
Formalization of UML Communication Diagrams

using π-Calculus

Aissam Belghiat
1,2

1
Département d’informatique, Université 20 Août 1955-

Skikda, Algérie

belghiatissam@gmail.com

Allaoua Chaoui
2

2
MISC Laboratory, Department of Computer Science,

University of Constantine2, Algeria

a_chaoui2001@yahoo.com

Abstract—UML is a general-purpose modeling language for

object oriented systems. UML suffers from lack of semantics

design due to its semi-formal structure. Formal methods have

been used largely in order to deal with this problem. This paper

presents a formalization of UML communication diagrams

(collaboration diagrams in UML 1.x) semantics using π-calculus

computation model. The formalization provides a formal

theoretical basis as well as formal analysis and checking for UML

communication diagrams. We illustrate our approach by an

example in order to explain the general purpose usability of our

approach for a wide audience. It also illustrates a practical usage

which proved the effectiveness of the translation.

Keywords—UML, communication diagram, π-calculus, formal

method, formalization, MDA.

I. INTRODUCTION

UML (Unified Modeling Language) is a semi-formal
language to visualize, specify, build and document all the
artifacts and aspects of software systems [1]. UML provides
interaction diagrams to represent the communications with and
within the software. There are two common variant of
interaction diagrams; the sequence diagram and the
communication diagram. Whereas the sequence diagram shows
temporal representation of the interactions between the objects
and the chronology of the exchanged messages between the
objects and with the actors, the communication diagram
displays a spatial representation of the objects and their
interactions.

The formalization of UML diagrams using formal methods
has been adopted largely in order to deal with its problem of
imprecise semantics. In this paper, we propose to use the π -
calculus computation model to compensate the lack of
semantics in UML communication diagrams by defining a
theoretical formal basis for them. In order to do that, we
examine the graphical syntax of such diagrams which is
precisely specified and also the semantics that is imprecisely
defined. Then we tried to develop an incremental semantic
correspondence between UML communication diagrams and
the π-calculus using the abilities of this later in capturing the
way in which the objects interact.

Little research effort has been devoted at tackling the
formalization of UML communication diagrams; due the fact
that large numbers of designers claim that the other UML
interaction diagram (i.e. the sequence diagram) is more
appropriate in the modeling task. Unfortunately, this is not true
because the UML specification [1] tells us that each type of the
proposed diagrams provides slightly different abilities and
capabilities that make it more appropriate and adapted for
certain situations. Furthermore, communication diagrams are
more suitable [7][18] and often used to provide a glance-view
of a collection of collaborating objects, in particular within a
real-time environment, offer an alternate view of interaction
with sequence diagrams, add functionality to classes by
exploring the behavior results from the interaction of its
objects, model the implementation logic of a complex
operation; in particular when it interacts with several other
objects, and to describe the roles taken by objects in a system,
and the different relationships involved in those roles.

The main contribution of this paper is the formalization of
the execution semantics of UML communication diagrams
using the π-calculus computation model and consequently
strengthening these diagrams by providing for them a formal
semantic foundation. Other outcome is to advance state-of-the-
art of the formalization of all UML diagrams by means of
process algebras. Furthermore, our work can be seen as a
refinement and extension of the study in [15] in which the
authors proceed to capture the dynamic behavior of programs
using collaboration diagrams. Using our contribution, which
maps a communication diagram to the correspond π-calculus
specification and by the means of some π-calculus tools like
MWB [2][3], we can proceed to model checking and
equivalence checking of programs which have the dynamic
behavior modeled as collaboration diagrams.

The rest of the paper is structured as follows. In Section 2,
we present related works. In Section 3, we present basic
notions about UML communication diagrams and the π-
calculus. In Section 4, we propose a formalization of
communication diagrams using the π-calculus. In Section 5, we
illustrate our approach through an example. Section 6
concludes the work by remarks and future works.

Symposium on Complex Systems and Intelligent Computing (CompSIC)
University of Souk Ahras - Université Mohamed Chérif Messaadia de Souk-Ahras
http://www.univ-soukahras.dz/en/publication/article/410

