
The International Arab Conference on Information Technology (ACIT’2014)

Evolving and Versioning Software Architectures Using ATL

Transformations

Abdelkrim Amirat
1
, Afrah Djeddar

1
and Mourad Oussalah

2

1
LiM Laboratory, University Mohamed Cherif Messaadia, Souk-Ahras Algeria

2
LINA Laboratory, CNRS UMR 6241 University of Nantes, France

Abstract: Since software architecture has become integral part of software development, managing its evolution has become

the concern of most of architecture researchers. In this paper, we define firstly a Generic-ADL (Architecture Description

Language) which includes all important and common concepts in the existing ADLs to describe software architectures.

Secondly, we propose a second model named EVA-Model (Evolution and Versioning Architecture) to manage the software

architecture evolution and their versioning. Based-on the proposed EVA-Model, we implement the evolution and the

versioning mechanisms using model transformation approach through ATL language. However, these ATL transformations

present tow challenges: the absence of the genericity concept and the rule scheduling mechanism. We address these issues by

proposing parameter model to generalize the transformations and by using java technology to allow users managing the

parameters and to handle the execution order of evolution transformations where each evolution transformation is followed

transparently by a versioning one.

Keywords: Architecture Evolution, Versioning, ATL Transformation, Parameterized Transformation, EMF/GMF.

1. Introduction

Independently of any programming language and execution

environment it appeared several languages (e.g. SafArchi

[1], DEDAL [2], etc.) for modeling software at a high level

of abstraction called ADL. These later allow a designer to

describe the architecture of any software. Show and Garland

[3] defined Software Architecture as a level of design that

involves: the description of elements from which the system

is build, interaction among those elements and the pattern

that guide their composition and construction. These

software architectures may be subject to various changes in

its structure or/and one of their constituents, here we talk

about their evolution. Tracking this evolution is defined as

the backup link between the architecture before and after the

evolution where each track has its corresponding version.

After the analysis of a set of architectural description

languages we have found that the traced evolution, in other

words versioning the architectural evolutions, is rarely taken

into account in the design of ADLs. This research work

address this issue by proposing a generic model (i.e. EVA-

Model) independent from any definition of existing ADLs

which deals with traced evolution in a high level of

abstraction. In order to show their applicability, we define a

generic architecture description language that groups all

common concepts between known ADLs. This generic-

ADL will be associated with our proposed EVA-Model to

manage the evolution and the versioning of architectures.

The evolution and the versioning mechanisms in the

proposed approach are considered as model transformation

operations implemented using the transformation language

ATL (Atlas Transformation Language) [4]. This

transformation language presents two challenges that

prevent us to implement our generic EVA-Model: the

absence of the genericity concept and the absence of rule

scheduling mechanism. In this work we address these two

issues by answering to these two questions: How to

parameterize the transformations and making them generic?

How to maintain the rule scheduling in the case of a

transformation that requires the execution of a set of rules in

a specific order?

Parameterizing a transformation means that the latter

proceeds according to the criteria given by the user (i.e. the

elements meant to be evolved will be chosen separately from

the programming of ATL rules). This will render

transformations rules more generic. To this end, we write the

evolution and the versioning rules once and for all of them

we define a parameter model which serves as a second entry

in our evolution transformation rules in order to support the

various elements that can be subject of the evolution.

In order to accomplish a given evolution transformation

that requires the execution of a several successive rules we

propose to use the java technology to manipulate the

parameterized transformation rules and to define their

execution order. In this paper we present two kind of the

versioning of the evolution transformation: the versioning of

the architecture itself that is performed with java and the

versioning of the evolved architectural elements that is

applied directly and transparently after the execution of each

evolution transformation rule by triggering a versioning one.

