
Comparison Study of Metamodels and Models
Co-Evolution Approaches

F. Anguel
Chadli Bendjedid University.

El Tarf, Algeria.
LISCO Laboratory.

Badji Mokhtar University.
Annaba, Algeria

fanguel@yahoo.fr

A. Amirat
Mohammed Chérif Messaadia University.

 Souk-Ahras, Algeria
abdelkrim.amirat@yahoo.com

N. .Bounour
LISCO Laboratory.

Badji Mokhtar University.
Annaba, Algeria

nora_bounour@yahoo.fr

Abstract— Models have been used in various engineering
fields to help managing complexity and represent information in
different abstraction levels according to specific notation and
stakeholder’s viewpoint. Model-Driven-Engineering (MDE) gives
basic principles for the use of models as primary artefacts
throughout the software development phases. Models are defined
using modelling languages defined as metamodels. When a
metamodel evolves, models may no longer conform to it. To be
able to use these models with the new modelling language, they
need to be migrated. In fact, several approaches have been
proposed addressing this problem. Some of these approaches
tackle the problem by specifying manual solutions. Others either
propose matching mechanisms to adapt models or define coupled
operator for performing migration. In this paper, w e introduce
co-evolution problem, we give an overview of different
approaches to the problem and compare them. As a
complementary result we conclude with directions of future
work.

Keywords— Model driven engineering, Model, Metamodel,
 Co-evolution, Transformation,

I. INTRODUCTION

Modelling is essential to human activity because every
action is preceded by the construction (implicit or explicit) of
a model [1]. There are plenty of practical usages of models;
particularly in computer science where software models are
constructed. Meta-modelling has become the key technology
to define domains specific modelling languages for model-
driven engineering (MDE). MDE is increasingly emerging as
a discipline which strictly prescribes designers to develop
software in terms of models rather than programs [2].
According to this perspective, models are leveraged to
first-class status. Evolution is unavoidable and affects the
whole software lifecycle. Analogously to software,
metamodels are subject to evolutionary pressure too [3].
However, changing a metamodel might compromise the
related artefacts, whose validity must be restored. In fact
modelling languages can change quite frequently which
requires the evolution of their metamodels as well as the
migration (or adaptation) of their dependent artefacts such as
models, editors, interpreters, transformations. Recently,
several approaches addressing the problem of co-evolution

have been proposed. Mostly, focussing on metamodel and
model co-evolution (i.e. model migration). The model
migration is a crucial activity and is intrinsically complex and
results in a time consuming and error-prone [4] process if no
adequate support is provided. Building an automated
migration strategy is not trivial and complicated as it has to
ensure the preservation of the meaning of a possibly unknown
set of models.

In this survey, we discuss the state-of the-art in metamodel
and model co-evolution approaches highlighting their
strengths and weaknesses, and then we compare a selected set
from the described approaches using general criteria that we
deem important for model migration. This study allowed us
defining some guidelines to develop a novel approach to
manage metamodel and model co-evolution.

The remainder of this paper is organised as follows, in
section 2 basic concepts related to model and metamodel
co-evolution are defined. In section 3 we present an overview
of co-evolution approaches in MDE with their categorisation.
In section 4 we compare them according to general criteria. In
section 5 we define some guidelines in order to develop novel
model migration approaches. Finally in section 6 we present
our conclusion.

II. MODEL AND METAMODEL CO-EVOLUTION

An MDE system basically consists of metamodels, models,
and transformations. A model represents a view of a system
and is defined in the language of its metamodel. In other
words, a model contains elements conforming to concepts and
relationships expressed in its metamodel. A metamodel can be
given to define correct models. In the same way a model is
described by a metamodel, a metamodel in turn has to be
specified in a rigorous manner; this is done by means of meta-
metamodels. This may be seen as a minimal definition in
support of the basic MDE principle “Everything is a model”
[1]. The two core relations associated to this principle are
called representation “representedBy” and conformance
“conformTo”. In this respect, OMG [5] has introduced the
four level architecture which organizes artefacts in a
hierarchy of model layers (M0, M1, M2, and M3). Models at
every level conform to a model belonging to the upper level.

Symposium on Complex Systems and Intelligent Computing (CompSIC)
University of Souk Ahras - Université Mohamed Chérif Messaadia de Souk-Ahras
http://www.univ-soukahras.dz/en/publication/article/413

http://www.univ-soukahras.dz/en/publication/article/413

M0 is not part of the modelling world, so the four level
architecture should more precisely be named 3+1 architecture
[2] as depicted in Fig.1. One of the best-known metamodels in
the MDA is the UML metamodel; MOF (Meta-Object Facility)
is the metametamodel of OMG that defines UML [5].

