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Abstract In this paper, we study the existence of periodic solutions of the nonlinear neutral
system of differential equations

d

dt
x (t) = A (t) x (t − τ (t)) + d

dt
Q (t, x (t − g (t))) + G (t, x (t) , x (t − g (t))).

By using Krasnoselskii’s fixed point theorem we obtain the existence of periodic solution
and by contraction mapping principle we obtain the uniqueness. Our results extend and
complement some earlier publications.
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1 Introduction

A qualitative analysis such as periodicity, positivity and stability of solutions of neutral
differential equations which the delay has been studied extensively by many authors, we refer
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410 M. B. Mesmouli et al.

the readers to [1–3,6–14,16,20], and references therein for a wealth of reference materials
on the subject.

Recently, Yankson in [20] studied the existence and uniqueness of a periodic solution of
the system of differential equations

d

dt
x (t) = A (t) x (t − τ), (1.1)

where A (·) is an n × n matrix with continuous real-valued functions as its elements and τ is
a positive constant.

In 2007, Islam and Raffoul in [10] used Krasnoselskii’s fixed point theorem to establish
the existence of periodic solutions for the system of nonlinear neutral functional differential
equations

d

dt
x (t) = A (t) x (t) + d

dt
Q (t, x (t − g (t))) + G (t, x (t), x (t − g (t))). (1.2)

where where A (·) is a nonsingular n × n matrix with continuous real-valued functions as its
elements. The functions Q : R × R

n → R
n and G : R × R

n × R
n → R

n are continuous in
their respective arguments. Also, the authors used the contraction mapping principle to show
the uniqueness of periodic solutions of (1.2).

Inspired and motivated by the works mentioned above and the references therein, we study
the existence and uniqueness of periodic solutions for the system of nonlinear differential
equations with two functional delays

d

dt
x (t) = A (t) x (t − τ (t)) + d

dt
Q (t, x (t − g (t))) + G (t, x (t), x (t − g (t))), (1.3)

where A (·) is a nonsingular n×n matrix with continuous real-valued functions as its elements.
The functions Q : R×R

n → R
n and G : R×R

n×R
n → R

n are continuous in their respective
arguments. In the analysis we use the fundamental matrix solution of x ′ (t) = A (t) x (t)
coupled with Floquet theory to invert the system (1.3) into an integral system. Then we
employ the Krasnoselskii’s fixed point theorem to show the existence of periodic solutions
of system (1.3). The obtained integral system is the sum of two mappings, one is a compact
operator and the other is a contraction. Also, transforming system (1.3) to an integral system
enables us to show the uniqueness of the periodic solution by appealing to the contraction
mapping principle.

The organization of this paper is as follows. In Sect. 2, we present some remark for the
work [20], the inversion of (1.3) and the fixed point theorems that we employ to help us show
the existence and uniqueness of periodic solutions to system (1.3). In Sect. 3, we present our
main results. Application to the second-order model is given with an example in Sect. 4.

2 Preliminaries and remarks

For the definitions of the different notions used throughout this paper we refer, for example
[2,4,15,18,19]. For T > 0 define CT = {φ : φ ∈ C (R, R

n) , φ (t + T ) = φ (t) , t ∈ R}
where C (R, R

n) is the space of all n-vector continuous functions. Then CT is a Banach space
when it is endowed with the supremum norm

‖x (·) ‖ = max
t∈[0,T ] |x (t) |,
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Existence and uniqueness of periodic solutions for a nonlinear system 411

where |·| denotes the infinity norm for x ∈ R
n . Also, if A is an n × n real matrix, then we

define the norm of A by

|A| = max
1≤i≤n

n∑

j=1

∣∣ai j
∣∣ .

Definition 2.1 If the matrix A (·) is periodic of period T , then the linear system

y′ (t) = A (t) y (t), (2.1)

is said to be noncritical with respect to T , if it has no periodic solution of period T except
the trivial solution y = 0.

