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Abstract
In this paper, following the idea of Samet et al. (J. Nonlinear. Sci. Appl. 6:162-169,
2013), we establish a new fixed point theorem for a Meir-Keeler type contraction via
Gupta-Saxena rational expression which enables us to extend and generalize their
main result (Gupta and Saxena in Math. Stud. 52:156-158, 1984). As an application we
derive some fixed points of mappings of integral type.
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1 Introduction
It is well known that the contraction mapping principle of Banach [] was the starting
point of great discoveries and advances in mathematics, in particular in nonlinear analy-
sis. This principle was the subject of several extensions by means of various generalized
contractions (see, for example, [–]). Among the most relevant results in this direction
one can give that of Meir and Keeler [] who proved the following fixed point result.

Theorem . Let (X, d) be a complete metric space and let f be a mapping from X into
itself satisfying the following condition:

∀ε > ,∃δ(ε) >  such that ε ≤ d(x, y) < ε + δ(ε) �⇒ d
(
f (x), f (y)

)
< ε.

Then f has a unique fixed point u ∈ X. Moreover, for all x ∈ X, the sequence {f n(x)} con-
verges to u.

As pointed out in [], it is easy to observe that the conclusion of Banach theorem holds
for the contraction in Theorem . which is called a strict contraction, that is, it satisfies

d
(
f (x), f (y)

)
< d(x, y) for x �= y.

In , Gupta and Saxena proved the following fixed point result.
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Theorem . Let (X, d) be a complete metric space and let f be a continuous mapping
from X into itself satisfying

d
(
f (x), f (y)

) ≤ α
( + d(x, f (x)))d(y, f (y))

 + d(x, y)
+ α

d(x, f (x))d(y, f (y))
d(x, y)

+ αd(x, y)

for all x, y ∈ X, x �= y, where α, α, α are constants with α,α,α >  and α + α + α < .
Then f has a unique fixed point u ∈ X. Moreover, for all x ∈ X, the sequence {f n(x)} con-
verges to u.

For more details on this theorem, we refer, e.g., to [, ].
In this paper, we establish a new fixed point theorem of Meir-Keeler type involving

Gupta-Saxena expression which extends Theorem . in the case where α,α,α ∈ ], 
 [.

We also apply our theoretical results to contractions of integral type.

2 Main results
Our main result is the following theorem.

Theorem . Let (X, d) be a complete metric space and let f : X → X be a continuous
mapping. Assume that the following condition holds.

For any ε > , there exists δ(ε) >  such that

ε ≤ ( + d(x, f (x)))d(y, f (y))
 + d(x, y)

+
d(x, f (x))d(y, f (y))

d(x, y)
+ d(x, y) < ε + δ(ε)

�⇒ d
(
f (x), f (y)

)
< ε ()

for all x, y ∈ X with x �= y. Then f has a unique fixed point u ∈ X. Moreover, limn→∞ f n(x) =
u for any x ∈ X.

Proof It is easy to observe that condition () implies that

for x �= y or f (y) �= y,

d
(
f (x), f (y)

)
<




[
( + d(x, f (x)))d(y, f (y))

 + d(x, y)
+

d(x, f (x))d(y, f (y))
d(x, y)

+ d(x, y)
]

. ()

Let x ∈ X and consider the sequence {xn} = {f n(x)}n≥. We will prove that {xn} is a
Cauchy sequence in X. If there exists l ∈ N such that xl = xl+ , then clearly xl is a fixed
point of f . Now assume that xk �= xk+ for all k ∈N. Define

sn = d(xn, xn+), ∀n ∈ N.

Following (), we obtain that

sn = d
(
f (xn–), f (xn)

)

<



( + d(xn–, xn))d(xn, xn+)
 + d(xn–, xn)

+



d(xn–, xn)d(xn, xn+)
d(xn–, xn)

+



d(xn–, xn)

=



d(xn, xn+) +



d(xn–, xn) =



sn +



sn–.
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This results in

sn < sn–, ∀n ∈N,

that is, the sequence {sn} is decreasing. Then sn converges to some s ≥ ; and, moreover,
sn ≥ s, ∀n ≥ . We also have sn + sn– → s as n → +∞. From (), if s > , there exists
δ(s) >  such that

s ≤ sn + sn– < s + δ(s)

implies

d
(
f (xn–), f (xn)

)
= d(xn, xn+) = sn < s,

which contradicts sn ≥ s. Thus, we deduce that

sn →  as n → +∞.

