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Abstract—   Models have been used in various engineering 
fields to help managing complexity and represent information in 
different abstraction levels according to specific notation and 
stakeholder’s viewpoint. Model-Driven-Engineering (MDE) gives 
basic principles for the use of models as primary artefacts 
throughout the software development phases. Models are defined 
using modelling languages defined as metamodels. When a 
metamodel evolves, models may no longer conform to it. To be 
able to use these models with the new modelling language, they 
need to be migrated. In fact, several approaches have been 
proposed addressing this problem. Some of these approaches 
tackle the problem by specifying manual solutions. Others either 
propose matching mechanisms to adapt models or define coupled 
operator for performing migration. In this paper, w e introduce 
co-evolution problem, we give an overview of different 
approaches to the problem and compare them. As a 
complementary result we conclude with directions of future 
work. 

Keywords— Model driven engineering, Model, Metamodel,  
                              Co-evolution, Transformation,  

I. INTRODUCTION 

Modelling is essential to human activity because every 
action is preceded by the construction (implicit or explicit) of 
a model [1]. There are plenty of practical usages of models; 
particularly in computer science where software models are 
constructed.  Meta-modelling has become the key technology 
to define domains specific modelling languages for model-
driven engineering (MDE).  MDE is increasingly emerging as 
a discipline which strictly prescribes designers to develop 
software in terms of models rather than programs [2]. 
According to this perspective, models are leveraged to  
first-class status. Evolution is unavoidable and affects the 
whole software lifecycle. Analogously to software, 
metamodels are subject to evolutionary pressure too [3]. 
However, changing a metamodel might compromise the 
related artefacts, whose validity must be restored. In fact 
modelling languages can change quite frequently which 
requires the evolution of their metamodels as well as the  
migration (or adaptation ) of their dependent artefacts such as 
models, editors, interpreters, transformations. Recently, 
several approaches addressing the problem of co-evolution 

have been proposed. Mostly, focussing on metamodel and 
model co-evolution (i.e. model migration). The model 
migration is a crucial activity and is intrinsically complex and 
results in a time consuming and error-prone [4] process if no 
adequate support is provided. Building an automated 
migration strategy is not trivial and complicated as it has to 
ensure the preservation of the meaning of a possibly unknown 
set of models. 

In this survey, we discuss the state-of the-art in metamodel 
and model co-evolution approaches highlighting their 
strengths and weaknesses, and then we compare a selected set 
from the described approaches using general criteria that we 
deem important for model migration. This study allowed us 
defining some guidelines to develop a novel approach to 
manage metamodel and model co-evolution.  

The remainder of this paper is organised as follows, in 
section 2 basic concepts related to model and metamodel  
co-evolution are defined. In section 3 we present an overview 
of co-evolution approaches in MDE with their categorisation. 
In section 4 we compare them according to general criteria. In 
section 5 we define some guidelines in order to develop novel 
model migration approaches. Finally in section 6 we present 
our conclusion. 

II. MODEL AND METAMODEL CO-EVOLUTION 

An MDE system basically consists of metamodels, models, 
and transformations. A model represents a view of a system 
and is defined in the language of its metamodel. In other 
words, a model contains elements conforming to concepts and 
relationships expressed in its metamodel. A metamodel can be 
given to define correct models. In the same way a model is 
described by a metamodel, a metamodel in turn has to be 
specified in a rigorous manner; this is done by means of meta-
metamodels. This may be seen as a minimal definition in 
support of the basic MDE principle “Everything is a model” 
[1]. The two core relations associated to this principle are 
called representation “representedBy” and conformance 
“conformTo”.  In this respect, OMG [5] has introduced the 
four level architecture which organizes artefacts in a 
hierarchy of model layers (M0, M1, M2, and M3). Models at 
every level conform to a model belonging to the upper level. 
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M0 is not part of the modelling world, so the four level 
architecture should more precisely be named 3+1 architecture 
[2] as depicted in Fig.1. One of the best-known metamodels in 
the MDA is the UML metamodel; MOF (Meta-Object Facility) 
is the metametamodel of OMG that defines UML [5]. 