Due to changing requirements and technological progress
and like other software artefacts, metamodels evolve over time
during their life cycle [3]. The addition of new features and/or
the resolution of bugs may change metamodels, thus causing
possible problems of inconsistency to existing models which
conform to the old version of the metamodel and may become
not conform to the new version. Therefore to maintain
consistency, metamodel evolution requires model adaptation,
i.e., model migration, as shown in Fig. 2; so these two steps
are referred as model and metamodel co-evolution.
Furthermore, model adaptations should be done by means of
model transformations. A model transformation takes as input
a model conforming to a given metamodel and produces as
output another model conforming to a given metamodel.

Fig.1. The 3+1 MDA organisation [2]

 Fig.2. Metamodel and model co-evolution [1].

III. EXISTING APPROACHES

Over the last few years, the problem of metamodel
evolution and model co-evolution has been investigated by
several works [6-13]. Each approach presents strengths and
some limits. Firstly we present a categorisation of these
approaches and then we provide an overview of each one.

A. Classification of approaches

The Actual Categorisations of evolution and co-evolution
approaches focuses either on the information type considered
during evolution either on the technique used for migration
strategy. Some works classify kinds of model evolution tasks
into two categories: syntactic model evolution and semantic
model evolution [6]:

• Syntactic model evolution: Basically, this method will
modify the existing domain models such that the models
obey the syntactic rules of the new language (metamodel).
One drawback to a syntactic evolution is that the new data
models will not necessarily reflect the intended semantics
of the old domain. However, syntactic migration can be
fully automatable.

• Semantic model evolution is a transformation or a set of
transformations that rewrites a model to have the same
meaning in its new language that it had in its original
language. Semantic migration requires manual adaptation
from the evolver.

Other researches [14], classify model migration
approaches into three categories: manual specification,
operator-based and matching metamodel approaches.

• In manual specification, the migration strategy is encoded
manually by the metamodel developer, typically using a
general purpose programming language (e.g. Java) or a
model-to-model transformation language (such as QVT [5],
or ATL [15]. Approaches classified as manual
specification are essentially Sprinkle approach [6],
Narayanan approach [6] and Rose approach [7].

• Operator-based approaches specify metamodel evolution
by a sequence of operator applications. Each operator
application can be coupled to a corresponding model
migration strategy. In these approaches a library of co-
evolutionary operators is provided. By composing co-
evolutionary operators, metamodel evolution can be
performed and a migration strategy can be generated
without writing any code. The significant approaches of
this category are Wachsmuth approach [12] and
Herrmannsdoerfer approach [13].

• In metamodel matching, a migration strategy is inferred by
analyzing the evolved metamodel and the metamodel
history [8]. Metamodel matching approaches use one of
two categories of metamodel history; either the original
metamodel (differencing approaches) or the changes made
to the original metamodel to produce the evolved
metamodel (change recording approaches).In this category
we find several approaches like Gruschko approach [9],
Cicchetti approach [10] and Garcés approach [11].

B. Approaches Overview

1) A domain specific visual language (DSVL) for domain
model evolution: Sprinkle’s approach [6],[16] defines a
domain specific visual language (DSVL) developed expressly
for the evolution of domain specific visual languages. It
provides an interface that is specialized for describing an
algorithm to transform domain models from one DSVL to
another. The migration of domain models is performed by
using syntactic patterns of domain concepts that are mapped to
patterns of evolved domain concepts through mapping rules;
these rules follow a “pattern implies consequence” form. The
mapping are associations between pattern and consequences,
or attributes of a pattern or consequence, and are formed from
a fundamental set of operations such as “Create”, “Create
within”, “Becomes” and “Delete”. The Transformation is
made up of sequenced Transforms that are used to describe the

Symposium on Complex Systems and Intelligent Computing (CompSIC)
University of Souk Ahras - Université Mohamed Chérif Messaadia de Souk-Ahras
http://www.univ-soukahras.dz/en/publication/article/413

http://www.univ-soukahras.dz/en/publication/article/413

specific differences between metamodels. Each transform will
generate an XSL document. The model of computation for
sequenced transforms operates on the input domain models
with the first transform and continues on through until there
are no further transforms to apply. In this approach, if the user
is familiar with metamodeling concepts with very little
guidance that can create a domain evolution transformation
that will evolve the domain models in the evolved DSVL [16].
The powerful of the provided language is creating syntax
patterns in any form, since the pattern language is derived
from the metamodeling language. However efficiency of the
conceived transformation algorithm depends on the ability of
the modeler. We note also that the language is unable to check
for the correctness of the transformed domain models [6].