Now, let

δ′(ε) = min

{
δ

(
ε



)
,
ε


, 

}
.

By the convergence of the sequence {d(xn, xn+)} to , there exists k ∈N such that

d(xl, xl+) <
δ′(ε)


, ∀l ≥ k. ()

Now, we define the set � by

� =
{

xp

∣
∣∣ p ≥ k, d(xp, xk ) <

ε


+

δ′(ε)


}
.

We will prove that

f (�) ⊂ �. ()

Clearly, for γ ∈ �, there exists p ≥ k such that γ = xp and d(xp, xk ) < ε
 + δ′(ε)

 . If p = k,
we have f (γ ) = xk+ ∈ � by (). Then we will assume that p > k. We distinguish two cases
as follows.

() First case: Assume that

ε


≤ d(xp, xk ) <

ε


+

δ′(ε)


. ()

First, we will show that

ε


≤ 


( + d(xp, xp+))d(xk , xk+)

 + d(xp, xk )
+




d(xp, xp+)d(xk , xk+)
d(xp, xk )

+



d(xp, xk )

<
ε


+

δ′(ε)


. ()
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From (), we have

ε


≤ 


d(xp, xk )

≤ 


( + d(xp, xp+))d(xk , xk+)
 + d(xp, xk )

+



d(xp, xp+)d(xk , xk+)
d(xp, xk )

+



d(xp, xk ). ()

Moreover, by using () and (), we get




( + d(xp, xp+))d(xk , xk+)
 + d(xp, xk )

+



d(xp, xp+)d(xk , xk+)
d(xp, xk )

+



d(xp, xk )

≤ 


d(xk , xk+) +



d(xk , xk+)d(xp, xp+)
d(xp, xk )

+



d(xp, xk )

<



δ′(ε)


+



d(xp, xp+) +



d(xp, xk )

<
δ′(ε)


+




δ′(ε)


+



(
ε


+

δ′(ε)


)

=
ε


+

δ′(ε)


<
ε


+

δ′(ε)


.

Then we obtain




( + d(xp, xp+))d(xk , xk+)
 + d(xp, xk )

+



d(xp, xp+)d(xk , xk+)
d(xp, xk )

+



d(xp, xk )

<
ε


+

δ′(ε)


. ()

From () and (), we deduce that () is satisfied. In this case, the inequality

ε


≤ ( + d(xp, f (xp)))d(xk , f (xk ))

 + d(xp, xk )
+

d(xp, f (xp))d(xk , f (xk ))
d(xp, xk )

+ d(xp, xk )

<
ε


+ δ′(ε)

implies by () that

d
(
f (xp), f (xk )

)
<

ε


. ()

Now, using the triangular inequality together with () and (), we obtain that

d
(
f (xp), xk

) ≤ d
(
f (xp), f (xk )

)
+ d

(
f (xk ), xk

)

<
ε


+

δ′(ε)


<
ε


+

δ′(ε)


.

This implies that f (γ ) = f (xp) = xp+ ∈ �.
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() Second case: Suppose that

d(xp, xk ) <
ε


. ()

From (), we infer that

d
(
f (xp), xk

) ≤ d
(
f (xp), f (xk )

)
+ d

(
f (xk ), xk

)

<



( + d(xp, xp+))d(xk , xk+)
 + d(xp, xk )

+



d(xp, xp+)d(xk , xk+)
d(xp, xk )

+



d(xp, xk ) + d(xk+, xk )

≤ 


d(xp, xp+)d(xk , xk+)
 + d(xp, xk )

+



d(xp, xp+)d(xk , xk+)
d(xp, xk )

+



d(xp, xk ) +



d(xk+, xk ). ()

On the other hand, from () we have

d(xk , xk+)
 + d(xp, xk )

≤ d(xk , xk+) <
δ′(ε)


< .

We consider the following two situations.
(i) If d(xk , xk+) ≤ d(xk , xp), then () gives

d
(
f (xp), xk

)
<




d(xp, xp+) +



d(xp, xp+) +



d(xp, xk ) +



d(xk+, xk ).