Due to changing requirements and technological progress 
and like other software artefacts, metamodels evolve over time 
during their life cycle [3]. The addition of new features and/or 
the resolution of bugs may change metamodels, thus causing 
possible problems of inconsistency to existing models which 
conform to the old version of the metamodel and may become 
not conform to the new version. Therefore to maintain 
consistency, metamodel evolution requires model adaptation, 
i.e., model migration, as shown in Fig. 2; so these two steps 
are referred as model and metamodel co-evolution. 
Furthermore, model adaptations should be done by means of 
model transformations. A model transformation takes as input 
a model conforming to a given metamodel and produces as 
output another model conforming to a given metamodel. 

 

 

 
 
 
 
 
 
 
 
 
 
 

Fig.1.  The 3+1 MDA organisation [2] 
 
 
 
 

    
 
 
    Fig.2. Metamodel and model co-evolution [1]. 

III.  EXISTING APPROACHES 

Over the last few years, the problem of metamodel 
evolution and model co-evolution has been investigated by 
several works [6-13]. Each approach presents strengths and 
some limits. Firstly we present a categorisation of these 
approaches and then we provide an overview of each one. 

A. Classification of approaches 

The Actual Categorisations of evolution and co-evolution 
approaches focuses either on the information type considered 
during evolution either on the technique used for migration 
strategy. Some works classify kinds of model evolution tasks 
into two categories: syntactic model evolution and semantic 
model evolution [6]:   

• Syntactic model evolution:  Basically, this method will 
modify the existing domain models such that the models 
obey the syntactic rules of the new language (metamodel). 
One drawback to a syntactic evolution is that the new data 
models will not necessarily reflect the intended semantics 
of the old domain. However, syntactic migration can be 
fully automatable. 

• Semantic model evolution is a transformation or a set of 
transformations that rewrites a model to have the same 
meaning in its new language that it had in its original 
language. Semantic migration requires manual adaptation 
from the evolver. 

Other researches [14], classify model migration 
approaches into three categories:  manual specification, 
operator-based and matching metamodel approaches.  

• In manual specification, the migration strategy is encoded 
manually by the metamodel developer, typically using a 
general purpose programming language (e.g. Java) or a 
model-to-model transformation language (such as QVT [5], 
or ATL [15]. Approaches classified as manual 
specification are essentially Sprinkle approach [6],  
Narayanan approach [6] and  Rose approach [7]. 

• Operator-based approaches specify metamodel evolution 
by a sequence of operator applications. Each operator 
application can be coupled to a corresponding model 
migration strategy. In these approaches a library of co-
evolutionary operators is provided. By composing co-
evolutionary operators, metamodel evolution can be 
performed and a migration strategy can be generated 
without writing any code. The significant approaches of 
this category are Wachsmuth approach [12] and 
Herrmannsdoerfer approach [13]. 

• In metamodel matching, a migration strategy is inferred by 
analyzing the evolved metamodel and the metamodel 
history [8]. Metamodel matching approaches use one of 
two categories of metamodel history; either the original 
metamodel (differencing approaches) or the changes made 
to the original metamodel to produce the evolved 
metamodel (change recording approaches).In this category 
we find several approaches like Gruschko approach [9], 
Cicchetti approach [10] and Garcés approach [11]. 

B. Approaches Overview  

1)   A domain specific visual language (DSVL) for domain 
model evolution:  Sprinkle’s approach [6],[16] defines a 
domain specific visual language (DSVL) developed expressly 
for the evolution of domain   specific visual languages.   It 
provides an interface that is specialized for describing an 
algorithm to transform domain models from one DSVL to 
another. The migration of domain models is performed by 
using syntactic patterns of domain concepts that are mapped to 
patterns of evolved domain concepts through mapping rules; 
these rules follow a “pattern implies consequence” form. The 
mapping are associations between pattern and consequences, 
or attributes of a pattern or consequence, and are formed from 
a fundamental set of operations such as “Create”, “Create 
within”, “Becomes” and “Delete”. The Transformation is 
made up of sequenced Transforms that are used to describe the 
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specific differences between metamodels. Each transform will 
generate an XSL document. The model of computation for 
sequenced transforms operates on the input domain models 
with the first transform and continues on through until there 
are no further transforms to apply. In this approach, if the user 
is familiar with metamodeling concepts with very little 
guidance that can create a domain evolution transformation 
that will evolve the domain models in the evolved DSVL [16]. 
The powerful of the provided language is creating syntax 
patterns in any form, since the pattern language is derived   
from the metamodeling language. However efficiency of the 
conceived transformation algorithm depends on the ability of 
the modeler. We note also that the language is unable to check 
for the correctness of the transformed domain models [6]. 