In this paper we assume that

A (t + T ) = A (t), τ (t + T ) = τ (t) ≥ τ ∗ > 0, g (t + T ) = g (t) ≥ g∗ > 0, (2.2)

with τ is twice continuously differentiable and τ ∗, g∗ are constant. For t ∈ R, x , y, z,
w ∈ R

n , the functions Q (t, x) and G (t, x, y) are periodic in t of period T , they are also
globally Lipschitz continuous in x and in x and y, respectively. That is

Q (t + T, x) = Q (t, x) , G (t + T, x, y) = G (t, x, y), (2.3)

and there are positive constants k1, k2, k3 such that

|Q (t, x) − Q (t, y)| ≤ k1 ‖x − y‖ , (2.4)

|G (t, x, y) − G (t, z, w)| ≤ k2 ‖x − z‖ + k3 ‖y − w‖ . (2.5)

Throughout this paper it is assumed that the system (2.1) is noncritical. Now, we state
some known results [4] about system (2.1). Let K (t) represent the fundamental matrix of
(2.1) with K (0) = I , where I is the n × n identity matrix. Then:

a. det K (t) 	= 0.
b. There exists a constant matrix B such that K (t + T ) = K (t) eT B, by Floquet theory.
c. System (2.1) is noncritical if and only if det (I − K (T )) 	= 0.

Remark 2.1 By preserving the notation in [20], we notice that, for the Eq. (1.1) Yankson
assumed that there exists a nonsingular n × n matrix G (·) with continuous real-valued
functions as its elements such that

d

dt
x (t) = G (t) x (t) − d

dt

t∫

t−τ

G (u) x (u) du + [A (t) − G (t − τ)] x (t − τ).

But this condition is not necessary and we can replace G (·) by A (·) because A (t − τ)

exist. However, in the present work, this condition is removed and we assumed that A (·) is
nonsingular n × n matrix.

The following lemma is fundamental to our results.
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412 M. B. Mesmouli et al.

Lemma 2.1 Suppose (2.2) and (2.3) hold. If x ∈ CT , then x is a solution of the Eq. (1.3) if
and only if

x (t) = Q (t, x (t − g (t))) −
t∫

t−τ(t)

A (s) x (s) ds

+K (t) U (T )

t+T∫

t

K −1 (s) A (s)

⎛

⎜⎝Q (s, x (s − g (s))) −
s∫

s−τ(s)

A (u) x (u) du

⎞

⎟⎠ ds

+K (t) U (T )

t+T∫

t

K −1 (s)
[

F (s) x (s − τ (s)) + G (s, x (s) , x (s − g (s)))
]
ds,

(2.6)

where
U (T ) = (

K −1 (T ) − I
)−1

,

and

F (t) = A (t) − (
1 − τ ′ (t)

)
A (t − τ (t)).

Proof Let x ∈ CT be a solution of (1.3) and K (·) is a fundamental system of solutions for
(2.1). Rewrite the Eq. (1.3) as

d

dt
x (t) = A (t) x (t) − A (t) x (t) + A (t) x (t − τ (t)) + d

dt
Q (t, x (t − g (t)))

+ G (t, x (t) , x (t − g (t)))

= A (t) x (t) − d

dt

t∫

t−τ(t)

A (u) x (u) du + [
A (t) − (

1 − τ ′ (t)
)

A (t − τ (t))
]

× x (t − τ (t))

+ d

dt
Q (t, x (t − g (t))) + G (t, x (t) , x (t − g (t))) .

We put A (t) − (
1 − τ ′ (t)

)
A (t − τ (t)) = F (t), we obtain

d

dt

⎡

⎢⎣x (t) − Q (t, x (t − g (t))) +
t∫

t−τ(t)

A (u) x (u) du

⎤

⎥⎦

= A (t)

⎡

⎢⎣x (t) − Q (t, x (t − g (t))) +
t∫

t−τ(t)

A (u) x (u) du

⎤

⎥⎦

+A (t)

⎡

⎢⎣Q (t, x (t − g (t))) −
t∫

t−τ(t)

A (u) x (u) du

⎤

⎥⎦

+F (t) x (t − τ (t)) + G (t, x (t) , x (t − g (t))).
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Existence and uniqueness of periodic solutions for a nonlinear system 413

Since K (t) K −1 (t) = I , it follows that

0 = d

dt

[
K (t) K −1 (t)

] = A (t) K (t) K −1 (t) + K (t)
d

dt
K −1 (t)

= A (t) + K (t)
d

dt
K −1 (t) .

This implies

d

dt
K −1 (t) = −K −1 (t) A (t).

