
DESCENT PROPERTY AND GLOBAL CONVERGENCE OF A NEW
SEARCH DIRECTION METHOD FOR UNCONSTRAINED OPTIMIZATION

1. Introduction

Consider the unconstrained optimization problem

(1.1) fmin f(x); x 2 Rng ;

where f : Rn �! R is continuously di¤erentiable. The line search method usually takes the
following iterative formula

(1.2) xk+1 = xk + �kdk

where xk is the current iterate point, �k > 0 is a steplength and dk is a search direction. Di¤erent
choices of dk and �k will determine di¤erent line search methods([14,15,16]).
We denote f (xk) by fk, rf (xk) by gk and rf (xk+1) by gk+1, respectively. k:k denotes the

Euclidian norm of vectors and de�ne yk = gk+1 � gk. In this article, as in other algorithms and
convergence analysis, the steplength �k > 0 is computed by carrying out certain line searches.
The strong Wolfe search is to �nd a positive steplength �k such that:

(1.3) f(xk + �kdk)� f (xk) � ��kgTk dk

(1.4)
��g(xk + �kdk)T dk�� � ��gTk dk

where � 2
�
0; 12

�
and � 2 ]�; 1[.

The steepest descent method is one of the simplest and the most fundamental minimization
methods for unconstrained optimization. Since it uses the negative gradient as its descent direction,
it is also called the gradient method.
For many problems, the steepest descent method is very slow. Although the method usually

works well in the early steps, as a stationnary point is approached, it descends very slowly with
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Abstract. Conjugate gradient methods are probably the most famous iterative methods for
solving large scale optimization problems in scienti�c and engineering computation, character-
ized by the simplicity of their iteration and their low memory requirements. It is well known
that the search direction plays a main role in the line search method. In this paper, we propose
a new search direction with the Wolfe line search technique for solving unconstrained optimiza-
tion problems. Under the above line searches and some assumptions, the global convergence
properties of the given methods are discussed. Numerical results and comparisons with other
CG methods are given.

MOHAMMED BELLOUFI AND RACHID BENZINE



2 M. BELLOUFI AND R. BENZINE

zigzaguing phenomena. There are some ways to overcome these di¢ culties of zigzagging by de�eting
the gradient. Rather then moving along dk = �rf(xk) = �gk, we can move along

dk = �Dkrf(xk);
or along

(1.5) dk = �gk + hk;
where Dk is an appropriate matrix and hk is an appropriate vector.
In this work we try to accelerate the convergence of the gradient method by introducing a new

direction dBBk de�ned as follows:

(1.6) dBBk =

(
� gk
kgkk2

if k = 1
� 1
kgkk2

gk + dk�1 if k � 2

Note that our directions dBBk and those of di¤erent versions of conjugate gradient methods are
of the form (1.5). By using (1.2), (1.3), (1.4) and (1.6), we get a new algorithm noted CGBB.
The main aim of this note is to show that the descent property holds for all k and the global
convergence is achieved for the strong Wolfe search (1.3), (1.4).
On the other hand, we can consider that our algorithm is very close to one of the versions of

the conjugate gradient method.
The iterative formula of the conjugate gradient method is given by (1.2), where �k is a steplength

which is computed by carrying out a line search, and dk is the search direction de�ned by

(1.6) dk+1 =

�
�gk si k = 1
�gk+1 + �kdk si k � 2

where �k is a scalar and g (x) denotes rf (x). If f is a strictly convex quadratic function,
namely,

(1.7) f(x) =
1

2
xTHx+ bTx;

where H is a positive de�nite matrix and if �k is the exact one-dimensional minimizer along
the direction dk, i.e.,

(1.8) �k = argmin
�>0

ff(x+ �dkg

then (1.2)�(1.6) is called the linear conjugate gradient method. Otherwise, (1.2)�(1.6) is called
the nonlinear conjugate gradient method.
Conjugate gradient methods di¤er in their way of de�ning the scalar parameter �k. In the

literature, there have been proposed several choices for �k which give rise to distinct conjugate
gradient methods. The most well known conjugate gradient methods are the Hestenes�Stiefel (HS)
method [08], the Fletcher�Reeves (FR) method [07], the Polak-Ribière-Polyak (PR) method [11,113
], the Conjugate Descent method(CD) [06], the Liu-Storey (LS) method [10], the Dai-Yuan (DY)
method [05], and Hager and Zhang (HZ) method [09]. The update parameters of these methods
are respectively speci�ed as follows:

�HSk =
gTk+1yk

dTk yk
; �FRk = kgk+1k2

kgkk2
; �PRPk =

gTk+1yk

kgkk2
; �CDk = �kgk+1k2

dTk gk
;