The rest of paper is organized as follow: in Section 2 we

emphasize on some related works to our approach. In

Section 3 we present the basic concepts of software

architecture. The proposed approach is explained in Section

4. In Section 5 we present the implementation of approach.

Finally, we conclude this work by presenting some

conclusions and possible guidelines for future work.

https://webmail.univ-nantes.fr/src/read_body.php?mailbox=INBOX&passed_id=1697&startMessage=1

The International Arab Conference on Information Technology (ACIT’2014)

2. Related works

This section discusses existing approaches that

concentrate on software architecture evolution, its

versioning and ADL that support Architecture evolution

Barais et al. did a comparison of ADL evaluating them

according to their abilities of managing software architecture

evolution [5]. The studies result of SafArchi [1], C2 [6],

ArchStudio [7], and AcmeStudio [8] showed that these ADL

support the definition of a static software architecture and in

all these language or associated tools; the evolution has not

been taken into account. These languages can’t describe the

dynamic of the system and do not take care of external

evolutions. Wright [9] Fscript [10] make dynamic

architectures explicit, they currently do not describe the

dynamic with the same goal.

DEDAL ADL [2] represents explicitly three levels

abstraction in the definition of architecture. The

specification, configuration and assembly architecture and

keeps track of decisions of architects in a process of

development (i.e. forward engineering). It can be used to

support a process of controlled evolution (i.e. reverse

engineering) also supports element versioning. SOFA [11]

introduces the notion of node that supports mechanism for

managing multiple version of the same component. The

system version is very interesting in monitoring the

evolution of software architecture.

Using Graph Transformation, Amirat and Menasria

proposed C3Evol [12] that is an extension of C3 [13]. This

framework was implemented using AToM
3
 [14] exploring

all its possibilities, to define their proposed metamodel and

all variants of graph grammars implementing evolution

operators. Mens and Tamzalit [15] formalized the ADL

UML2 using the theory of graph transformation. This

allowed specifying the structure and behavior of an

architecture, to impose architectural styles constraining the

architecture and to specify and execute typical architectural

evolution scenarios demonstrating their approach with book

store case study.

SAEV [16] manage the evolution using evolution rules

and propagation strategies, but do not focus on versioning, it

offers a set of concept to manage and describe an evolution

of chosen architecture independently of ADL and

architecture element behavior.

3. Basic Concepts

Before heading to our proposed approach it is necessary to

focus on the basic concepts needed to know throughout this

paper.

Versioned software architectures are a combination of

the concepts of software architecture and versioning. The

versioned software architectures are closely similar to the

software architecture, also supports the modeling of

components, interactions between them and their behavior,

but they modelize in addition versions of the existing

architectural elements [17].

Metamodeling: is the construction of a collection of

concepts (things, terms, relation, etc.) within a certain

domain. A model is an abstraction of phenomena in the real

world; a metamodel is yet another abstraction, highlighting

properties of the model itself. Each model is conforming to

its metamodel in the way that a computer program is

conforming to the grammar of the programming language in

which it is written.

A model transformation, in Model-Driven Engineering,

is an automatable way of ensuring that a family of models is

consistent, in a precise sense which the software engineer

can define. The aim of using a model transformation is to

save effort and reduce errors by automating the building and

modification of models where possible.

ATL is a model transformation language specified both

as a metamodel and as a textual concrete syntax. It is a

hybrid of declarative and imperative. The preferred style of

transformation writing is declarative, which means simple

mappings can be expressed simply. However, imperative

constructs are provided so that some mappings too complex

to be declaratively handled can still be specified.

ATL transformation program is composed of rules that

define how source model elements are matched and

navigated to create and initialize the elements of the target

models. In the scope of the ATL language, the generation of

target model elements is achieved through the specification

of transformation rules. ATL defines two different kinds of

transformation rules: the matched and the called rules. A

matched rule enables to match some of the model elements

of a source model, and to generate from them a number of

distinct target model elements.

In the constitutive block of ATL rules we mention the

helpers ATL which can be considered equivalent to

methods. They make it possible to define factorized ATL

code that can be called from different points of an ATL

transformation [18].

4. Proposed Approach

The main interest of our approach is to present a generic

model at the architectural level for treating the evolution and

the versioning of software architectures. Every software

architecture may be evolved over time, it undergoes to

different changes in its structure or on any architectural

element among their constituents. The proposed generic

EVA-Model acts as a guide to manage software architecture

evolution and implicitly their versioning (i.e. architectural

element versioning) through the construction of propagation

strategies where each evolution is directly followed by a

trace backup in form of version (i.e. architecture versioning).