2)  Automatic Domain Model Migration to Manage 
Metamodel evolution:  Narayanan’s approach defines MCL 
language “Model change language” [7] using a MOF-
compliant metamodel. MCL is a high-level visual language for 
describing metamodel evolution. MCL defines a set of idioms 
and a composition approach for specification of the migration 
rules. Rules can be used to specify most of the common 
metamodel evolution cases (e.g. adding new concept, 
modifying an element, deleting an element, adding new 
subtypes and modifying local, and automate the migration of 
instance models.  MCL used basic pattern for typical 
migration scenarios that consists of an LHS element from the 
old metamodel, an RHS element from the new metamodel, 
and a “MapsTo” relation between them. Another special link, 
called the ”WasMappedTo” link, in the pattern is used to 
match a node that was previously migrated, by an earlier 
migration rule. As opposed to providing a general 
transformation interface for the migrator like in sprinkle 
approach [16], MCL provides a Domain specific modeling 
language DSML as the specification language, so MCL is 
more efficient. We note that MCL provide straightforward 
graphical syntax and semantics is rather simple, MCL is 
modular, expressive and allow reusing of knowledge 
migration. MCL can also specify complex relations between 
meta-entities. But, in MCL some rules must be resolved 
manually and there are cases that depend on the intention of 
the transformation developer. 

3)  Model Migration with Epsilon Flock:  In Rose 
approach, Flock is a domain-specific language for specifying 
and executing model migration strategies [8]. Flock uses a 
model connectivity framework, which decouples migration 
from the representation. Flock has a compact syntax. Much of 
its design and implementation is focused on the runtime. Flock 
automatically maps each element of the original model to an 
equivalent element of the migrated model using a novel 
conservative copying algorithm and user-defined migration 
rules, when original model elements conform to the evolved 
metamodel The conservative copy algorithm copies model 
elements from original to migrated model. Hence the user 
specifies migration only for model elements which no longer 
conform to the evolved metamodel.  Flock migration strategies 
are organized into modules, which inherit from EOL modules. 
Modules comprise any number of rules. Flock delegate 
conformance checking responsibilities to EMC. It seems clear 
that approach gets its strength from the connectivity layer of 

epsilon that allow Flock to use models represented in MDR, 
XML, and CZT and Flock is able to be extended to support 
further modelling technologies. However encoding migration 
strategy becomes more difficult for larger metamodels since 
there is no tool support for analyzing the changes between 
original and evolved metamodel. 

4)  Towards synchronizing models with evolving 
metamodels: Gruschko’s approach [9] is model-to-model 
transformation. Envisioned steps of the proposed model 
migration approach are: firstly model versions are compared 
and the differences are translated into the delta model. The 
found changes are classified into categories. Then the user 
input needed for not automatically resolvable changed 
migration is gathered. Finally an appropriate algorithm for 
model migration has to be determined, and the migration is 
executed. The proposed approach minimizes the manual effort 
required to perform model migration in face of metamodel 
changes. But, the changes are assumed to occur individually, 
and using relations instead of difference models does not 
allow distinguishing meta-element updates from 
deletion/addition patterns. 

5)  Transformational approach to model co-evolution: 
Cicchetti’s approach [10] is a co-adaptation approach given as 
a higher-order model transformation which takes the 
difference model recording the metamodel evolution and 
generates a model transformation able to produce the co-
evolution of models. The approach consists of the following 
steps: firstly automatic decomposition of the difference   
model (�) in two disjoint (sub) models, which denote 
breaking resolvable (�R) and unresolvable changes (�-R); if 
(�R) and (�-R) are parallel independent then the 
corresponding co-evolutions are generated separately, 
however if (�R) and (�-R) are parallel dependent, they are 
further refined to identify and isolate the interdependencies 
causing the interferences. This approach is implemented and 
available for download [17]. This approach does not specify 
explicitly how the difference models are calculated, only that 
they can be obtained by using a tool such as EMFCompare or 
SiDiff. We note that isolation of the interdependencies 
between changes is not always possible. 

