D diag
�
P11 P12

�
, and Equations (18)–(21), the Schur complement and vari-

able changes defined by (41b), the conditions (36) are fulfilled where �1j and �2j are defined by
(41a), which achieves the proof. �

6. MULTI-OBJECTIVE H�=H1 FAULT DETECTION OBSERVER DESIGN

In this section, we propose to mix H� and H1 performances where the goal is to design a
robust fault detection observer, which generates residual signals that have the best robustness to
disturbances and the best sensitivity to fault. The following theorem is proposed:

Theorem 3
Consider the system (3) with observer (6), and system (7) is asymptotically stable satisfying (8)
and (9) and minimizing the L2 gain � if there exist some symmetric positive definite matrices
P11,P12,P2, matrices N1,N2, and V such that LMI M1ij and NM1ij , respectively defined by (30)
and (37), hold.

The objective is to find Q, R, and V , which satisfy the performances (8) and (9). However, as
stated earlier, the mixedH� andH1 performances given by Theorem 3 lead to a nonlinear problem
in V . To solve this problem, consider the following variable changes:

V kf D V
k�1Df (43a)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2012)
DOI: 10.1002/acs



S. AOUAOUDA ET AL.

V kc D V
k�1C (43b)

According to Theorem 3, using the Schur complement theorem, NM1ij is substituted by the following
matrix: 2

6666664

 � � � � �
�2j H.N2/ � � � �
QAT
ijP11 �

QAT
ijC

TP12 H.P2Ai / � � �

Kij � QBT
ijC

TP12 �BT
i P2 ��2Inu � �

0 0 0 0 Q �
VC 0 0 0 VDf �In

3
7777775

(44)

where

 D�1j C 2G1
�
V ,V Kc

�
, QD ˇ2Is C 2G2

�
V ,V Kf

	
(45a)

G1
�
V ,V Kc

�
D
�
V Kc

�T
V Kc �

�
V Kc

�T
VC �C TV TV kc (45b)

G2

�
V ,V Kf

	
D
�
V kf

	T
V kf �

�
V kf

	T
VDf �D

T
f V

TV kf (45c)

Considering a starting point V 0, an iterative algorithm can be used to solve such problem. Thus, to
find a suitable initial value V 0, a solution consists in solving M1ij or M2ij for given values of �
and ˇ. The following algorithm summarizes the method:

(1) Fix a value of ˇ > 0.
(2) Solve LMI M1ij or M2ij to find feasible solutionsP11P12 orX11X12, matricesP2,N1,N2,�

and V k�1, k D 1.
(3) Include V k�1 into LMI NM1ij or NM2ij and set V k

f
D V k�1Df V

k
c D V

k�1C to find a feasible

solution P11,P12 or X11,X12, matrices P2N1N2�, � , and V k .
(4) Increase ˇ, k D kC 1 and go to step 3 if a feasible solution cannot be found, then stop.

Recall that when � and ˇ cannot be improved, we deduce from (31b) the gains of the observer (6)
satisfying the multi-objective H�=H1 performance as follows:

(1) RD
�
P�112 N2 �CP

�1
11 N1

��1
;

(2) QD P�111 N1R;
(3) then Fi ,L, and E are computed from (12).

Remark 3
Note that the proposed approach cannot guarantee an optimal solution because of interactions
between disturbance and faults. Coupling terms introduce a sub-optimality of the result that it seems
difficult to consider without knowledge of the evolution of disturbances and faults. However, by min-
imizing and maximizingH1=H� performances, we try to obtain a high sensitivity to faults (but not
the strongest) and low sensitivity to disturbance (but not the lowest). The given examples illustrate
this objective.

7. SIMULATION EXAMPLE

7.1. Example 1—numerical example

Let us consider the following T-S model:8̂̂
<
ˆ̂:
Px.t/D

2X
iD1

�i .�.t// .Aix.t/CBiu.t//CBdd.t/

y.t/D Cx.t/CDf f .t/

(46)
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with

A1 D

�
�5 3

1 �3

�
, A2 D

�
�2 1

1 �1

�
, B D

�
1 0

0 2

�
, C D

�
0.1 �0.1
�0.1 0

�
,

Df D

�
4 0

0 8

�
, Bd D

�
0

0.5

�

The weighting functions depend only on the first state variable x1.t/. They are defined by the
following membership functions:

�1.x1.t//D .1� tanh.0.5� x1.t///=2

�2.x1.t//D 1��1.x1.t//
(47)

Let us consider the following fault signal f .t/ D .f1.t/f2.t//
Taffecting the system behavior and

described as follows:

f1.t/D sin.5.t � 0.4//e1.6t�14 occurs at 6 s6 t 6 9 s (48)

f2.t/D

8<
:
0.02.t � 1/ 12 s6 t < 14 s
0.01.t � 1/ 14 s6 t 6 16 s

0 otherwise
(49)

An unknown disturbance d.t/ with band-limited white noise as given by Figure 1 is considered.
Thus the simulation results are illustrated.