The proposed generic model aims to keep all the

modifications performed on all architectural elements

throughout their life cycle. The overview of the EVA-Model

is presented in the Figure1.

The International Arab Conference on Information Technology (ACIT’2014)

Figure 1- EVA-Model overview.

The traced evolution mechanism is implemented as a set

of ATL transformation rules that will be applied on the

software architecture meant to be evolved. According to

EVA-Model, each propagation strategy represents a traced

evolution transformation of the software architecture (i.e. the

transition from software architecture version N to software

architecture version N+1). This propagation strategy is

composed of a set of evolution rules and versioning rules

where each architectural element has three evolution rules

modeling Add, Delete, or Modify operations and one

versioning rule.

However, evolution manager (i.e. the person how will

change the architecture) will take the responsibility to

produce theses propagation strategies by choosing the set of

evolution rules that will be applied on its architecture

according to a specific order. Regarding the versioning rules,

versioning management will trigger this set of rules after

each the execution of an evolution rule in order to produce

the versioning the evolved architectural element. Thus, it

plays the role of the versioning of the target architecture

after the execution of each rule (i.e. sub-versioning of the

architecture).

Consistency management is specialized in the

verification of the consistency of the produced architecture

after the execution of each evolution operation in order to

ensure the correct functioning of the evolved architecture.

To describe the software architecture, subject of the

evolution process, we define a generic description language

that regroups all common elements defined in large set of

ADLs. As illustrated in the Figure 2. The metamodel of this

generic-ADL supports the description of the five principal

architectural elements: Component, Connector,

Configuration, Component and configuration Interface (i.e.

Ports), and Connector Interface (i.e. Roles). Also this

metamodel presents the different relations among these

elements: Binding that represents the relation between a

component and its configuration through theirs interfaces

(i.e. Port/Port relation), and Attachment that represents the

relation between component and connector through theirs

Interfaces (i.e. Port/Role relation). The metamodel is defined

with EMF (Eclipse Modeling Language) [19]. It is

implemented following all steps defined in GMF [20]

(Graphical Modeling Language). The result is the

description pallet representing all elements and relations

used to describe any software architecture model. This

described model is considered as instance of the generic

metamodel.

The International Arab Conference on Information Technology (ACIT’2014)

Figure 2- Generic metamodel for architecture description.

In order to make the mechanism of the evolution and the

versioning generic and due to fact that ATL does not support

the parameterization of transformation rules we have defined

a Parameter metamodel as illustrated in Figure 3. Every

architectural element presented in the Generic-ADL has its

corresponding parameter class where theirs attributes

support the names of the architectural elements meant to be

evolved except for the Number-Version class that is used to

versioning the architectural elements. The ID attribute

carries the actual version value of the architectural element.

The values of these different attributes are given by the

manager of evolution (i.e. evolved architectural elements

names) or manipulated via java (i.e. version value).

Figure 3- Parameter Metamodel.

However, the evolution and the versioning rules are

written once for all where in each of them we defined a set

of helpers that serve to extract the values of the attribute

presented in the parameter model (i.e. the name of the

architectural element on which we will apply the evolution

rule or the version value which the versioning rule will use

to do versioning the architectural element) or to perform

various test (e.g. the test if the component that we will add is

not already exist).

The Listing 1 presents an example of component

versioning rule which contains three helpers, the first aims

to verify if the component already exists in the architecture

and the second one aims to extract the name of this

component from the parameter model and put it in a variable

The International Arab Conference on Information Technology (ACIT’2014)

that will be used in the rename rule for versioning the

component, and the third helpers aims to extract the actual

version value from the parameter model that will be

assigned to the component.

Listing 1- Component Versioning Rule.atl.

Thus, the necessity behind the definition of the

parameter model and write the ATL rules a more generic

way is to answer the limit of ATL transformation

mechanism: the lack of genericity in order to be able to

realize parameterized transformations.

Another problem that can prevent us to implement

correctly our generic EVA-Model is the absence of

scheduling mechanism because our traced evolution

approach needs implicit and explicit trigger of our evolution

and versioning rules in according to a specific order. Implicit

triggering reflects the automatic execution of the versioning

rules by the versioning management in contrary of explicit

triggering that represents the execution of the evolution rules

by the manager of evolution. For this, once the ATL rules

are written, we convert them to a java code in order to

exploit them via an interrogation menu implemented in java

in order to realize our generic traced evolution mechanism.