If x (·) is a solution of (1.3) with x (0) = x0, then

d

dt

⎡

⎢⎣K −1 (t)

⎛

⎜⎝x (t) − Q (t, x (t − g (t))) +
t∫

t−τ(t)

A (u) x (u) du

⎞

⎟⎠

⎤

⎥⎦

= d

dt
K −1 (t)

⎡

⎢⎣x (t) − Q (t, x (t − g (t))) +
t∫

t−τ(t)

A (u) x (u) du

⎤

⎥⎦

+K −1 (t)
d

dt

⎡

⎢⎣x (t) − Q (t, x (t − g (t))) +
t∫

t−τ(t)

A (u) x (u) du

⎤

⎥⎦

= −K −1 (t) A (t)

⎡

⎢⎣x (t) − Q (t, x (t − g (t))) +
t∫

t−τ(t)

A (u) x (u) du

⎤

⎥⎦

+K −1 (t) A (t)

⎡

⎢⎣x (t) − Q (t, x (t − g (t))) +
t∫

t−τ(t)

A (u) x (u) du

⎤

⎥⎦

+K −1 (t) A (t)

⎡

⎢⎣Q (t, x (t − g (t))) −
t∫

t−τ(t)

A (u) x (u) du

⎤

⎥⎦

+K −1 (t) (F (t) x (t − τ (t)) + G (t, x (t) , x (t − g (t)))).

An integration of the above equation from 0 to t yields

x (t) = Q (t, x (t − g (t))) −
t∫

t−τ(t)

A (s) x (s) ds

+K (t)

⎛

⎜⎝x (0) − Q (0, x (0 − g (0))) +
0∫

−τ(0)

A (s) x (s) ds

⎞

⎟⎠
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414 M. B. Mesmouli et al.

+K (t)

t∫

0

K −1 (s) A (s)

⎡

⎢⎣Q (s, x (s − g (s))) −
s∫

s−τ(s)

A (u) x (u) du

⎤

⎥⎦ ds

+K (t)

t∫

0

K −1 (s) (F (s) x (s − τ (s)) + G (s, x (s) , x (s − g (s)))) ds. (2.7)

Since x (T ) = x0 = x (0), using (2.7) we get

x (0) − Q (0, x (−g (0))) +
0∫

−τ(0)

A (s) x (s) ds

= (I − K (T ))−1
T∫

0

K (T ) K −1 (s) A (s)

⎛

⎜⎝Q (s, x (s − g (s))) −
s∫

s−τ(s)

A (u) x (u) du

⎞

⎟⎠ ds

+ (I − K (T ))−1
T∫

0

K (T ) K −1 (s) (F (s) x (s − τ (s)) + G (s, x (s) , x (s − g (s)))) ds.

(2.8)

A substitution of (2.8) into (2.7) yields

x (t) = Q (t, x (t − g (t))) −
t∫

t−τ(t)

A (s) x (s) ds

+K (t) (I −K (T ))−1

T∫

0

K (T ) K −1 (s) A (s)

⎛

⎜⎝Q (s, x (s−g (s)))−
s∫

s−τ(s)

A (u) x (u) du

⎞

⎟⎠ ds

+K (t) (I − K (T ))−1

T∫

0

K (T ) K −1 (s) (F (s) x (s − τ (s))+G (s, x (s) , x (s − g (s)))) ds

+K (t)

t∫

0

K −1 (s) A (s)

⎡

⎢⎣Q (s, x (s − g (s))) −
s∫

s−τ(s)

A (u) x (u) du

⎤

⎥⎦ ds

+K (t)

t∫

0

K −1 (s) (F (s) x (s − τ (s))+G (s, x (s) , x (s − g (s)))) ds. (2.9)

Now, we will show that (2.9) is equivalent to (2.6). Since

(I − K (T ))−1 = (
K (T )

(
K (T )−1 − I

))−1 = (
K (T )−1 − I

)−1
K (T )−1 ,

123



Existence and uniqueness of periodic solutions for a nonlinear system 415

then the Eqs. (2.9) becomes

x (t) = Q (t, x (t − g (t))) −
t∫

t−τ(t)

A (s) x (s) ds

+K (t)
(
K (T )−1− I

)−1
T∫

0

K −1 (s) A (s)

⎛

⎜⎝Q (s, x (s−g (s)))−
s∫

s−τ(s)

A (u) x (u) du

⎞

⎟⎠ ds

+K (t)
(

K (T )−1− I
)−1

T∫

0

K −1 (s) (F (s) x (s − τ (s))+G (s, x (s) , x (s − g (s)))) ds

+
t∫

0

K (t) K −1 (s) A (s)

⎛

⎜⎝Q (s, x (s − g (s))) −
s∫

s−τ(s)