6)  Managing Model Adaptation by precise Detection of 
Metamodel Changes:  Garcés approach [11] consists of a 
three-step adaptation in order to adopt models to their 
evolving metamodels and thus follow a matching approach to 
co-evolution. Firstly a matching process computes 
automatically the equivalences and differences between two 
metamodels versions by incrementally executing a set of 
heuristics. The computed equivalences and differences are 
saved in a matching model. Secondly an adaptation 
transformation is derived by a higher-order transformation 
tacking as input the matching model.  The produced 
transformation is written in a particular transformation 
language (e.g. ATL, XSLT, SQL-like). This transformation 
preserves unchanged model elements and migrate changed 
ones. Finally, the adaptation transformation is executed. 
Authors prove that the proposed approach achieves a high 
accuracy in detecting simple and complex changes and a good 
performance of matching strategies is also proven. the family 
of heuristics to design the constructs of the AtlanMod 
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Matching Language (AML), a Domain-Specific Language 
(DSL) for expressing matching strategies [18]. We find that 
this approach is powerful, because it allows computing 
equivalences and differences between any pair of metamodels, 
and matching step executes modularized heuristics that may be 
plugged or unplugged on demand. The approach is generic, 
heuristics are described in terms of KM3 concepts and it can 
be implemented using other formalisms such as MOF or 
EMFEcore. However, user assistance is required in some 
strategies, and we note that semantically invalid combination 
of heuristics can cause a runtime error, while an incorrect 
combination results in the generation of an incorrect migration 
transformation. Using heuristics is also ambiguous. 

7)  Metamodel Adaptation and Model  Co-Adaptation:  
Wachsmuth’s approach  is a transformational approach to 
assist metamodel evolution by stepwise adaptation [12]. The 
steps are implemented as transformations in QVT Relations. 
Each step forms a metamodel adaptation. Transformation is 
classified according to its semantics and instance preservation 
properties in three groups, namely refactoring, construction, 
and destruction. This approach is characterized by the 
possibility to reuse adaptation scripts in similar adaptation 
scenario and it prevents inconsistencies.  But, we find that this 
approach is very limited because of the atomicity of the 
changes, which is far from being realist. 

8)  COPE-automating coupled evolution of metamodels 
and models: Herrmannsdoefer‘s approach [13]  records the 
evolution as a sequence of coupled operations in an explicit 
history model. Each coupled operation encapsulates both 
metamodel adaptation as well as reconciling model migration. 
Existing models can be automatically migrated to the adapted 
version of the metamodel. When no co-evolutionary operator 
is appropriate COPE allows metamodel developers to specify 
custom migration strategies, using a general purpose 
programming language. COPE provides additional tool 
support to inspect, refactor and recover the coupled evolution. 
This approach facilitates metamodel analysis, it offers a 
greater degree of reusing recurring coupled operations in 
model migration, and it uses large libraries of co-evolutionary 
operators [19] and improves their navigability by making 
clearer communication of operators. We note also that COPE 
is open source. However, determining which sequence of 
operations will produce a correct migration is not always 
straightforward specifically for large metamodels. The custom 
migration in COPE is specified in general purpose 
programming language which differs from migration strategy 
language. 

IV.  COMPARATIVE ANALYSIS 

In this section we present a comparative analysis of model 
and metamodel co-evolution approaches. Approaches 
described are compared with respect of the general criteria that 
represent features of these approaches: specification of the 
evolution, evolution source, migration target, migration 
language and migration extensibility.  The selected criteria are 
general and could be used to evaluate any co-evolution 
approach in MDE. Other evaluation criteria, such as 
performance and conciseness are also feasible to evaluate 
model migration. Therefore, due to our aim which is 

identifying requirements for co-evolution approach, we 
decided to explore in this analysis only these general criteria. 

A. Criteria of comparative Analysis   

1) Evolution Specification: The evolution of a 
metamodel is implicitly specified by the original and the 
evolved version of the metamodel or it is specified explicitly. 
Many approaches are based on explicit evolution 
specifications. We distinguish two styles of such 
specifications [20]: Imperative specifications describe the 
evolution by a sequence of applications of change operations. 
In contrast, declarative specifications model the evolution by a 
set of differences between the original and evolved version of 
a metamodel. The specification criterion indicates if the 
evolution is imperative, declarative or implicit. 