From the generated java code of each transformation rule,

we need only to manipulate the code part shown in the

Listing 2 to invoke the execution of the corresponding

evolution or versioning rule.

Listing 2- Java code of Add-Component ATL rule.

In this paper, we use the transformations of type N to 1

[17] because all our evolution and versioning rules need two

source models (i.e. Parameter Model and source software

architecture) in order to be executed and to generate the

target model.

In our approach we presents to kind of versioning: the

first kind addresses the architectural element and the second

one concerns the versioning of the architecture itself. The

execution of any evolution rule triggered by the manager of

evolution leads to give the target architecture assigned with

the sub-version Vn-m. Our mechanism aims to generate the

architecture version Vn+1 when the execution of all the

evolution rules of the same propagationstrategy is

completed. Unlike to the versioning of the architectural

element that is performed with the collaboration of java

method and versioning ATL rules. Firstly, the java method

extracts the least version given to the architectural element

that is saved in a versioning table in order to increment it

and after it reinserts again the incremented version in the

versioning table and thus inparameter model. Now, it

comes the role of the versioning rules that aim to extract the

value (i.e. the last version) assigned to the ID attribute from

the parameter modeland affects it to the architectural

element meant to be versioned.

5. Operative Mechanism

In order to explain the workflow of our proposed generic

EVA-Model we present the following scenario: We assume

that we have an architecture that carries the version N as

presented in the Figure 4. This architecture model is

instantiated from our generic metamodel defined previously.

AddComponent runner = newAddComponent();

runner.loadModels(Source1, Source2);

runner.doAddComponent(newNullProgressMonitor());

runner.saveModels(Target);

-- @path modele=/Evolution/MetaModel/GenericMetaModel.ecore
-- @path ModeleParam=/Evolution/MetaModel/ParametreMetaModel.ecore

Module CreatVersionComponent;
create OUT : modelerefining IN : modele , Parametre: ModeleParam;
helper context modele!Componentdef : ModifyComp : Boolean = let x :String =

ModeleParam!Component.allInstances()->collect(p| p.NameComponent)->first() inif(self.NameComp= x)

then true else false endif;
helperdef : NameComponent: String =ModeleParam!Component.allInstances()->collect(p|

p.NameComponent)->first();
helperdef : NumberVersion: Integer =ModeleParam!Number_Version.allInstances()->collect(p| p.ID)-

>first();

ruleRennomer {
 from E :modele!Component(E.ModifyComp)
 to T:modele!Component (NameComp<-thisModule.NameComponent + 'V' + thisModule.NumberVersion)

 }

The International Arab Conference on Information Technology (ACIT’2014)

Figure 4- the software architecture Version N.

If the manager of the evolutionlaunches the evolution

rule Add-Component (Client 2) the versioning management

triggers automatically the versioning rule Configuration-

Versioning(ConfigurationCS) where the component was

added (i.e. versioning of the configuration ConfigurationCS-

1). After, it versions the target architecture (i.e. sub-

versioningof the architecture Vn.1). Butbefore the versioning

managementperforms its task it comes the role of the

consistency managementin order to verify the consistency of

the generated architecture. Here, it launches the evolution

rule Add-Port to the added component for satisfy the

constraint: “Each component must have at least one port”.

Another rule will be executed that is Modify-Portto assign

the component with a specific port (i.e. modify the default

name of the added port). Now, after the versioning

managementperformed its role the consistency management

asks from themanager of evolutionfor add a connector in

order to satisfy the constraint: “each component must be

connected at least with other component”.

If the user will connect the added component with

another component that already exist it will launch the Add-

Connector rule here all the steps explained aboveto add the

componentwill be repeatedin order to add this connector. In

the case where the manager of evolution indicates that the

evolution is terminated, the versioning management

generates the final version of the architecture Vn+1.

It should be noted that the versioning managementand

the consistency managementwork by faction. Before the

versioning managementdoes its workit just waits if the

consistency managementhas evolution rules to execute as

illustrated the Figure 5.