http://www.univ-soukahras.dz/en/publication/article/410

II. RELATED WORK

There is a large body of work attempting to formalize the
semantics of UML diagrams, but to the best of our knowledge,
a few works have addressed directly the formalization of
communication diagrams. Lano et al. [5] have formalized
collaboration diagrams using Structured Temporal Theories in
an effort to describe semantics for a subset of UML diagrams.
Övergaard, in [17], developed a sequence-based formalization
of collaboration diagrams in terms of roles and interactions. In
[6] a Colored Petri Nets-based approach is proposed to
represent collaboration diagrams. In [7] an integrated approach
graph transformation rules and graph processes is used to
formalize collaboration diagrams. In [8] the authors use Object
Petri Net Models to formalize UML statechart and
collaboration diagrams for analysis purposes. In [9] the authors
propose an approach for integrating UML statechart and
collaboration diagrams by their formalization using
Hierarchical Predicate Transition Nets (HPrTNs). In [10] a
graph transformation based approach is developed for the
automatic generation of Coloured Petri Net Models from UML
statechart and collaboration diagrams. Merah et al. [16]
translate UML2 communication diagrams to Buchi automata
using the ATL transformation language. In [11] the authors
transform the communication diagrams of Fuzzy UML [12]
(which is a modeling language that combines the UML with
Fuzzy logic) to Fuzzy Petri nets.

With regard to previous studies, we notice the following
concerns:

 The works in [20], [6], [8], [9], and [10] have not

addressed directly the formalization of communication

diagrams, but as part of theirs contributions to attain

other objectives.

 The informal definition of the semantic mapping in all

previous work, especially in [7], [16]. Which make them

insufficient to fully define the translation.

 The authors in [16] propose a non-persistent mapping

which neglects the most essential features those that

reflect the behavioral-semantics of communication

diagrams such as asynchronous communication,

conditional messages, concurrent messages and

concurrent loops. Thus, the approach proposed by [16] is

very limited and does not fully conform to the semantics

of UML.

 The authors in [7] provide a formalization which covers

three aspects of models which can be expressed in

collaboration diagrams: structure, interaction and a novel

state transformation proposed-aspect. However, the

examination of the proposed-approach indicates that it is

oriented to the former and later aspects, and the

interaction aspect was ambiguously and badly modeled

and covered. No formalization is provided for example

even to basic interactions such as exchanging messages

which deviates the formalization from the main

semantics-purpose of communication diagrams. An

interested reader can rapidly detect that the novel aspect

proposed in [7] has immediately turned the approach to a

statechart-oriented contribution because the focus in the

formalization is on the lifecycle of each object instead of

communication between objects.
In contrast to all these works, our contribution provides

multiple benefits over them:

 Our study addresses directly communication diagrams

from the UML2 specification [1] in contrast to the works

in [20], [6], [8], [9], and [10]. It tackles the main

objective of a communication diagram such as defined in

the OMG specification i.e. the underling structure and

interaction of system’s objects unlike in [7].

 Our study is a first attempt in regard to the formalization

of UML communication diagrams using the π-calculus.

The target semantic domain chosen in our translation

provides a rich theory and tools, which will allow and

automate formal analysis and verification of

communication diagrams such as model checking and

equivalence checking.

 Our study provides a full formal definition of the

semantic mapping between UML communication

diagrams and the π-calculus, especially in contrast to [7],

and [16], which will allow easily the automation of the

translation for rigorous analysis tasks.

 We provide an exhaustive approach in our formalization

(Unlike in [16]), so that all systems modeled in such

diagrams can be perfectly described in our process

algebras.

 Our approach covered the aspect of using collaboration

diagrams invented in [7], i.e., the specification of

system’s state transformation.

III. BACKGROUND

A. UML Communication Diagrams (CDs)

A communication diagram (collaboration diagrams in UML
1.x) is one of interaction diagrams that display a spatial
representation of the objects and their interactions. We present
in this section the syntax and semantics of these diagrams.

1) Structural elements of UML CDs.
We present below the notational elements of UML

communication diagrams [1, 19] in (Fig. 1) and we show the
different combination of these elements which used to build the
diagrams.

Other visual stereotypes symbols of the robustness diagram
can be considered since they are used to improve the
readability of the communication diagrams [18]. (Fig. 2)
depicts these symbols.

Symposium on Complex Systems and Intelligent Computing (CompSIC)
University of Souk Ahras - Université Mohamed Chérif Messaadia de Souk-Ahras
http://www.univ-soukahras.dz/en/publication/article/410

http://www.univ-soukahras.dz/en/publication/article/410

Fig. 1. Structural elements of UML CDs.

Fig. 2. Visual stereotypes symbols used in UML CDs.

2) Semantics of UML CDs.
A Communication Diagram shows the interactions through

an architectural view where the arcs between the
communicating lifelines are decorated with description of the
exchanged messages and their sequencing [1].