A (u) x (u) du

⎞

⎟⎠ ds

+
t∫

0

K (t) K −1 (s) (F (s) x (s − τ (s)) + G (s, x (s) , x (s − g (s)))) ds,

then

x (t) = Q (t, x (t − g (t))) −
t∫

t−τ(t)

A (s) x (s) ds

+K (t)
(
K (T )−1− I

)−1

⎧
⎪⎨

⎪⎩

T∫

0

K −1 (s) A (s)

⎛

⎜⎝Q (s, x (s − g (s)))−
s∫

s−τ(s)

A (u) x (u) du

⎞

⎟⎠ ds

+
T∫

0

K −1 (s) [F (s) x (s − τ (s)) + G (s, x (s) , x (s − g (s)))] ds

+
t∫

0

(
K (T )−1 − I

)
K −1 (s) A (s)

⎛

⎜⎝Q (s, x (s − g (s))) −
s∫

s−τ(s)

A (u) x (u) du

⎞

⎟⎠ ds

+
t∫

0

(
K (T )−1 − I

)
K −1 (s) [F (s) x (s − τ (s)) + G (s, x (s) , x (s − g (s)))] ds

⎫
⎬

⎭

= Q (t, x (t − g (t))) −
t∫

t−τ(t)

A (s) x (s) ds

+K (t)
(
K (T )−1 − I

)−1

⎧
⎪⎨

⎪⎩

T∫

t

K −1 (s) A (s)

⎛

⎜⎝Q (s, x (s − g (s))) −
s∫

s−τ(s)

A (u) x (u) du

⎞

⎟⎠ ds

+
T∫

t

K −1 (s) [F (s) x (s − τ (s)) + G (s, x (s) , x (s − g (s)))] ds
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+
t∫

0

K (T )−1 K −1 (s) A (s)

⎛

⎜⎝Q (s, x (s − g (s))) −
s∫

s−τ(s)

A (u) x (u) du

⎞

⎟⎠ ds

+
t∫

0

K (T )−1 K −1 (s) [F (s) x (s − τ (s)) + G (s, x (s) , x (s − g (s)))] ds

⎫
⎬

⎭ .

By letting s = v − T and U (T ) = (
K (T )−1 − I

)−1
, the above expression yields

x (t) = Q (t, x (t − g (t))) −
t∫

t−τ(t)

A (s) x (s) ds

+K (t) U (T )

T∫

t

K −1 (s) A (s)

⎛

⎜⎝Q (s, x (s − g (s))) −
s∫

s−τ(s)

A (u) x (u) du

⎞

⎟⎠ ds

+K (t) U (T )

T∫

t

K −1 (s) (F (s) x (s − τ (s)) + G (s, x (s) , x (s − g (s)))) ds

+K (t) U (T )

t+T∫

T

K (T )−1 K −1 (v−T ) A (v−T ) (Q (v−T, x (v − T −g (v−T )))

−
v−T∫

v−T −τ(v−T )

A (u) x (u) du

⎞

⎟⎠ dv

+K (t) U (T )

t+T∫

T

K (T )−1 K −1 (v − T ) (F (v − T ) x (v − T − τ (v − T ))

+ G (v − T, x (v−T ) , x (v−T −g (v−T )))) dv. (2.10)

By (b) we have K (t − T ) = K (t) e−T B and K (T ) = eT B . Hence,

K −1 (T ) K −1 (v − T ) = K −1 (v).

Consequently, since (2.2) and (2.3) hold, (2.10) becomes

x (t) = Q (t, x (t − g (t))) −
t∫

t−τ(t)

A (s) x (s) ds

+K (t) U (T )

⎡

⎢⎣
T∫

t

K −1 (s) A (s)

⎛

⎜⎝Q (s, x (s − g (s))) −
s∫

s−τ(s)

A (u) x (u) du

⎞

⎟⎠ ds

+
T∫

t

K −1 (s) (F (s) x (s − τ (s)) + G (s, x (s) , x (s − g (s)))) ds

⎤

⎦

123



Existence and uniqueness of periodic solutions for a nonlinear system 417

+K (t) U (T )

⎡

⎢⎣
t+T∫

T

K −1 (s) A (s)

⎛

⎜⎝Q (s, x (s−g (s)))−
s∫

s−τ(s)

A (u) x (u) du

⎞

⎟⎠ ds

+
t+T∫

T

K −1 (s) (F (s) x (s−τ (s))+G (s, x (s) , x (s−g (s)))) ds

⎤

⎦ . (2.11)

By combining the two integrals of the Eq. (2.11), we can obtained easily the Eq. (2.6) The
converse implication is easily obtained and the proof is complete. 
�

We end this section by stating the fixed point theorems that we employ to help us show
the existence and uniqueness of periodic solutions to Eq. (1.3); see [2,18].