2) Evolution source:   Explicit evolution specifications 
can have different sources. So, the evolution can be user-
defined where the user specifies the evolution manually. 
Another way is recording evolution while the user edits 
metamodel changes. The prominent source evolution is the 
automated detection of the evolution based on the original and 
evolved version of a definition. We distinguish two kinds of 
detections: First, detections which are only able to detect 
simple changes like additions and deletions. For some 
approaches, this includes the detection of moves as well. 
Second, detections which can also detect more complex 
changes, for example extracting and in-lining of constructs. 

3) Migration Target: Migration might be performed 
either in-place or out-of-place. In the first case, the target of 
the migration is the original model itself which is modified 
during migration. In the second case, the target is a new 
migrated model which is created during migration. The 
original model is preserved. 

4) Migration Language: Migration might be custom 
defined as a domain specific migration language. Alternatively, 
an existing transformation language (TL) can be reused. 
Another way is to add migration support to a general-purpose 
programming language (GPL) in form of an API or an 
embedded domain specific language. 

5) Migration Extensibility: This criterion defines if 
extensions are supported by the studied approaches. Three 
kinds of extensibility can be supported. The fixed migration 
can be completely defined by the developer and only the 
developer can add new parts in the migration strategy. Another 
kind of migration is the over-writable strategy where the user 
can overwrite and customize single applications of a migration. 
The third kind consists of an extendable migration where the 
user can add completely new parts in the migration strategy. 

B. Co-Evolution Approaches Comparison 

The table 1 lists approaches presented in section 3 and 
shows their comportment relatively to studied criteria.  

Manual specification approaches Sprinkle, Narayanan and 
Rose provide custom model transformation languages to 
manually specify the model migration. Which reduce the 
effort for building a migration specification For instance; 
migrations automatically copy model elements whose 
metamodel definition has not changed [8].  
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TABLE 1.  COMPARISON OF CO-EVOLUTION APPROACHES. 

Approach Evolution Migration 
 specification     source Target  Language Extensibility 
Sprinkle  Declarative User-defined Out custom Over-writable 
Narayanan Declarative User-defined Out custom Over-writable 
Rose Implicit  - Out custom Over-writable 
Gruschko Declarative Detected-simple Out TL/ETL Over-writable 
Cicchetti Declarative Detected-complex Out TL/ATL Fixed 
Garcès Imperative Detected-complex Out TL/ATL Extendable 
Wachsmuth Imperative User-defined Out TL/QVT Fixed 
Herremmandoerfer Imperative recorded in TL/Groovy Extendable 

 
The user then overwrites this default behavior with the 
intended migration. Visual languages introduced by Sprinkle 
[6], [16] and Narayanan [7] specify the differences between 
two versions of a GME-based and defines a model migration 
based on these differences.  Migration algorithms not covered 
by MCL can be specified imperatively using a C++ API. Flock 
is a textual migration language for EMF-based models [8]. 

Manual specification approaches Sprinkle, Narayanan and 
Rose provide custom model transformation languages to 
manually specify the model migration. Which reduce the 
effort for building a migration specification For instance; 
migrations automatically copy model elements whose 
metamodel definition has not changed [8]. The user manual 
specification approaches Sprinkle, Narayanan and Rose 
provide custom model transformation languages to manually 
specify the model migration. Which reduce the effort for 
building a migration specification For instance; migrations 
automatically copy model elements whose metamodel 
definition has not changed [8]. The user then overwrites this 
default behavior with the intended migration. Visual 
languages introduced by Sprinkle [6], [16] and Narayanan [7] 
specify the differences between two versions of a GME-based 
and defines a model migration based on these differences.  
Migration algorithms not covered by MCL can be specified 
imperatively using a C++ API. Flock is a textual migration 
language for EMF-based models [8].  