From () and (), we deduce that

d
(
f (xp), xk

)
<




(
δ′(ε)



)
+




(
ε



)
+




(
δ′(ε)



)

=
δ′(ε)


+

ε



<
δ′(ε)


+

ε


.

(ii) If d(xk , xk+) > d(xk , xp), then

d
(
f (xp), xk

) ≤ d(xp+, xp) + d(xp, xk )

< d(xp+, xp) + d(xk , xk+)

<
δ′(ε)


+

δ′(ε)


=
δ′(ε)



<
δ′(ε)


+

ε


.
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In both situations (i) and (ii), we have f (γ ) = f (xp) = xp+ ∈ �. Thus, () holds and

d(xm, xk ) <
ε


+

δ′(ε)


, ∀m > k. ()

Now, ∀m, n ∈N satisfying m > n > k, by (), we have

d(xm, xn) ≤ d(xm, xk ) + d(xn, xk ) <
ε


+ δ′(ε) <

ε


+

ε


= ε.

Therefore, {xn} is a Cauchy sequence in X.
Since (X, d) is a complete metric space, then there exists u ∈ X such that xn → u as

n → +∞. The fact that xn+ = f (xn) and the continuity of f imply that u = f (u), that is, u is
a fixed point of f .

To show the uniqueness, we assume that u′ is another fixed point of f . From () it follows
that

d
(
u, u′) = d

(
f (u), f

(
u′)) <




(
 + d(u, u)d(u′, u′)

 + d(u, u′)

)
+




d(u, u)d(u′, u′)
d(u, u′)

+



d
(
u, u′)

=



d
(
u, u′),

which is a contradiction. This proves the uniqueness of the fixed point and completes the
proof of the theorem. �

Now, we show that the result of Gupta and Saxena [], where α,α,α ∈ ], 
 [, is a

particular case of Theorem ..

Corollary . (Gupta and Saxena []) Let (X, d) be a complete metric space and f be a
continuous mapping from X into itself. Assume that f satisfies

∀x, y ∈ X, x �= y,

d
(
f (x), f (y)

) ≤ k
(

( + d(x, f (x)))d(y, f (y))
 + d(x, y)

+
d(x, f (x))d(y, f (y))

d(x, y)
+ d(x, y)

)
, ()

where k ∈ ], 
 [ is a constant. Then f has a unique fixed point u ∈ X. Moreover, ∀x ∈ X, the

sequence {f n(x)} converges to u.

Proof Let ε > . If we take

δ(ε) = ε

(

k

– 
)

,

then, whenever

ε ≤ ( + d(x, f (x)))d(y, f (y))
 + d(x, y)

+
d(x, f (x))d(y, f (y))

d(x, y)
+ d(x, y) < ε + δ,

d
(
f (x), f (y)

) ≤ k
(

( + d(x, f (x)))d(y, f (y))
 + d(x, y)

+
d(x, f (x))d(y, f (y))

d(x, y)
+ d(x, y)

)

< k
(
ε + δ(ε)

)
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= kε + kδ(ε)

= kε +
kε

k
– kε

= ε.

Notice that since k < 
 , then ε

k > ε. Thus the condition () of Theorem . is satisfied,
which completes the proof. �

Notice that the contraction mapping of Gupta and Saxena is a not a strict contraction,
but k-contraction. Therefore, Theorem . is an extension of Gupta-Saxena result.

3 Applications
In this section, following the idea of Samet et al. [], we will give an integral version of
Gupta-Saxena result.

We start with the following theorem.

Theorem . Let (X, d) be a metric space and let f be a self-mapping defined on X. Assume
that there exists a function ρ from [, +∞[ into itself satisfying the following:

(i) ρ() =  and ρ(t) >  for every t > ;
(ii) ρ is nondecreasing and right continuous;

(iii) for every ε > , there exists δ(ε) >  such that

ε ≤ ρ

(
( + d(x, f (x)))d(y, f (y))

 + d(x, y)
+

d(x, f (x))d(y, f (y))
d(x, y)

+ d(x, y)
)

< ε + δ(ε)

�⇒ ρ
(
d

(
f (x), f (y)

))
< ε

for all x, y ∈ X with x �= y.
Then () is satisfied.