Theorem 2.1 (Contraction Mapping Principle) Let (X , ρ) a complete metric space and let
P : X → X . If there is a constant α < 1 such that for x, y ∈ X we have

ρ (Px, Py) ≤ αρ (x, y),

then there is one and only one point z ∈ X with Pz = z.

Krasnoselskii (see [18]) combined the contraction mapping theorem and Schauder’s the-
orem and formulated the following hybrid result.

Theorem 2.2 (Krasnoselskii) Let M be a closed bounded convex nonempty subset of a
Banach space (X , ‖·‖). Suppose that R and S map M into X such that

(i) R is compact and continuous,
(ii) S is a contraction mapping,

(iii) x, y ∈ M, implies Rx + Sy ∈ M,

Then there exists z ∈ M with z = Rz + Sz.

Improved versions of Krasnoselskii’s theorem are available in the literature and we rec-
ommend the reader to see [17] and the references mentioned therein.

3 Existence and uniqueness of periodic solutions

By applying Theorems 2.1 and 2.2, we obtain in this section the existence and the uniqueness
of the periodic solution of (1.3). So, let a Banach space (CT , ‖·‖), a closed bounded convex
subset of CT ,

M = {ϕ ∈ CT , ‖ϕ‖ ≤ L} , (3.1)

with L > 0, and by the Lemma 2.1, let a mapping H given by

(Hϕ) (t) = Q (t, ϕ (t − g (t))) −
t∫

t−τ(t)

A (s) ϕ (s) ds

+K (t) U (T )

t+T∫

t

K −1 (s) A (s)

⎛

⎜⎝Q (s, ϕ (s − g (s)))−
s∫

s−τ(s)

A (u) ϕ (u) du

⎞

⎟⎠ ds

+K (t) U (T )

t+T∫

t

K −1 (s) [F (s) ϕ (s−τ (s))+G (s, ϕ (s) , ϕ (s−g (s)))] ds. (3.2)
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418 M. B. Mesmouli et al.

We express Eq. (3.2) as
Hϕ = Rϕ + Sϕ,

where R and S are given by

(Rϕ) (t)= K (t) U (T )

t+T∫

t

K −1 (s) A (s)

⎛

⎜⎝Q (s, ϕ (s−g (s)))−
s∫

s−τ(s)

A (u) ϕ (u) du

⎞

⎟⎠ ds

+K (t) U (T )

t+T∫

t

K −1 (s) [F (s) ϕ (s−τ (s)) +G (s, ϕ (s) , ϕ (s − g (s)))] ds,

(3.3)

and

(Sϕ) (t) = Q (t, ϕ (t − g (t))) −
t∫

t−τ(t)

A (s) ϕ (s) ds. (3.4)

By a series of steps we will prove the fulfillment of (i), (i i) and (i i i) in Theorem 2.2.
Since ϕ ∈ CT , (2.2) and (2.3) hold, we have for ϕ ∈ M

(Rϕ) (t + T ) = (Rϕ) (t) and Rϕ ∈ C
(
R, R

n) �⇒ (RM) ⊂ CT , (3.5)

and
(Sϕ) (t + T ) = (Sϕ) (t) and Rϕ ∈ C

(
R, R

n) �⇒ (SM) ⊂ CT . (3.6)

Lemma 3.1 Suppose (2.2)–(2.5) hold. If R is defined by (3.3), then R is continuous and the
image of R is contained in a compact set.

Proof Let ϕn ∈ M where n is a positive integer such that ϕn → ϕ as n → ∞. Then

|(Rϕn) (t) − (Rϕ) (t)|

≤ |K (t) U (T )|
t+T∫

t

∣∣K −1 (s)
∣∣

× |A (s)|
⎡

⎢⎣
s∫

s−τ(s)

|A (u)| |ϕn (u) − ϕ (u)| du + |Q (s, ϕn (s − g (s))) − Q (s, ϕ (s − g (s)))|
⎤

⎥⎦ ds

+ |K (t) U (T )|
t+T∫

t

∣∣K −1 (s)
∣∣ [|F (s)| |ϕn (s − τ (s)) − ϕ (s − τ (s))|

+ |G (s, ϕn (s) , ϕn (s − g (s))) − G (s, ϕ (s) , ϕ (s − g (s)))|] ds.

