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Effects of remedial actions on small
piping reliability
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Abstract
This article describes probabilistic calculations that address intergranular stress corrosion cracking of stainless steel pip-
ing; a degradation mechanism of major concern to nuclear pressure boundary integrity. The objective is to simulate the
cracking of stainless steel piping under intergranular stress corrosion cracking conditions, and to evaluate the structural
reliability using remedial actions for intergranular stress corrosion cracking that are limited to benefits of in-service
inspections and the induction heating stress improvement process. The results show that an effective in-service inspec-
tion requires a suitable combination of flaw detection capability and inspection schedule, and it has been suggested that
the residual stresses could be altered to become favorable, thereby improving the reliability piping.
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Introduction

One of the important degradation mechanisms to be
considered for alloyed steels is stress corrosion cracking
(SCC). This mechanism causes cracking in the material
owing to the combined action of a susceptible material,
a tensile stress, and a corrosive environment. In boiler
water reactor (BWR) piping, the susceptible material is
usually AISI 304 stainless steel in a sensitized condition
next to weldments. The susceptibility of this material to
intergranular SCC (IGSCC) is owing to chromium car-
bide precipitation in the grain boundaries, which leaves
the regions immediately adjacent to these grain bound-
aries low in corrosion-resistant chromium.1 The preci-
pitation occurs most commonly under the thermal
conditions encountered during welding. The stress is
primarily owing to weld shrinkage during fabrication,
and the corrosive environment results from coolant
oxygen and low impurity levels according to the oper-
ating specifications.2

The purpose of this article is to apply probabilistic
fracture mechanics (PFM) to analyze the influence of
remedial actions on austenitic stainless steels piping
structural reliability. PFM provides a technique for esti-
mating the probability of failure of a structure or one of
its components when such failures are considered to
occur as the result of the sub-critical and catastrophic
growth of an initial crack-like defect. Such techniques

are inherently capable of treating the influence of non-
destructive inspections.3–6 Several articles in the litera-
ture7–11 addressed the probabilistic failure analysis of
components subjected to IGSCC. Failure probabilities
of a piping component subjected to IGSCC, including
the effects of residual stresses, were computed by
Guedri et al.12–13 using Monte Carlo simulation (MCS)
techniques.

IGSCC in the heat-affected zones of stainless steel
welds is much more difficult to detect by ultrasonic test-
ing (UT) inspection techniques. The IGSCC tends to be
extremely tight, and is often highly branched at the
crack tip. It is also difficult to distinguish between UT
echo signals from cracks and from the weld root. Thus
it is very hard to detect IGSCC, and even more difficult
to determine the depth accurately.14 As a result, UT in-
service inspection (ISI), conducted in accordance with
the minimum requirements of Section XI of the ASME
boiler and Pressure Vessel Code, tends to be of little
value for this problem.
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provide a useful basis to generalize results for piping-
leak probabilities. This article has also discussed POD
curves and the benefits of ISI in the framework of
reductions in the leak probabilities for nuclear piping
systems subjected to IGSCC based on Ds. The results
for typical NDE performance levels indicate that low
inspection frequencies (one inspection every 10 years)
can provide only modest reductions in failure probabil-
ities. More frequent inspections appear to be even more
effective. However an ‘‘advanced’’ NDE reliability can
achieve a factor of 10 improvements in preventing
IGSCC leaks at typical operating conditions even when
inspections occur approximately every 10 years; this
can be increased to a factor even greater than 10 if the
inspection interval is decreased sufficiently. Finally the
recommended post-IHSI residual stress has a large
effect on reducing the leak probabilities and the lower
benefits of ISI for IGSCC can be explained in terms of
long incubation periods for stress-corrosion cracking
followed by a period of rapid crack growth.
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Appendix 1

Notation

a crack depth
A0–6 coefficients computed from the table

given in ASM Handbook
Acr area of crack
Ap area of cross-section of pipe
b one-half of crack length
C1–C9 material dependent constants
C12,C13,C15 material dependent constants
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C14 material dependent random variable
d spacing between two cracks
Ds damage parameter
E modulus of elasticity
f1 sensitization term
f2 environmental term
f3 loading term
F material dependent random variable
G material dependent constant
h pipe wall thickness
J material dependent random variable
K stress intensity factor
Ka stress intensity factor in the depth

direction of crack
Kap stress intensity factor for applied stress
Kb stress intensity factor in the length

direction of crack
Kres stress intensity factor for residual stress
l, l1, l2 crack length
n number of possible initiation sites in

the pipe
N number of simulations
NT total number of simulations
Nf number of failure cases
O2 oxygen concentration
Pa degree of sensitization

Pf probability of failure
Q leak rate
Ri internal radius of pipe
tI time to initiation of stress corrosion

cracking
T temperature
v1 initiation crack growth velocity
v2 fracture mechanics based crack growth

velocity
W width of the plate

g water conductivity
d crack opening displacement
e smallest possible PND for very large

cracks
s applied stress
sf flow stress
sID stress at ID
sLC load-controlled component of stress
snet net-section stress
sOD stress at OD
y Poisson’s ratio
u parametric angle measured from the

plate surface toward the centre of the
crack
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