�LSk = � gTk+1yk

dTk gk
; �DYk = kgk+1k2

dTk yk
; �HZk =

�
yk � 2dk kykk

2

dTk yk

�T
gk+1
dTk yk

The convergence behavior of the above formulas with some line search conditions has been
studied by many authors for many years. The FR method with an exact line search was proved to
globally convergent on general functions by Zoutendijk [18]. However, the PRP method and the HS
method with exact and inexact line searchs are not globally convergent, see Powell�s counterexample
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[12]. Compared to the PRP and HS conjugate gradient method, our new algorithm is globally
convergent. Numerical tests show that our algorithm accelerates the convergence of the gradient
method and is at least as e¢ cient as the other conjugate gradient methods.
This paper is organized as follows. In the next section, the New algorithms are stated and descent

property is presented. The global convergence of the new methods are established in Section 3.
Numerical results and a conclusion are presented in Section 4 and in Section 5, respectively.

2. CGBB Algorithm

In this section, we give the speci�c form of the proposed new conjugate gradient method. As
reported before our search directions dBBk are de�ned as follows:

(2.1) dBBk =

(
� gk
kgkk2

if k = 1
� 1
kgkk2

gk + dk�1 if k � 2

CGBB Algorithm
The algorithm is given as follows:

Algorithm 1. Step 0: Given x1 2 Rn; set dBB1 = � g1
kg1k2

; k := 1:

Step 1: If kgkk = 0 then stop else go to Step 2.
Step 2: Set xk+1 = xk + �kdBBk where dBBk is de�ned by (2.1), and �k is
de�ned by (1.3) and (1.4).
Step 3. Set k := k + 1 and go to Step 1.

The following theorem indicates that, if �k is computed by the Wolfe line search (1.3) and (1.4)
, then the search direction dBBk satis�es the descent property.

Theorem 1. If the steplength �k is computed by the Wolfe line search (1.3) and (1.4) with � <
� < 1

2 , ; then for the proposed conjugate gradient method, the inequality

(2.2) �
k�1X
j=0

�j � gTk dk � �2 +
k�1X
j=0

�j

holds for all k, and hence the descent property

(2.3) gTk dk < 0;8k
holds, as long as gk 6= 0 .

Proof. The proof is by induction. For k = 1 Equations (2.2) and (2.3) is clearly satis�ed.
Now we suppose that (2.2) and (2.3) hold for any k � 1.
It follows from the de�nition (2.1) of dk+1 that

(2.4) gTk+1dk+1 = �1 + gTk+1dk
and hence from (1.4) and (2.3) that

(2.5) �1 + �gTk dk � gTk+1dk+1 � �1� �gTk dk
Also, by induction assumption (2.2), we have

�
kX
j=0

�j = �1� �
k�1X
j=0

�j � gTk+1dk+1

� �1 + �
k�1X
j=0

�j = �2 +
kX
j=0

�j
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Then, (2.2) holds for k + 1.
Since

(2.6) gTk+1dk+1 � �2 +
kX
j=0

�j

and

(2.7)
kX
j=0

�j <
1X
j=0

�j =
1

1� �

where � 2
�
0; 12

�
; it follows from 1� � > 1

2 that �2 +
kX
j=0

�j < 0: Hence, from (2.6), we obtain

gTk+1dk+1 < 0. We complete the proof by induction. �

3. Global convergence

In order to establish the global convergence of the proposed method, we assume that the fol-
lowing assumption always holds, i.e. Assumption 3.1 :
Assumption 3.1 :
Let f be twice continuously di¤erentiable, and the level set L = fx 2 Rn j f (x) � f (x1)g be

bounded

Theorem 2. Suppose that x1 is a starting point for which Assumption 3.1 holds. Consider the
New method (1.2) and (2.1). If the steplength �k is computed by the strong Wolfe line search (1.3)
and (1.4) with � < � < 1

2 , then the method is globally convergent, i.e.,

(3.1) lim inf
k�!1

kgkk = 0

Proof. It is shown in theorem 1 that the descent property (2.3) holds for � 2
�
0; 12

�
; so from (1.4),

(2.2), and (2.7) it follows that

(3.2)
��gTk dk�1�� � ��gTk�1dk�1 � � k�2X

j=0

�j =
k�1X
j=0

�j � �

1� �

Thus from the de�nition of dk and using (3.2) we deduce that

kdkk2 =
1

kgkk2
� 2

kgkk2
gTk dk�1 + kdk�1k

2

� 1

kgkk2
+

2�

1� �
1

kgkk2
+ kdk�1k2

(3.3) =

�
1 + �

1� �

�
1

kgkk2
+ kdk�1k2

By applying this relation repeatedly, it follows that

kdkk2 �
�
1 + �

1� �

� kX
j=2

1

kgjk2
+

1

kg1k2

(3.4) �
�
1 + �

1� �

� kX
j=1

1

kgjk2
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where we used the facts that
1

kg1k2
�
�
1 + �

1� �

�
1

kg1k2

Now we prove (3.1) by contradiction. It assumes that (3.1) does not hold, then there exists a
constant " > 0 such that