In (Figure 1) several constituents of a communication
diagram are depicted. In fact, it is often described within a
frame. It contains multiple lifelines (objects) which are related
by means of connectors and which interact using messages
exchanging. A lifeline can be anonymous (has no name), and
with/without selector (the lifeline is selected with selector). A
message represents the entity of interaction. It can be
conditional message (with a guard condition), with sequential
loop (one by one iteration), and with/without concurrent loop
(parallel iteration). Furthermore, we can have sequential
messages (one by one) or concurrent messages (in parallel) in
the communication diagram.

With regard to the visual stereotypes symbols in (Figure 2),
an actor represents all systems with which the modeled system
interacts. Process/Controller classes implement logic which
corresponds to multiple business entities. Domain classes
implement basic business entities. Interface classes allow
actors to interact with the system described via an interface. An
association is revealed whenever an actor interacts with a class,
or two classes interact.

Communication diagrams can be used on two different
levels [18]; Instance-level UML communication diagrams and
Specification-Level Diagrams.

a) Instance-level UML communication diagrams: they

are the most common used style of UML communication

diagram. They display the interactions between instances

(objects). They are usually created to describe and explore the

internal design of object-oriented system. We focus on these

diagrams since they provide both structural and interaction

aspects of systems. Figure 3 shows an example of such

diagrams.

Fig. 3. An instance-level UML communication diagram.

b) Specification-Level Diagrams: they are not the

common used style of UML communication diagram due to

the suitability of UML class diagrams which are extensively

used by modelers to identify the roles. They are typically used

to describe and explore the roles that domain classes take in a

system. Figure 4 shows an example of such diagrams.

Fig. 4. A specification-level UML communication diagram.

B. π-calculus

The π-calculus [4] has been introduced as a new and
fundamental way of thinking about concurrent interactive
processes, and one which is amenable to rigorous treatment [4].
It is a process algebra developed to cover the limitation of the
process calculus CCS (Calculus of Communicating Systems) in
terms of expression power by authorizing the passage of
“channels” between processes; it can be used for the
representation, the analysis, the verification and simulation of
concurrent systems. The abstract syntax for the π-calculus is
built from the following BNF grammar (x and y are any names
in the set of names N) [4]:

P ::= 0 Nil; empty process

 | x (y) . P Input prefix; receive y along x

 | x <y> . P Output prefix; send y along x

 | τ . P Silent prefix; an internal action

 | P | P Parallel composition

 | P + P non-deterministic choice

 | (ν x) P Restriction of name x to process P

 | ! P Replication of process P

 | [x = y] P Match; if x = y then P

 | [x = y] P Mismatch; if x = y then P

 | A(y1, … , yn) Process Identifier

There are several extensions of the π-calculus, in our paper
we choose the polyadic version that extends the monadic π-

Symposium on Complex Systems and Intelligent Computing (CompSIC)
University of Souk Ahras - Université Mohamed Chérif Messaadia de Souk-Ahras
http://www.univ-soukahras.dz/en/publication/article/410

http://www.univ-soukahras.dz/en/publication/article/410

calculus in which a message consists of multiple names rather
than one. This is because with this version we can demonstrate
and illustrate sufficiently our formalization approach.

For the convenience, we define the following shortcuts: ①
to represent the summation of all processes, ② to represent the
composition of all processes, ③ to represent a series of
channels and ④ the restriction operator for multiple names in
a process as follow:

Ii iP
def

 P1 + P2 + . . . + Pn … ①

Ii iP
def

 P1 | P2 | . . . | Pn … ②

 x1
def

 x1, x2 ,...., xn … ③

(ν x1, x2 ,...., xn) P
def

 (ν x1)(ν x2) … (ν xn) P … ④

IV. THE PROPOSED APPROACH

A communication diagram shows the spatial organization
of interacting participants. It represents the interactions in a
spatial point of view. The π-calculus describes the interaction
of linked processes in a virtual space. The reason for using the
π-calculus computation model is that it is more suitable for
reasoning. In fact, the behavior of a communication diagram
can be perfectly modeled using the π-calculus because this
computation model provides multiple constructs, which are
able to describe the meaning of different interactions in such
diagrams. Furthermore, it contains a rich theory and
background for the analysis and verification of these systems
modeled as process expressions.

We propose in this section inspired by [13, 14] a formal
definition of UML communication diagrams; first, we define a
communication diagram in terms of sets and functions. Then,
we start our formalization by formally defining the translation
mapping between the source and target models.

A. Formal definition of UML CDs

 Definition 1: (CDs definition)

We suppose the types of notational elements of
communication diagrams as:

Elements = {Lifelines, Links, Messages, Conds, Msgs,
Vals, Prms }

A communication diagram is a 8-tuple:

CD = (CDname, Elements, αcond , αmsg, αval, αprm , αin ,
αout)

Where:

- CDname is the communication diagram name.