Since Q, G are continuous, the dominated convergence theorem implies,

lim
n→∞ |(Rϕn) (t) − (Rϕ) (t)| = 0.
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Then R is continuous. Next, we show that the image of R is contained in a compact set. Let
M defined by (3.1), by (2.4) and (2.5), we obtain

|Q (t, y)| ≤ |Q (t, y) − Q (t, 0) + Q (t, 0)|
≤ k1 ‖y‖ + |Q (t, 0)| ,

|G (t, x, y)| ≤ |G (t, x, y) − G (t, 0, 0) + G (t, 0, 0)|
≤ k2 ‖x‖ + k3 ‖y‖ + |G (t, 0, 0)| .

Let ϕn ∈ M where n is a positive integer, then (3.3) is equivalent to

(Rϕn) (t)

=
t+T∫

t

[
K (s) U (T )−1 K (t)−1

]−1
A (s)

⎛

⎜⎝Q (s, ϕn (s − g (s))) −
s∫

s−τ(s)

A (u) ϕn (u) du

⎞

⎟⎠ ds

+
t+T∫

t

[
K (s) U (T )−1 K (t)−1

]−1
[F (s) ϕn (s − τ (s)) + G (s, ϕn (s) , ϕn (s − g (s)))] ds.

Consequently

‖(Rϕn) (·)‖ ≤ c

T∫

0

[|A| (α |A| + k1L + β) + |F | L + (k2 + k3) L + γ
]

ds

= cT
[|A| (α |A| + k1L + β) + |F | L + (k2 + k3) L + γ

]

= E,

where

α = sup
t∈[0,T ]

|τ (t)| , β = sup
t∈[0,T ]

|Q (t, 0)| , γ = sup
t∈[0,T ]

|G (t, 0, 0)| ,

c = sup
t∈[0,T ]

(
sup

s∈[t,t+T ]

∣∣∣
[
K (s) U (T )−1 K (t)−1]−1

∣∣∣

)
.

Second, we calculate (Rϕn)′ (t) and show that it is uniformly bounded. By making use of
(2.2) and (2.3) we obtain by taking the derivative in (3.3) that

(Rϕn)′ (t)

= K ′ (t) U (T )

t+T∫

t

K −1 (s) A (s)

⎛

⎜⎝Q (s, ϕn (s − g (s))) −
s∫

s−τ(s)

A (u) ϕn (u) du

⎞

⎟⎠ ds

+K ′ (t) U (T )

t+T∫

t

K −1 (s) [F (s) ϕn (s − τ (s)) + G (s, ϕn (s) , ϕn (s − g (s)))] ds

+K (t) U (T )
[
K −1 (t + T ) − K −1 (t)

]
A (t)

⎛

⎜⎝Q (t, ϕn (t − g (t))) −
t∫

t−τ(t)

A (s) ϕn (s) ds

⎞

⎟⎠

+K (t) U (T )
[
K −1 (t + T ) − K −1 (t)

] [
F (t) ϕn (t − τ (t)) + G (t, ϕn (t) , ϕn (t − g (t)))

]
.

(3.7)
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Since
K ′ (t) = A (t) K (t) , (3.8)

and noting that K −1 (t + T ) = e−T B K −1 (t), we have

K −1 (t + T ) − K −1 (t) = e−T B K −1 (t) − K −1 (t) = (
K −1 (T ) − 1

)
K −1 (t). (3.9)

A substitution of (3.8) and (3.9) into (3.7) yields

(Rϕn)′ (t) = A (t) (Rϕn) (t) + A (t)

⎛

⎜⎝Q (t, ϕn (t − g (t))) −
t∫

t−τ(t)

A (s) ϕn (s) ds

⎞

⎟⎠

+F (t) ϕn (t − τ (t)) + G (t, ϕn (t) , ϕn (t − g (t))).

Then ∥∥(Rϕn)′ (·)∥∥ ≤ |A| E + E

cT
.

Thus the sequence (Rϕn) is uniformly bounded and equicontinuous. Hence by Ascoli-
Arzela’s theorem R (M) is relatively compact. 
�
Lemma 3.2 Suppose (2.2)–(2.4) hold and

k1 + α |A| < 1. (3.10)

If S is defined by (3.4), then S is a contraction.