2) Automatic Domain Model Migration to Manage
Metamodel evolution: Narayanan’s approach defines MCL
language “Model change language” [7] using a MOF-
compliant metamodel. MCL is a high-level visual language for
describing metamodel evolution. MCL defines a set of idioms
and a composition approach for specification of the migration
rules. Rules can be used to specify most of the common
metamodel evolution cases (e.g. adding new concept,
modifying an element, deleting an element, adding new
subtypes and modifying local, and automate the migration of
instance models. MCL used basic pattern for typical
migration scenarios that consists of an LHS element from the
old metamodel, an RHS element from the new metamodel,
and a “MapsTo” relation between them. Another special link,
called the ”WasMappedTo” link, in the pattern is used to
match a node that was previously migrated, by an earlier
migration rule. As opposed to providing a general
transformation interface for the migrator like in sprinkle
approach [16], MCL provides a Domain specific modeling
language DSML as the specification language, so MCL is
more efficient. We note that MCL provide straightforward
graphical syntax and semantics is rather simple, MCL is
modular, expressive and allow reusing of knowledge
migration. MCL can also specify complex relations between
meta-entities. But, in MCL some rules must be resolved
manually and there are cases that depend on the intention of
the transformation developer.

3) Model Migration with Epsilon Flock: In Rose
approach, Flock is a domain-specific language for specifying
and executing model migration strategies [8]. Flock uses a
model connectivity framework, which decouples migration
from the representation. Flock has a compact syntax. Much of
its design and implementation is focused on the runtime. Flock
automatically maps each element of the original model to an
equivalent element of the migrated model using a novel
conservative copying algorithm and user-defined migration
rules, when original model elements conform to the evolved
metamodel The conservative copy algorithm copies model
elements from original to migrated model. Hence the user
specifies migration only for model elements which no longer
conform to the evolved metamodel. Flock migration strategies
are organized into modules, which inherit from EOL modules.
Modules comprise any number of rules. Flock delegate
conformance checking responsibilities to EMC. It seems clear
that approach gets its strength from the connectivity layer of

epsilon that allow Flock to use models represented in MDR,
XML, and CZT and Flock is able to be extended to support
further modelling technologies. However encoding migration
strategy becomes more difficult for larger metamodels since
there is no tool support for analyzing the changes between
original and evolved metamodel.

4) Towards synchronizing models with evolving
metamodels: Gruschko’s approach [9] is model-to-model
transformation. Envisioned steps of the proposed model
migration approach are: firstly model versions are compared
and the differences are translated into the delta model. The
found changes are classified into categories. Then the user
input needed for not automatically resolvable changed
migration is gathered. Finally an appropriate algorithm for
model migration has to be determined, and the migration is
executed. The proposed approach minimizes the manual effort
required to perform model migration in face of metamodel
changes. But, the changes are assumed to occur individually,
and using relations instead of difference models does not
allow distinguishing meta-element updates from
deletion/addition patterns.

5) Transformational approach to model co-evolution:
Cicchetti’s approach [10] is a co-adaptation approach given as
a higher-order model transformation which takes the
difference model recording the metamodel evolution and
generates a model transformation able to produce the co-
evolution of models. The approach consists of the following
steps: firstly automatic decomposition of the difference
model (�) in two disjoint (sub) models, which denote
breaking resolvable (�R) and unresolvable changes (�-R); if
(�R) and (�-R) are parallel independent then the
corresponding co-evolutions are generated separately,
however if (�R) and (�-R) are parallel dependent, they are
further refined to identify and isolate the interdependencies
causing the interferences. This approach is implemented and
available for download [17]. This approach does not specify
explicitly how the difference models are calculated, only that
they can be obtained by using a tool such as EMFCompare or
SiDiff. We note that isolation of the interdependencies
between changes is not always possible.