Proof Fix ε > . Since ρ(ε) > , by (iii), for ρ(ε) there exists θ >  such that

ρ(ε) ≤ ρ

(
( + d(x, f (x)))d(y, f (y))

 + d(x, y)
+

d(x, f (x))d(y, f (y))
d(x, y)

+ d(x, y)
)

< ρ(ε) + θ

�⇒ ρ
(
d

(
f (x), f (y)

))
< ρ(ε). ()

From the right continuity of ρ , there exists δ >  such that ρ(ε +δ) < ρ(ε)+θ . Fix x, y ∈ X,
x �= y such that

ε ≤ ( + d(x, f (x)))d(y, f (y))
 + d(x, y)

+
d(x, f (x))d(y, f (y))

d(x, y)
+ d(x, y) < ε + δ.

Since ρ is nondecreasing, we deduce

ρ(ε) ≤ ρ

(
( + d(x, f (x)))d(y, f (y))

 + d(x, y)
+

d(x, f (x))d(y, f (y))
d(x, y)

+ d(x, y)
)

< ρ(ε + δ) < ρ(ε) + θ .
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Then, by (), we have

ρ
(
d

(
f (x), f (y)

))
< ρ(ε),

which implies that d(f (x), f (y)) < ε. Then () is satisfied and this completes the proof. �

Now, we denote by 	 the set of all mappings h : [, +∞[→ [, +∞[ satisfying:
(i) h is continuous and nondecreasing;

(ii) h() =  and h(t) >  for all t > .

Corollary . Let (X, d) be a metric space and let f be a mapping from X into itself. Assume
that for each ε > , there exists δ(ε) such that

ε ≤ h
(

( + d(x, f (x)))d(y, f (y))
 + d(x, y)

+
d(x, f (x))d(y, f (y))

d(x, y)
+ d(x, y)

)
< ε + δ(ε)

�⇒ h
(
d

(
f (x), f (y)

))
< ε

for all x, y ∈ X, with x �= y, where h ∈ 	 is a given function. Then () is satisfied.

Proof This follows immediately from Theorem . since every continuous function h :
[, +∞[→ [, +∞[ is right continuous. �

As a consequence of this corollary, we have another result.

Corollary . Let (X, d) be a metric space and let f be a mapping from X into itself. Let ϕ

be a locally integrable function from [, +∞[ into itself such that
∫ t

 ϕ(s) ds >  for all t > .
Assume that for each ε >  there exists δ(ε) such that

ε ≤
∫ (+d(x,f (x)))d(y,f (y))

+d(x,y) + d(x,f (x))d(y,f (y))
d(x,y) +d(x,y)


ϕ(t) dt < ε + δ(ε)

�⇒
∫ d(f (x),f (y))


ϕ(t) dt < ε. ()

Then () is satisfied.

Now, we are able to obtain an integral version of Gupta-Saxena result.

Corollary . Let (X, d) be a complete metric space and let f be a continuous mapping
from X into itself. Let ϕ be a locally integrable function from [, +∞[ into itself such that
∫ t

 ϕ(s) ds >  for all t > . Assume that f satisfies the following condition.
For all x, y ∈ X, x �= y,

∫ d(f (x),f (y))


ϕ(t) dt ≤ μ

∫ (+d(x,f (x)))d(y,f (y))
+d(x,y) + d(x,f (x))d(y,f (y))

d(x,y) +d(x,y)


ϕ(t) dt, ()

where μ ∈ ], [. Then f has a unique fixed point u ∈ X. Moreover, for any x ∈ X, the se-
quence {f n(x)} converges to u.
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Proof Let ε > . It is easy to observe that () is satisfied for δ(ε) = ε( 
μ

– ). Then () holds
and this completes the proof. �

Remark . Note that the result of Corollary . can be established from Corollary .
by taking ϕ ≡  and μ = k, k ∈ ], 

 [. Clearly, for this choice, () becomes

d
(
f (x), f (y)

) ≤ k
(

( + d(x, f (x)))d(y, f (y))
 + d(x, y)

+
d(x, f (x))d(y, f (y))

d(x, y)
+ d(x, y)

)
,

which is exactly the contractive condition of Corollary ..
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