Here, only the model migration is specified. Differences 
between metamodel versions are not made explicit. Instead, 
Flock automatically copies only those model elements which 
conform to the evolved metamodel. The user then iteratively 
redefines the migration specification to migrate non-
conforming elements. Manual specification approaches do not 
provide a construct for the reuse of migration knowledge 
across metamodels [20]. The unique feature of manual 
specification approaches is a custom migration language for 
overwriting a default migration manually. This feature 
increases the expressivity of these approaches. 

Metamodel Matching approaches automatically detect the 
differences between two metamodel versions. These are stored 
in a declarative difference model from which a migration 
specification is generated. Gruschko approach support the 
automatic detection of simple changes in Ecore metamodels 
[9]. However, Cicchetti et al. also detect complex changes [10], 
[17] the migration specification consists of a set of model  

 
transformations to be executed consecutively. Since this is 
prevented by interdependent changes. AML (Atlas Matching 
Language) allows the user to parameterize the detection of 
complex changes [11]. Therefore, the user combines existing 
or user-defined heuristics to a matching algorithm. From a 
difference model obtained by such an algorithm, an ATL 
transformation specifying the migration is automatically 
generated.  For matching approaches, the unique feature is a 
declarative evolution specification which is either recorded or 
detected. This feature permits increasing automaticity by 
automatic generating migration strategy. 

Operation-based approaches provide a set of reusable 
coupled operations that work at the metamodel level as well as 
at the model level. Wachsmuth presents an operation suite for 
the MOF metamodeling formalism, operations are classified 
according to language and model preservation properties [12] 
for migration, and the evolution specification is translated into 
a QVT Relations model transformation. This approach is not 
expressive enough to capture all kinds of migration scenarios, 
due to the restricted set of high-level primitives [20]. COPE 
[13] is a model migration tool that records the metamodel 
adaptation as a sequence of operations in a history model. 
COPE uses an imperative language and its migrating 
transformations are executed in-place.  Reuse of recurring 
migration specifications through parameters and constraints 
restricting allows reducing the effort associated with building 
a model migration [22].  Migration specifications can become 
so specific to a certain metamodel that reuse makes no sense 
[22]. To express these complex migrations, COPE allows the 
user to define a custom coupled operation by manually 
encoding a model migration The unique feature of operation-
based approaches is an imperative evolution specification as a 
sequence of operation applications. This feature favourites the 
reuse which is a mean to reduce effort. Most approaches 
perform out-of-place migration. Model transformation 
languages generally do not support in-place transformations 
with different source and target metamodels. However, COPE 
[13] supports in-place migrations with a new transformation 
language. 

V.      REQUIREMENTS 

After analysing existing approaches and refereeing to other 
works comparing migration approaches [21-22], we define the 
following requirements of model and metamodel co-evolution 
approach:   
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• The first one is increasing automaticity of model and 
metamodel co-evolution in response to metamodel 
evolution as far as possible. For that, It seems useful to 
combine reusing feature of recurred operations as in 
operator based approach and copying feature of unchanged 
elements like in manual specification approaches, and also 
introducing matching techniques to improve co-evolution 
process [24].   

• The second requirement is increasing clarity and 
understandability of migration strategy by using matured 
language of migration [22]. For example, It is benefit to  
use the Eclipse Modelling Framework (EMF) [23] because 
it is a well-known and widely used technology and as 
transformation language ATL [15]. The use of standards 
tools allows interoperability with other systems.  

• The third requirement is increasing expressivity of 
migration strategy by assuring user driven solution in one 
hand and permitting extensibility in the other hand.  

• The fourth requirement is to assure the flexibility approach 
by using either recorded evolution or detected changes if 
only the two versions of metamodel are given. 

VI.  CONCLUSIONS 

The main purpose of this paper is to put the light on 
metamodel and model co-evolution. Firstly we have study the 
existing approaches that treat model migration in response to 
metamodel evolution. We have seen different classification of 
these approaches. Then we have selected some criteria that we 
consider significant to evaluate the studied approaches, after 
the comparison analysis process we find that no approach 
cover the overall criteria.   

Therefore driven by this analysis, we have defined 
guidelines to solve co-evolution problem with more 
expressivity and clarity and supporting change and 
extensibility of migration strategy to ensure its correctness.  
Furthermore, using standard tools like EMF and ATL allow 
large diffusion of the solution and facilitate its interoperability 
with other systems. 
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