6) Managing Model Adaptation by precise Detection of
Metamodel Changes: Garcés approach [11] consists of a
three-step adaptation in order to adopt models to their
evolving metamodels and thus follow a matching approach to
co-evolution. Firstly a matching process computes
automatically the equivalences and differences between two
metamodels versions by incrementally executing a set of
heuristics. The computed equivalences and differences are
saved in a matching model. Secondly an adaptation
transformation is derived by a higher-order transformation
tacking as input the matching model. The produced
transformation is written in a particular transformation
language (e.g. ATL, XSLT, SQL-like). This transformation
preserves unchanged model elements and migrate changed
ones. Finally, the adaptation transformation is executed.
Authors prove that the proposed approach achieves a high
accuracy in detecting simple and complex changes and a good
performance of matching strategies is also proven. the family
of heuristics to design the constructs of the AtlanMod

Symposium on Complex Systems and Intelligent Computing (CompSIC)
University of Souk Ahras - Université Mohamed Chérif Messaadia de Souk-Ahras
http://www.univ-soukahras.dz/en/publication/article/413

http://www.univ-soukahras.dz/en/publication/article/413

Matching Language (AML), a Domain-Specific Language
(DSL) for expressing matching strategies [18]. We find that
this approach is powerful, because it allows computing
equivalences and differences between any pair of metamodels,
and matching step executes modularized heuristics that may be
plugged or unplugged on demand. The approach is generic,
heuristics are described in terms of KM3 concepts and it can
be implemented using other formalisms such as MOF or
EMFEcore. However, user assistance is required in some
strategies, and we note that semantically invalid combination
of heuristics can cause a runtime error, while an incorrect
combination results in the generation of an incorrect migration
transformation. Using heuristics is also ambiguous.

7) Metamodel Adaptation and Model Co-Adaptation:
Wachsmuth’s approach is a transformational approach to
assist metamodel evolution by stepwise adaptation [12]. The
steps are implemented as transformations in QVT Relations.
Each step forms a metamodel adaptation. Transformation is
classified according to its semantics and instance preservation
properties in three groups, namely refactoring, construction,
and destruction. This approach is characterized by the
possibility to reuse adaptation scripts in similar adaptation
scenario and it prevents inconsistencies. But, we find that this
approach is very limited because of the atomicity of the
changes, which is far from being realist.

8) COPE-automating coupled evolution of metamodels
and models: Herrmannsdoefer‘s approach [13] records the
evolution as a sequence of coupled operations in an explicit
history model. Each coupled operation encapsulates both
metamodel adaptation as well as reconciling model migration.
Existing models can be automatically migrated to the adapted
version of the metamodel. When no co-evolutionary operator
is appropriate COPE allows metamodel developers to specify
custom migration strategies, using a general purpose
programming language. COPE provides additional tool
support to inspect, refactor and recover the coupled evolution.
This approach facilitates metamodel analysis, it offers a
greater degree of reusing recurring coupled operations in
model migration, and it uses large libraries of co-evolutionary
operators [19] and improves their navigability by making
clearer communication of operators. We note also that COPE
is open source. However, determining which sequence of
operations will produce a correct migration is not always
straightforward specifically for large metamodels. The custom
migration in COPE is specified in general purpose
programming language which differs from migration strategy
language.

IV. COMPARATIVE ANALYSIS

In this section we present a comparative analysis of model
and metamodel co-evolution approaches. Approaches
described are compared with respect of the general criteria that
represent features of these approaches: specification of the
evolution, evolution source, migration target, migration
language and migration extensibility. The selected criteria are
general and could be used to evaluate any co-evolution
approach in MDE. Other evaluation criteria, such as
performance and conciseness are also feasible to evaluate
model migration. Therefore, due to our aim which is

identifying requirements for co-evolution approach, we
decided to explore in this analysis only these general criteria.

A. Criteria of comparative Analysis

1) Evolution Specification: The evolution of a
metamodel is implicitly specified by the original and the
evolved version of the metamodel or it is specified explicitly.
Many approaches are based on explicit evolution
specifications. We distinguish two styles of such
specifications [20]: Imperative specifications describe the
evolution by a sequence of applications of change operations.
In contrast, declarative specifications model the evolution by a
set of differences between the original and evolved version of
a metamodel. The specification criterion indicates if the
evolution is imperative, declarative or implicit.

2) Evolution source: Explicit evolution specifications
can have different sources. So, the evolution can be user-
defined where the user specifies the evolution manually.
Another way is recording evolution while the user edits
metamodel changes. The prominent source evolution is the
automated detection of the evolution based on the original and
evolved version of a definition. We distinguish two kinds of
detections: First, detections which are only able to detect
simple changes like additions and deletions. For some
approaches, this includes the detection of moves as well.
Second, detections which can also detect more complex
changes, for example extracting and in-lining of constructs.