Proof Let S be defined by (3.4). Then for ϕ1, ϕ2 ∈ M we have by (2.4)

|(Sϕ1) (t) − (Sϕ2) (t)|

=

∣∣∣∣∣∣∣
Q (t, ϕ1 (t−g (t)))−Q (t, ϕ2 (t − g (t)))+

t∫

t−τ(t)

A (s) ϕ1 (s) ds −
t∫

t−τ(t)

A (s) ϕ2 (s) ds

∣∣∣∣∣∣∣

≤ (k1 + α |A|) ‖ϕ1 − ϕ2‖ .

Hence S is contraction by (3.10). 
�
Theorem 3.1 Suppose the assumptions of the Lemmas 3.1 and 3.2 hold. If there exists a
constant L > 0 defined in M such that

cT
[|A| (α |A| + k1L + β) + |F | L + (k2 + k3) L + γ

]+ k1L + β + α |A| L ≤ L .

Then (1.3) has a T -periodic solution.

Proof By Lemma 3.1, R : M → CT is continuous and R(M) is contained in a compact
set. Also, from Lemma 3.2, the mapping S : M → CT is a contraction. Next, we show that
if ϕ, φ ∈ M, we have ‖Rϕ + Sφ‖ ≤ L . Let ϕ, φ ∈ M with ‖ϕ‖ , ‖φ‖ ≤ L . Then

‖(Rϕ) (·) + (Sφ) (·)‖
≤ cT

[|A| (α |A| + k1L + β) + |F | L + (k2 + k3) L + γ
]+ k1L + β + α |A| L

≤ L .

Clearly, all the hypotheses of the Krasnoselskii’s theorem are satisfied. Thus there exists a
fixed point z ∈ M such that z = Rz + Sz. By Lemma 2.1 this fixed point is a solution of
(1.3). Hence (1.3) has a T -periodic solution. 
�
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Theorem 3.2 Suppose (2.2)–(2.5) hold. If

cT [|A| (α |A| + k1) + |F | + (k2 + k3)] + k1 + α |A| < 1, (3.11)

then Eq. (1.3) has a unique T -periodic solution.

Proof Let the mapping H be given by (3.2). For ϕ1, ϕ2 ∈ CT , we have

|(Hϕ1) (t) − (Hϕ2) (t)|

≤

∣∣∣∣∣∣∣
Q (t, ϕ1 (t − g (t))) − Q (t, ϕ2 (t − g (t))) +

t∫

t−τ(t)

A (s) ϕ1 (s) ds −
t∫

t−τ(t)

A (s) ϕ2 (s) ds

∣∣∣∣∣∣∣
t+T∫

t

∣∣∣
[
K (s) U (T )−1 K (t)−1]−1

∣∣∣

× |A (s)|
⎡

⎢⎣
s∫

s−τ(s)

|A (u)| |ϕ1 (u) − ϕ2 (u)| du + |Q (s, ϕ1 (s − g (s))) − Q (s, ϕ2 (s−g (s)))|
⎤

⎥⎦ ds

+
t+T∫

t

∣∣∣
[
K (s) U (T )−1 K (t)−1]−1

∣∣∣ [|F (s)| |ϕ1 (s − τ (s)) − ϕ2 (s − τ (s))|

+ |G (s, ϕ1 (s) , ϕ1 (s − g (s))) − G (s, ϕ2 (s) , ϕ2 (s − g (s)))|] ds

= [cT [|A| (α |A| + k1) + |F | + (k2 + k3)] + k1 + α |A|] ‖ϕ1 − ϕ2‖ .

Since (3.11) hold, the contraction mapping principle completes the proof. 
�

Remark 3.1 Note that, when Q (·, ·) = G (·, ·, ·) = 0 and τ (t) is positive constant, the
Theorems 3.1 and 3.2 reduce to the Theorems 2.7 and 2.8 respectively in [20].

Corollary 3.1 Suppose (2.2) and (2.3) hold. Let M defined by (3.1). Suppose there are
positive constants k∗

1 , k∗
2 and k∗

3 , such that for x, y, z and w ∈ M, we have

|Q (t, x) − Q (t, y)| ≤ k∗
1 ‖x − y‖ and k∗

1 + α |A| < 1, (3.12)

|G (t, x, y) − G (t, z, w) | ≤ k∗
2‖x − z‖ + k∗

3‖y − w‖. (3.13)

and

cT
[|A| (α |A| + k∗

1 L + β
)+ |F | L + (

k∗
2 + k∗

3

)
L + γ

]+k∗
1 L +β +α |A| L ≤ L . (3.14)

Then (1.3) has a T -periodic solution in M. Moreover, if

cT
[|A| (α |A| + k∗

1

)+ |F | + (
k∗

2 + k∗
3

)]+ k∗
1 + α |A| < 1,

then (1.3) has a unique solution in M.