Figure 5- Execution sequence of the traced evolution mechanism.

The evolution strategy that represents the set of

evolutions rules triggered by the manager of evolution and

the versioning one that are triggered by management

versioning is composed automatically as an interrogation via

a java menu. The different required parameters to execute

the evolution and versioning rules are eventually assigned to

the different attributes presented in parameter model as

indicated in Figure 6. The evolution strategy corresponding

to the scenario presented above is illustrated as following:

Arch Vn

Arch Vn.m

Arch Vn+1

Evolution Rule i

Evolution Rules ij

Version Rule i

Sub-versioningthe

architecture

Triggered by manager of evolution

Triggeredby consistency management

management
Triggered by versioning management

Performed with

versioning management

Versioning the sub-

architecturen.m

Other evolution

m=m+1

i=i+1

j=j+1

End of evolution

The International Arab Conference on Information Technology (ACIT’2014)

 R1 :Add component (Client2, ConfigurationCS)
o //enter the name of the new component?
o // Where do you need to add it?

 R2 :AddPortF(PF, Client2)// add port with a
default name PF

 R3 :Modify-Port (C2-PF) // Modify Port Name
 R4 :Versioningr-Configuration

(ConfigurationCS)
o //As a result « ConfigurationCS 1»
o //Versionningthe architecture Vn.1

 R5 :Addconnector(RPC, ConfigurationCS , CC-
PR, CC-PF)

 R6:AddRolR(RR, CC-PF)
 R7 :ModifyRol (R-RR)
 R8 :AddRolF(RF,CC-PR)
 R9 :Modify Rol(R-RF)
 R10: Versionner-Configuration

(ConfigurationCS)
o //Result « ConfigurationCS2»
o //Versioning the architecture Vn.2
o //indicate the final of the evolution
o //Versionning the architecture Vn+1.

Figure 6- Parameter Model.

.

The source architecture Vn passes with several

immediate version (i.e. Vn.1 when the adding of the

component and the version Vn.2 when the adding of the

connector) in order to have the final oneVn+1. The result of

the evolution scenario presented above is represented in the

Figure 7.

Figure 7- The versioned architecture N+1.

.

6. Conclusion

In this paper, we presented our contribution for

resolution the traced evolution of software architecture’s

issue at architectural level. Therefore, we have proposed a

generic model for managing software architecture’s

evolution and versioning called EVA-Model. To well

illustrate the applicability of this proposed generic model we

have presented a generic-ADLfor describe the software

architectures that are the evolution object of our EVA-

Model.We have implemented the traced evolution

mechanism as ATL transformations using parameterized

ATL rules manipulated via java menu while ensuring the

architecture’s consistency. Thus, we have presented two

kinds of versioning the first one is carried on the

architectural element and the second one on the architecture

itself. As future work, we plan to address the conflict

problems caused by the presence of multiple versions and

managing the traced evolution via a graphic interface and no

via java menu.

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>
<xmi:XMIxmlns:xmi="http://www.omg.org/XMI" xmlns="Parametres" xmi:version="2.0">
<Parametres>
<NumVersionID= "10" />
<ComponentsNameComponent="Client2" NameComponentV=""/>
<ConfigurationsNameConfiguration="ConfigurationCS" NameConfigurationV=""/>
<ConnectorsNameConnector="HTTP" NameConnectorV=" "/>
<PortsNamePort_F="C-PF "NamePort_F_V=" " NamePort_R="C-PR" NamePort_R_V=""/>
<RolesNameRole_F="H-RF" NameRole_F_V="" NameRole_R="HT-RR" NameRole_R_V=""/>
</Parametres></xmi:XMI>

The International Arab Conference on Information Technology (ACIT’2014)

References

[1] Barais, O. and Duchien, L., “SafArchie studio: Argouml

extensions to build safe architectures”, In Architecture

Description Languages, pp. 85-100, SpringerUS, 2005.