3) Migration Target: Migration might be performed
either in-place or out-of-place. In the first case, the target of
the migration is the original model itself which is modified
during migration. In the second case, the target is a new
migrated model which is created during migration. The
original model is preserved.

4) Migration Language: Migration might be custom
defined as a domain specific migration language. Alternatively,
an existing transformation language (TL) can be reused.
Another way is to add migration support to a general-purpose
programming language (GPL) in form of an API or an
embedded domain specific language.

5) Migration Extensibility: This criterion defines if
extensions are supported by the studied approaches. Three
kinds of extensibility can be supported. The fixed migration
can be completely defined by the developer and only the
developer can add new parts in the migration strategy. Another
kind of migration is the over-writable strategy where the user
can overwrite and customize single applications of a migration.
The third kind consists of an extendable migration where the
user can add completely new parts in the migration strategy.

B. Co-Evolution Approaches Comparison

The table 1 lists approaches presented in section 3 and
shows their comportment relatively to studied criteria.

Manual specification approaches Sprinkle, Narayanan and
Rose provide custom model transformation languages to
manually specify the model migration. Which reduce the
effort for building a migration specification For instance;
migrations automatically copy model elements whose
metamodel definition has not changed [8].

Symposium on Complex Systems and Intelligent Computing (CompSIC)
University of Souk Ahras - Université Mohamed Chérif Messaadia de Souk-Ahras
http://www.univ-soukahras.dz/en/publication/article/413

http://www.univ-soukahras.dz/en/publication/article/413

TABLE 1. COMPARISON OF CO-EVOLUTION APPROACHES.

Approach Evolution Migration
 specification source Target Language Extensibility
Sprinkle Declarative User-defined Out custom Over-writable
Narayanan Declarative User-defined Out custom Over-writable
Rose Implicit - Out custom Over-writable
Gruschko Declarative Detected-simple Out TL/ETL Over-writable
Cicchetti Declarative Detected-complex Out TL/ATL Fixed
Garcès Imperative Detected-complex Out TL/ATL Extendable
Wachsmuth Imperative User-defined Out TL/QVT Fixed
Herremmandoerfer Imperative recorded in TL/Groovy Extendable

The user then overwrites this default behavior with the
intended migration. Visual languages introduced by Sprinkle
[6], [16] and Narayanan [7] specify the differences between
two versions of a GME-based and defines a model migration
based on these differences. Migration algorithms not covered
by MCL can be specified imperatively using a C++ API. Flock
is a textual migration language for EMF-based models [8].

Manual specification approaches Sprinkle, Narayanan and
Rose provide custom model transformation languages to
manually specify the model migration. Which reduce the
effort for building a migration specification For instance;
migrations automatically copy model elements whose
metamodel definition has not changed [8]. The user manual
specification approaches Sprinkle, Narayanan and Rose
provide custom model transformation languages to manually
specify the model migration. Which reduce the effort for
building a migration specification For instance; migrations
automatically copy model elements whose metamodel
definition has not changed [8]. The user then overwrites this
default behavior with the intended migration. Visual
languages introduced by Sprinkle [6], [16] and Narayanan [7]
specify the differences between two versions of a GME-based
and defines a model migration based on these differences.
Migration algorithms not covered by MCL can be specified
imperatively using a C++ API. Flock is a textual migration
language for EMF-based models [8].

Here, only the model migration is specified. Differences
between metamodel versions are not made explicit. Instead,
Flock automatically copies only those model elements which
conform to the evolved metamodel. The user then iteratively
redefines the migration specification to migrate non-
conforming elements. Manual specification approaches do not
provide a construct for the reuse of migration knowledge
across metamodels [20]. The unique feature of manual
specification approaches is a custom migration language for
overwriting a default migration manually. This feature
increases the expressivity of these approaches.