To show the sensitivity of the residual signal r.t/ to the faults f1.t/,f2.t/, we perform two simu-
lations: In the first one, robustness against disturbance is considered by applying theH1 conditions
in Theorem 1. In this case, Figure 2 shows the residual trajectories of r1.t/ and r2.t/. The second
case concerns the multi-objective H�=H1 observer design where Theorem 3 applied. As a result,
when � is reduced to 0.6 and ˇ is increased to 4, we compute V , R, and ,Q

V D

�
37.2858 30.6721
�55.6939 121.7611

�
, RD

�
7.3800 �12.4450
0.1919 � 0.0312

�
, QD

�
2.0546 6.5354
�2.7236 8.9490

�

The corresponding observer gain matrices and residual weighing matrix are

F1 D

2
64
�5 3 0 0

1 �3 0 0

�0.1 0.1 �1 0

0.1 0 0 �1

3
75 , F2 D

2
64
�2 1 0 0

1 �1 0 0

�0.1 0.1 �1 0

0.1 0 0 �1

3
75 , LD

�
0 0 1 0

0 0 0 1

�T

Figure 1. Disturbance d.t/ (left) and inputs (right).
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Figure 2. Generated residuals r1, r2 Theorem 1(left) and Theorem 3(right).

E D

2
64

0.5519 �0.2055 2.0546 6.5354
�1.1673 1.2724 �2.7236 8.9490
1.9825 �0.7380 7.3800 �12.4450
0.0223 �0.0192 0.1919 � 0.0312

3
75

Figure 2 illustrates the residual trajectories of r1.t/ and r2.t/ generated from Theorems 1 and 3.
Figure 3 shows good estimation of both state and fault sensor affecting the system and Figure 4 the
good estimation of the output signals yt).

Figure 3. Faults (f1,f2) and their estimates (left); states (x1, x2) and their estimates (right).

Figure 4. Outputs (y1,y2) and their estimates.
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7.2. Example 2—bioreactor model

In this section, the effectiveness and the applicability of the proposed approach are illustrated on
a reduced bioreactor model. This system is widely used in wastewater treatment plant. The state
estimation problem is then an important task in monitoring the operation of the process in order
to respond to a failure. The bioreactor under consideration can be represented by the following
nonlinear system: (

Px1.t/D
ax1.t/x2.t/
x2.t/Cb

� x1.t/u.t/

Px2.t/D�
cax1.t/x2.t/
x2.t/Cb

C .d � x2.t//u.t/
(50)

where x1.t/ represents the biomass concentration, x2.t/ is the substrate concentration, and u.t/ is
the dilution rate. The following parameters are given: a D 0.5, b D 0.07, c D 0.7, d D 2.5. Using
the well-known sector nonlinearity approach [30], we obtained a T-S model structure where the
input and state vectors are considered as ‘premise variables’ and denoted �j ../.j D 1, � � � , q/. For
q premise variables, r D 2q submodels will be obtained. The preceding model is composed of three
nonlinearities:

�1.t/D�u.t/

�2.x/D
ax1.t/

x2.t/C b
(51)

�3.x/D�u.t/�
cax1.t/

x2.t/C b

A T-S model with eight submodels is then obtained in a compact state space leading to define
the intervals variations of �1.t/, �2.x/, and �3.x/ by �1.t/ 2 Œ�1,�0.2	, �2.t/ 2 Œ0.004, 15	,
�3.t/ 2 Œ�1.72,�0.2	. The derived T-S model is8<