- Lifelines represents the set of lifelines

- Links represents the set of links

- Messages represents the set of messages

- Conds represents the set of conditions.

- Msgs represents the set of messages names.

- Vals represents the set of return values.

- Prms represents the set of parameters.

- αcond : Messages Conds Defines for a

messages its condition.

- αmsg : Messages Msgs Specifies for a

message its name.

- αval : Messages Vals Specifies for a

message its return value.

- αprm : Messages Prms Specifies for a
message its parameters.

- αin : Lifelines U Messages Links Relates a
lifeline (resp. message) to links (considered as entering links).

- αout : Lifelines U Messages Links Relates a
lifeline (resp. message) to links (considered as leaving links).

 Definition 2: (Process expression function)

In order to capture the semantics of communication
diagrams, we define a function Ω for representing UML
communication diagrams as process expressions in the π-
calculus. The function Ω is defined as follows:

Ω Elements : Elements Pi-calculus

 EElements, P Pi-calculus, where Ω ElementsE (E)

= P. Which means that each elements of the communication
diagram has it’s correspond process expression “P” in the pi-
calculus.

Using this function, we can map each notational element of
the communication diagram into the adequate π-calculus
specification as process expressions.

B. Formalization of UML CDs

The technique adopted to formalize UML communication
diagrams is to define the appropriate π-calculus representation
for each of their notational elements. The task is repeated until
no elements are left and a complete π-calculus specification for
a communication diagram is generated. The lifelines are
modeled as processes, the messages as processes and the links
as connectors.

 Rule 1: (lifeline “object”)

Suppose O1 Lifelines, αin (O1) = {INi}, αout (O1) =
{OUTj}, ΩLinks(INi) = inio1 , ΩLinks(OUTj) = outjo1 , for i = 1,…,
n. j = 1,…, m. f = n + m is the number of links associated with
the lifeline. “seq” is a channel for evaluating the sequence
number of the next message that will be sent. ΩLiflines (O1) =
O1(inio1, seq, outjo1). We model the semantics of a lifeline by
the behavior of the parameterized process O1(inio1, seq, outjo1)
as follows (While i and j represent different inputs and outputs
respectively of the object):

O1(inio1, seq, outjo1)

def

 inio1. τ. (ν x) seq<x>.x(s). !outjo1<s>.
O1(inio1, seq, outjo1)

An event that occurs in the process modeling the object is
specified using the internal action “τ”. We use the “seq”
channel to evaluate the sequence number of the message
generated in response to the event produced. The output action
seq<x> and the input action x(s) specify the sequence number
of the next message. The concerned message process will be

Symposium on Complex Systems and Intelligent Computing (CompSIC)
University of Souk Ahras - Université Mohamed Chérif Messaadia de Souk-Ahras
http://www.univ-soukahras.dz/en/publication/article/410

http://www.univ-soukahras.dz/en/publication/article/410

fired using the output action “outjo1<s>” in the process. The
replication operator “!” is used to indicate that the process
modeling the object will trigger multiple messages processes
(towards different objects), by outputting multiple copies of the
“s” channel, if they have letters on messages i.e. different
threads concurrently (in parallel). The recurrence of the process
O1(inio1, seq, outjo1) in the end of the expression is to deal with
sequential messages (one by one).

 Rule 2: (message)

We take the following notation that gives us a general
representation of messages and summarizes those described in
(Figure 1).

[[<seq>][<cond>][*[||][[<iter>]]]:][<var>:=]<msg>([<prm>])

Suppose M1 Messages, αin(M1) = {INi}, αout(M1) =

{OUTj}, ΩLinks(INi) = inim1 , ΩLinks(OUTj) = outjm1 , for i =
1,…, n. j = 1,…, m. f = n + m is the number of links associated
with the message. αmsg (M1) = {MSG1}, ΩMsgs(MSG1) = msg1,
“msg1” is a channel which represents the message that will be
sent.

- A simple message:

When we have a simple message, ΩMessages(M1) =
M1(inim1, msg1, outjm1), the semantics of the message is
represented in the π-calculus as a process with parameters
M1(inim1, msg1, outjm1) as follow:

M1(inim1, msg1, outjm1)
def

 inim1(s).outjm1<msg1>.M1(inim1,

msg1, outjm1)

The process modeling the message waits its turn to be
executed (i.e. message sending), this is represented by an input
on the “inim1” channel. The output action “outjm1<msg1>” sends
the message.