[2] Zhang, H. Y., Urtado, C., and Vauttier, S., “Dedal: un

ADL à trois dimensions pour gérer l’évolution des

architectures à base de composants”, Proceeding

Australian Software Engineering Conference, pp 246-

255, 2010.
[3] Shaw, M. and Garlan, D. Software architecture:

perspectives on an emerging discipline, Vol. 1, p. 12,

Englewood Cliffs: Prentice Hall. Inc., Upper Saddle

River, NJ, USA, 1996.

[4] http://www.eclipse.org/atl/.

[5] Barais, O., Le Meur, A. F., Duchien, L., and Lawall, J.,

“Software architecture evolution”, In Software

Evolution, pp. 233-262, Springer Berlin Heidelberg,

2008.

[6] Medvidovic, N., Oreizy, P., Robbins, J. E., and Taylor,

R. N. “Using object-oriented typing to support

architectural design in the C2 style”, In ACM SIGSOFT

Software Engineering Notes, Vol. 21, No. 6, pp. 24-32,

October 1996.

[7] Dashofy, E., Asuncion, H., Hendrickson, S.,

Suryanarayana, G., Georgas, J., and Taylor, R.,

“Archstudio 4: An architecture-based meta-modeling

environment”, In Companion to the proceedings of the

29th International Conference on Software

Engineering, pp. 67-68, IEEE Computer Society, May

2007.

[8] Schmerl, B. and Garlan, D., “AcmeStudio: Supporting

style-centered architecture development”, In Software

Engineering, ICSE 2004, IEEE Proceedings 26th

International Conference on, pp. 704-705, May 2004.

[9] Allen, R., Douence, R., and Garlan, D., “Specifying

dynamism in software architectures”, in Proceeding of

foundations of Component-Based Systems Workshop,

Set. 1997.

[10] David, P. C. and Ledoux, T., “Safe dynamic

reconfigurations of fractal architectures with fscript”,

In Proceeding of Fractal CBSE Workshop, ECOOP,

Vol. 6, July 2006.

[11] Bures, T., Hnetynka, P., and Plasil, F., “Sofa 2.0:

Balancing advanced features in a hierarchical

component model”, In IEEE Software Engineering

Research, Management and Applications, 2006. Fourth

International Conference on, pp. 40-48, August 2006.

[12] Amirat, A., Menasria, A., and Gasmallah, N.,

“Evolution Framework for Software Architecture

Using Graph Transformation Approach”, In

Proceeding of International Arab Conference on

Information Technology (ACIT), Riyadh, Saudi Arabia,

2011.

[13] Amirat, A. and Oussalah, M., “First-class connectors to

support systematic construction of hierarchical

software architecture”, Journal of Object

Technology, 8(7), pp. 107-130, 2009.

[14] De Lara, J. and Vangheluwe, H., “AToM3: A Tool for

Multi-formalism and Meta-modelling”,

In Fundamental approaches to software engineering,

pp. 174-188, Springer Berlin Heidelberg, 2002.

[15] Tamzalit, D. and Mens, T., “Using graph

transformation to evolve software architectures”, ence,

Eindhoven University of Technology, Netherlands, pp.

31, 2008.

[16] Oussalah, M., Sadou, N., and Tamzalit, D., “SAEV: A

model to face evolution problem in software

architecture”, In Proceedings of the International

ERCIM Workshop on Software Evolution, pp. 137-146,

April 2006.

[17] van der Hoek, A., Heimbigner, D., and Wolf, A. L.,

“Versioned software architecture”, In ACM

Proceedings of the third international workshop on

Software architecture, pp. 73-76, November 1998.

[18] Jouault, F. and Kurtev, I., “Transforming models with

ATL”, In Satellite Events at the MoDELS 2005

Conference, pp. 128-138, Springer Berlin Heidelberg,

January 2006.

[19] Steinberg, D., Budinsky, F., Merks, E., and Paternostro,

M., EMF: eclipse modeling framework, Pearson

Education, 2008.
[20] Biermann, E., Ehrig, K., Köhler, C., Kuhns, G.,

Taentzer, G., and Weiss, E., “Graphical definition of

in-place transformations in the eclipse modeling

framework”, In Model Driven Engineering Languages

and Systems, pp. 425-439, Springer Berlin Heidelberg,

2006.

http://www.eclipse.org/atl/