Metamodel Matching approaches automatically detect the
differences between two metamodel versions. These are stored
in a declarative difference model from which a migration
specification is generated. Gruschko approach support the
automatic detection of simple changes in Ecore metamodels
[9]. However, Cicchetti et al. also detect complex changes [10],
[17] the migration specification consists of a set of model

transformations to be executed consecutively. Since this is
prevented by interdependent changes. AML (Atlas Matching
Language) allows the user to parameterize the detection of
complex changes [11]. Therefore, the user combines existing
or user-defined heuristics to a matching algorithm. From a
difference model obtained by such an algorithm, an ATL
transformation specifying the migration is automatically
generated. For matching approaches, the unique feature is a
declarative evolution specification which is either recorded or
detected. This feature permits increasing automaticity by
automatic generating migration strategy.

Operation-based approaches provide a set of reusable
coupled operations that work at the metamodel level as well as
at the model level. Wachsmuth presents an operation suite for
the MOF metamodeling formalism, operations are classified
according to language and model preservation properties [12]
for migration, and the evolution specification is translated into
a QVT Relations model transformation. This approach is not
expressive enough to capture all kinds of migration scenarios,
due to the restricted set of high-level primitives [20]. COPE
[13] is a model migration tool that records the metamodel
adaptation as a sequence of operations in a history model.
COPE uses an imperative language and its migrating
transformations are executed in-place. Reuse of recurring
migration specifications through parameters and constraints
restricting allows reducing the effort associated with building
a model migration [22]. Migration specifications can become
so specific to a certain metamodel that reuse makes no sense
[22]. To express these complex migrations, COPE allows the
user to define a custom coupled operation by manually
encoding a model migration The unique feature of operation-
based approaches is an imperative evolution specification as a
sequence of operation applications. This feature favourites the
reuse which is a mean to reduce effort. Most approaches
perform out-of-place migration. Model transformation
languages generally do not support in-place transformations
with different source and target metamodels. However, COPE
[13] supports in-place migrations with a new transformation
language.

V. REQUIREMENTS

After analysing existing approaches and refereeing to other
works comparing migration approaches [21-22], we define the
following requirements of model and metamodel co-evolution
approach:

Symposium on Complex Systems and Intelligent Computing (CompSIC)
University of Souk Ahras - Université Mohamed Chérif Messaadia de Souk-Ahras
http://www.univ-soukahras.dz/en/publication/article/413

http://www.univ-soukahras.dz/en/publication/article/413

• The first one is increasing automaticity of model and
metamodel co-evolution in response to metamodel
evolution as far as possible. For that, It seems useful to
combine reusing feature of recurred operations as in
operator based approach and copying feature of unchanged
elements like in manual specification approaches, and also
introducing matching techniques to improve co-evolution
process [24].

• The second requirement is increasing clarity and
understandability of migration strategy by using matured
language of migration [22]. For example, It is benefit to
use the Eclipse Modelling Framework (EMF) [23] because
it is a well-known and widely used technology and as
transformation language ATL [15]. The use of standards
tools allows interoperability with other systems.

• The third requirement is increasing expressivity of
migration strategy by assuring user driven solution in one
hand and permitting extensibility in the other hand.

• The fourth requirement is to assure the flexibility approach
by using either recorded evolution or detected changes if
only the two versions of metamodel are given.

VI. CONCLUSIONS

The main purpose of this paper is to put the light on
metamodel and model co-evolution. Firstly we have study the
existing approaches that treat model migration in response to
metamodel evolution. We have seen different classification of
these approaches. Then we have selected some criteria that we
consider significant to evaluate the studied approaches, after
the comparison analysis process we find that no approach
cover the overall criteria.

Therefore driven by this analysis, we have defined
guidelines to solve co-evolution problem with more
expressivity and clarity and supporting change and
extensibility of migration strategy to ensure its correctness.
Furthermore, using standard tools like EMF and ATL allow
large diffusion of the solution and facilitate its interoperability
with other systems.

REFERENCES

[1] J., Bézivin, 2005. On the Unification Power of Models. Software and
Systems Modeling (SoSyM.), vol. 4(2), pp. 171–188.

[2] Bézivin, J.: In search of a basic principle for model driven engineering.
UPGRADE Eur. J. Inf. Prof. 5(2), 21–24 (2004)

[3] J.M., Favre, 2003. Meta-model and model co-evolution within the 3D
software space. In Proc. ELISA’03 Workshop. pp 98–109.

[4] M., Herrmannsdoerfer, S., Benz and E., Juergens. 2008. Automatability
of Coupled Evolution of Metamodels and Models in Practice” in Proc.
MoDELS’08. LNCS Springer, vol. 5301, pp. 645-659.

[5] OMG, ”MOF QVT Final Adopted Specification,” Available:
www.omg.org/docs/ptc/05-11-01.pdf , 2005.