: Px.t/D
8P
iD1

�i .�.t//.Aix.t/CBu.t//CBdd.t/

y.t/D Cx.t/CDf f .t/

(52)

where

A1 D

�
�0.2 15

�0.2 �0.2

�
, A2 D

�
�0.2 15

�1.72 �0.2

�
, A3 D

�
�0.2 0.004
�0.2 �0.2

�
, A4 D

�
�0.2 0.004
�1.72 �0.2

�
,

A5 D

�
�1 15

�0.2 �1

�
, A6 D

�
�1 15

�1.72 �1

�
, A7 D

�
�1 0.004
�0.2 �1

�
, A8 D

�
�1 0.004
�1.72 �1

�

Bi D B D

�
0

2.5

�
, C D

�
1 0

0 1

�
, Df D

�
4 0

0 8

�
, Bd D

�
0

0.5

�

Figure 5. Time evolution of input.
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A fault signal f .t/ D .f1.t/f2.t//
T affecting the system behavior is considered and described in

Figure 7. An unknown disturbance d.t/ with band-limited white noise is also considered (the same
as in example 1, plotted in Figure 1). The time evolution of input vector u.t/ is plotted in Figure 5
and membership function evolution in Figure 8.

First, robustness against disturbance is considered by applying the H1 conditions (Theorem 1).
The second case concerns the multi-objectiveH�=H1 observer design where Theorem 3 is applied.
As a result, when � is reduced to 0.8 and ˇ is increased to 3, we compute V , R, and Q:

V D

�
81.3443 �3.6069
�24.4508 50.3752

�
, RD

�
�5.8908 1.3030
�7.9326 1.6555

�
, QD

�
24.9392 �6.3961
3.3261 �0.8377

�

The corresponding observer gain matrices and residual weighing matrix are

F1 D

2
64
�0.2 15 0 0

0 �0.2 0 0

0 �1 �1 0

�1 0 0 �1

3
75 , F2 D

2
64
�0.2 15 0 0

0 �1.72 0 0

0 �1 �1 0

�1 0 0 �1

3
75

F3 D

2
64
�0.2 0.004 0 0

0 �0.2 0 0

0 �1 �1 0

�1 0 0 �1

3
75 , F4 D

2
64
�0.2 0.004 0 0

0 �1.72 0 0

0 �1 �1 0

�1 0 0 �1

3
75

F5 D

2
64
�1 15 0 0

0 �0.2 0 0

0 �1 �1 0

�1 0 0 �1

3
75 F6 D

2
64
�1 15 0 0

�1.72 �1 0 0

0 �1 �1 0

�1 0 0 �1

3
75

F7 D

2
64
�1 0.004 0 0

�0.2 �1 0 0

0 �1 �1 0

�1 0 0 �1

3
75 , F8 D

2
64
�1 0.004 0 0

�1.72 �1 0 0

0 �1 �1 0

�1 0 0 �1

3
75

LD

�
0 0 1 0

0 0 0 1

�T

, E D

2
64
�5.3961 24.9392 24.9392 �6.3961
�0.8377 4.3261 3.3261 �0.8377
1.3030 �5.8908 �5.8908 1.3030
1.6555 �7.9326 �7.9326 1.6555

3
75

Figure 6. Generated residuals r1, r2 Theorem 1(left) and Theorem 3(right).
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Figure 6 illustrates the residual trajectories of r1.t/ and r2.t/ generated from Theorems 1 and 3.
Figure 7 shows the good estimation of both state and sensor faults affecting the system and Figure 9
the good estimation of the output signals yt).

Comparing the right and left simulations of Figures 2 and 6, we can conclude that the sensitivity
of the residual r.t/ to the fault f .t/ and the robustness against the disturbance d.t/ are significantly
improved with the multi-objective observer H�=H1 .

Figure 7. Faults (f1,f2) and their estimates (left), states (x1, x2/ and their estimates (right).

Figure 8. Membership function evolution.

Figure 9. Outputs (y1,y2/ and their estimates.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2012)
DOI: 10.1002/acs



S. AOUAOUDA ET AL.

As a result, the effect of the disturbance on the residuals is weak (because of the minimization of
theH1 performance index). Furthermore, the maximization ofH� performance index leads to have
a high sensitivity to faults. However, remember that such minimization/maximization of H1=H�
performances does not lead to the strongest sensitivity to faults nor to the lowest sensitivity to
disturbance.

8. CONCLUSION

In this paper, a multi-objective H�=H1 fault detection observer has been designed for T-S fuzzy
model with unmeasurable premise variables. A robust sensor fault detection observer using descrip-
tor theory has been designed using a T-S model with unknown bounded disturbances. Sufficient
conditions for the existence of such observer are given in terms of LMIs, and an iterative algorithm
is proposed to obtain a solution. At last two examples are given to show the effectiveness of the
proposed approach.

On the basis of these results, interesting future studies are planned such as considering
uncertainties and delay problems with more relaxed design conditions.
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