Proof Let the mapping H defined by (3.2). Then the proof follow immediately from Theorem
3.1 and Theorem 3.2. 
�

Remark 3.2 Note that, when τ (t) = 0, the Theorems 3.1, 3.2 and Corollary 3.1 reduces to
the Theorems 2.5, 2.6 and Corollary 2.7 respectively in [10].
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4 Application to second-order model

Consider the second-order nonlinear neutral differential equation

d2

dt2 x(t)+p(t)
d

dt
x(t−τ (t))+q(t)x(t−τ (t))= d

dt
V (t, x(t−g(t)))+W (t, x(t), x(t−g(t))),

(4.1)
where p and q are positive periodic continuous real-valued functions with period T . The
functions V : R × R → R and W : R × R × R → R are continuous in their respective
arguments. τ (·) and g (·) satisfy (2.2).

Functions V (t, x) and W (t, x, y) are periodic in t with period T . They are also supposed
to be globally Lipschitz continuous in x and in x and y, respectively. That is,

V (t + T, x) = V (t, x), W (t + T, x, y) = W (t, x, y), (4.2)

and there are positive constants k1, k2, k3 such that

|V (t, x) − V (t, y)| ≤ k1‖x − y‖, (4.3)

and
|V (t, x, y) − V (t, z, w)| ≤ k2‖x − z‖ + k3‖y − w‖. (4.4)

To show the existence of periodic solutions, we transform (4.1) by letting
{

x1 = x,

x2 = x ′,

into a following system
(

x1 (t)
x2 (t)

)′
=
(

0 1
−q (t) −p (t)

)(
x1(t − τ (t))
x2(t − τ (t))

)
+ d

dt

(
0

V (t, x1(t − g(t)))

)

+
(

0
W (t, x1(t), x1(t − g(t)))

)
, (4.5)

where

A (·) =
(

0 1
−q (·) −p (·)

)
, Q(t, x(t − g(t))) =

(
0

V (t, x1(t − g(t)))

)
,

G (t, x (t) , x (t − g (t))) =
(

0
W (t, x1(t), x1(t − g(t)))

)
.

Example 4.1 Let q (t) = p (t) = 1, τ (t) = λ4 cos t , g (·) is nonnegative, continuous and
2π -periodic, V (t, w) = λ1 sin (t) w2, W (t, z, w) = λ2 cos (t) z − λ3w.

Since the matrix A has eigenvalues with non-zero real parts, the system x ′ = Ax is
noncritical. Consider the Banach space (C2π , ‖·‖),

C2π = {
φ : φ ∈ C

(
R, R

2) , φ (t + 2π) = φ (t) , t ∈ R
}
,

and the closed bounded convex subset of C2π ,

M = {ϕ ∈ C2π , ‖ϕ‖ ≤ L} .
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Let ϕ = (ϕ1, ϕ2), φ = (φ1, φ2). Then for ϕ, φ ∈ M we have

‖G (·, ϕ (·) , ϕ (· − g (·))) − G (·, φ (·) , φ (· − g (·)))‖
≤ λ2 ‖ϕ − φ‖ + λ3 ‖ϕ − φ‖ .

Hence k∗
2 = λ2, k∗

3 = λ3, in the same way k∗
1 = 2λ1L , and

α = λ4, β = 0, γ = 0,

and

F (t) = A (t) − (
1 − τ ′ (t)

)
A (t − τ (t)) = τ ′ (t) A (t)

= −λ4 sin t

(
0 1

−1 −1

)
, |F | = 2λ4.

Consequently

cT
[|A| (λ4 |A| L + 2λ1L2)+ 2λ4 L + (λ2 + λ3) L

]+ 2λ1L2 + λ4 |A| L ≤ L ,

for all λi , 1 ≤ i ≤ 4 small enough. Then (4.1) has a 2π-periodic solution, by Corollary 3.1.
Moreover,

cT [|A| (λ4 |A| + 2λ1L) + 2λ4 + (λ2 + λ3)] + 2λ1L + λ4 |A| < 1,

is satisfied for λi , 1 ≤ i ≤ 4 small enough. Then (4.1) has a unique 2π-periodic solution, by
Corollary 3.1.
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