(3.5) kgkk � " > 0

holds for all k su¢ ciently large. Since gk is bounded above on the level set L, it follows from
(3.4) that

(3.6) kdkk2 � c1k

where c1 is a positive constant. From (2.2) and (2.7), we have

cos �k = �
gTk dk

kgkk kdkk
�

0@2� k�1X
j=0

�j

1A 1

kgkk kdkk

(3.7) �
�
1� 2�
1� �

�
1

kgkk kdkk

Since � < 1
2 , substituting (3.6) and (3.5) into (3.7) gives

(3.8)
X
k

cos2 �k �
�
1� 2�
1� �

�2X
k

1

kgkk2 kdkk2
� c2

X
k

1

k

where c2 is a positive constant. Therefore, the series
X
k

cos2 �k is divergent.

Let M be an upper bound of
r2f(x) on the level set L, then

gTk+1dk =
�
gk + akr2f(x)

�T
dk � gTk dk +Mak kdkk

2

Thus by using (1.4) we obtain

(3.9) ak � �
(1� �)
M kdkk2

gTk dk

Substituting ak of (3.9) into (1.3) gives

fk+1 � fk �
(1� �) �
M

�
gTk dk
kdkk

�2
= fk � c3 kgkk2 cos2 �k;

where c3 =
(1��)�
M > 0: Since f (x) is bounded below,

X
k

kgkk2 cos2 �k converges, which indicates

that
X
k

cos2 �k converges by use of (3.5). This fact contradicts (3.8). We complete the proof. �
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4. Numerical results and discussions

In this section we report some numerical results obtained with an implementation of the
CGBB algorithm. For our numerical tests, we used test functions and Fortran programs from
([01],[03]). Considering the same criterias as in ([02]), the code is written in Fortran and compiled
with f90 on a Workstation Intel Pentium 4 with 2 GHz. We selected a number of 105 uncon-
strained optimization test functions in generalized or extended form [17] (some from CUTE library
[03]). For each test function we have taken twenty (20) numerical experiments with the number
of variables increasing as n = 2; 10; 30; 50; 70; 100; 300; 500; 700; 900; 1000; 2000; 3000; 4000; 5000;
6000; 7000; 8000; 9000; 10000: The algorithm implements the Wolfe line search conditions (1.3) and
(1.4), and the same stopping criterion krf (xk)k < 10�6: In all the algorithms we considered in
this numerical study the maximum number of iterations is limited to 100000.
The comparisons of algorithms are given in the following context. Let fALG1i and fALG2i be

the optimal value found by ALG1 and ALG2, for problem i = 1; :::; 962; respectively. We say that,
in the particular problem i; the performance of ALG1 was better than the performance of ALG2
if: ��fALG1i � fALG2i

�� < 10�3
and the number of iterations, or the number of function-gradient evaluations, or the CPU time

of ALG1 was less than the number of iterations, or the number of function-gradient evaluations,
or the CPU time corresponding to ALG2, respectively.
In a performance pro�le plot, the top curve corresponds to the method that solved the most

problems in a time that was within a factor � of the best time. The percentage of the test problems
for which a method is the fastest is given on the left axis of the plot. The right side of the plot gives
the percentage of the test problems that were successfully solved by these algorithms, respectively.
Mainly, the right side is a measure of the robustness of an algorithm.
In the set of numerical experiments we compare CGBB algorithm to Steepest descent algorithm,

CG_DESCNET , PRP and FR conjugate gradient methods.
In Fig. 1, we consider the CPU time to compare the performance of CGBB algorithm to

Steepest descent algorithm by using pro�les of Dolan and Moré ([04]).
Figs. 2 � 4 list the performance of the CGBB, CG_DESCNET , PRP and FR conjugate

gradient methods. relative to CPU time, the number of iterations and the number of gradient
evaluations, respectively, which were evaluated using the pro�les of Dolan and Moré.
From �g. 1, when comparing CGBB algorithm with Steepest descent algorithm subject to

CPU time metric, we see that CGBB algorithm is top performer.
Clearly, Figs. 2 �4 present that our proposed method CGBB exhibits the best overall per-

formance since it illustrates the highest probability of being the optimal solver, followed by the
CG_DESCENT , PRP and FR conjugate gradient methods relative to all performance metrics.
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Figure 4. Performance based on the number of gradient evaluations.
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In this paper, we have proposed a new and simple dk that is easy to implement. We have also
provided proof that this method converges globally with strong Wolfe line search.The presented
numerical results illustrated the e¢ ciency and robustness of our proposed method.
Our future work is concentrated on studying the convergence properties and numerical perfor-

mance of our proposed method using di¤erent inexact line searches