[6] J. Sprinkle, 2003. Metamodel driven model migration. Phd. thesis,
Vanderbilt University.

[7] A. Narayanan, T. Levendovszky, D. Balasubramanian and G. Karsai,
“Automatic domain model migration to manage metamodel evolution,”
in Proc. MODELS'09, 2009, LNCS Springer, vol. 5795, pp. 706-711.

[8] L.M. Rose, D.S.Kolovos, R.F.Paige and F.A.C. Polack, 2010. Model
migration with Epsilon Flock. In Proc ICMT'10, 2010, LNCS
Springer, vol. 6142, pp. 184-198.

[9] B., Gruschko, D.S., Kolovos and R.F, Paige, 2007. Towards
synchronizing models with evolving metamodels. In Proc. the
International Workshop on Model-Driven Software Evolution.

[10] A., Cicchetti, D.Di., Ruscio, R., Eramo and A., Pierantonio, 2008.
Automating co-evolution in MDE. In Proc. EDOC’08 IEEE Computer
Society. pp 222-231.

[11] K., Garcès, F., Jouault, P., Cointe and J., Bézivin, 2009. Managing
Model Adaptation by Precise Detection of Metamodel Changes. In
Proc ECMDA-FA’09. LNCS Springer, vol. 5562. pp 34-49.

[12] G. Wachsmuth, 2007. Metamodel adaptation and model co-adaptation.
In Proc. ECOOP’07.LNCS Springer, vol. 4609, pp. 600-624.

[13] M., Herrmannsdoerfer, S., Benz, and E.Juergens, 2009. COPE –
automating coupled evolution of metamodels and models. In Proc.
ECOOP09. LNCS Springer, vol. 5653, pp. 52-76.

[14] L.M. Rose, D.S. Kolovos, R.F. Paige, and F.A.C. Polack, 2009. An
analysis of approaches to model migration. In Proc. Joint MoDSE-
MCCM Workshop,.

[15] F. Jouault and I. Kurtev, 2005. Transforming models with ATL. In
Proc. Satellite Events at MoDELS. LNCS Springer, vol. 3844, pp. 128-
138.

[16] J. Sprinkle and G. Karsai, 2004. A domain-specific visual language for
domain model evolution. Journal of Visual Languages and Computing.
vol. 15, pp. 291-307.

[17] A., Cicchetti, 2008. Difference Representation and Conflict
Management in Model-Driven Engineering. Phd. Thesis, Computer
science Dept University of L’Aquila.

[18] K., Garcès, F., Jouault, P., Cointe and J., Bézivin, 2009. A Domain
Specific Language for Expressing Model Matching. In Proc. IDM09.

[19] M. Herrmannsdoerfer, S. D. Vermolen, and G. Wachsmuth, “An
Extensive Catalog of Operators for the Coupled Evolution of
Metamodels and Models,” In SLE’10: LNCS, vol. 6563, pp. 163–182.
Springer,Berlin 2011.

[20] M.Herrmannsdoerfer, “COPE – A Workbench for the coupled
evolution of metamodels and models in Proc. SLE'10, 2010, pp. 286-
295.

[21] L.M. Rose, D.S.Kolovos, R.F.Paige and F.A.C. Polack, 2010.
Comparaison of Model migration Tools,. In Proc. MODELS’10.
LNCS Springer, vol. 6394,pp. 61–75.

[22] L.M. Rose, M. Herrmannsdoerfer, S. Mazanek, P.V. Gorp, S.
Buchwald, T. Horn, E. Kalnina, A.Koch, K. Lano, B. Schätz, M.
Wimmer, “Graph and model transformation tools for model migration,”
Software and System Modelling, 2012.

[23] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks,: “EMF: Eclipse
Modeling Framework 2.0,” Addison-Wesley , 2009.

[24] M.Herrmannsdörfer, G. Wachsmuth: “Coupled Evolution of Software
Metamodels and Models”. Book chapter pp 33-63. In “Evolving
Software Systems”. Mens, Tom, Serebrenik Alexander,
 Cleve, Anthony (Eds.), 404 p, Springer, 2014.

Symposium on Complex Systems and Intelligent Computing (CompSIC)
University of Souk Ahras - Université Mohamed Chérif Messaadia de Souk-Ahras
http://www.univ-soukahras.dz/en/publication/article/413

http://www.univ-soukahras.dz/en/publication/article/413