- A message with return value:

When we have a message with return value VAL1 VAL,
αval (M1) = {VAL1}, ΩVals (VAL1) = val1, ΩMessages(M1) =
M1(inim1, msg1, val1, outjm1), the semantics of the message is
represented in the pi-calculus as a process with parameters
M1(inim1, msg1, val1, outjm1) as follows:

M1(inim1, msg1, val1, outjm1)

def

 inim1(s).outjm1<msg1, val1>.

M1(inim1, msg1, val1, outim1)

When the message has a return value, the process modeling

the message outputs the “val1” channel on the channel “outim1”
which will be used to get back the returned value.

- A message with parameters and a return value:

When we have a message with a return value and
parameters PRM1 PRM, αprm(M1) = {PRM1},
ΩPrms(PRM1) = prm1, ΩMessages(M1) = M1(inim1, msg1, val1,
prm1, outjm1), the semantics of the message is represented in
the π-calculus as a process with parameters M1(inim1, msg1,
val1, prm1, outjm1) as follows:

M1(inim1, msg1, val1, prm1, outjm1)
def

 inim1(s). ((ν p) prm1<p> |

p (pts)).outjm1<msg1, pts, val1> . M1(inim1, msg1, val1, prm1,

outjm1)

The “prm1” channel is used to obtain the list of parameters
modeled as “pts” channels. When the message has some
parameters, the process modeling the message creates a
channel “p” and executes the output action “prm1 <p>” and the
input action “p (pts)” to retrieve the parameters. The channel
“msg1” will be thereafter sent with multiple channels which
represent the parameters and the returned value.

- If there is a sequential iteration:

When we have a message with a sequential iteration k (k
can be specified or unspecified i.e. “*”), ΩMessages(M1) =
M1(inim1, msg1, outjm1), the semantics of the message is
represented in the π-calculus as a process with parameters
M1(inim1, msg1, outjm1) as follows:

M1(inim1, msg1, outjm1)

def

 inim1(s).outjm1<msg1>. … .outjm1<msg1>.

M1(inim1, msg1, outjm1)

The message process will send sequentially (one by one) a
specified or unspecified number of messages “msg1” to the
object Oj.

- If there is a parallel iteration:

When we have a message with a parallel iteration k (k can
be specified or unspecified i.e. “*”), ΩMessages(M1) = M1(inim1,
msg1, outjm1), the semantics of the message is represented in
the π-calculus as a process with parameters M1(inim1, msg1,
outjm1) as follows:

M1(inim1, msg1, outjm1)
def

 inim1(s).

k

k 1

outjm1<msg1>.

M1(inim1, msg1, outjm1)

The message process will send concurrently a specified or
unspecified number of message “msg1” to the object Oj.

- If it is a conditional message:

When we have a message with a condition COND1
COND, αcond (M1) = {COND1}, ΩConds (COND1) = guard1,
ΩMessages(M1) = M1(inim1, guard1, msg1, outjm1), the semantics
of the message is represented in the π-calculus as a process
with parameters M1(inim1, guard1, msg1, outjm1) as follows:

M1(inim1, guard1, msg1, outjm1)
def

 inim1(s).(ν g)guard1<g>.

g(y).([y=true] outjm1<msg1>.M1(inim1, guard1, msg1, outjm1) +

[y=false] M1(inim1, guard1, msg1, outjm1))

The message process creates a channel “g” and executes the
output action “guard1<g>” and the input action “g(y)” to
retrieve the current evaluation of the condition. If the condition
is verified, the matching construct “[y=true]” allows the
submission of the message along the output action
“outim1<msg1>” to the target process which models “Oj”. In the
other case the message will not be sent and the process will
wait until the condition is verified.

k times

Symposium on Complex Systems and Intelligent Computing (CompSIC)
University of Souk Ahras - Université Mohamed Chérif Messaadia de Souk-Ahras
http://www.univ-soukahras.dz/en/publication/article/410

http://www.univ-soukahras.dz/en/publication/article/410

K times

- A full message:

When we have a full message M1, ΩMessages(M1) =
M1(inim1, guard1, msg1, val1, prm1, outjm1), the semantics of
the message is represented in the π-calculus as a process with
parameters M1(inim1, guard1, msg1, val1, prm1, outjm1) as
follows:

M1(inim1, guard1, msg1, val1, prm1, outjm1)
def

 inim1(s).(ν g)

guard1<g>. g(y).([y=true] ((ν p) prm1 <p> | p (pts))

(outjm1<msg1, pts, val1>. … .outjm1<msg1, pts, val1>. … +

 Kk
outjm1<msg1, pts, val1>) .

M1(inim1, guard1, msg1, val1, prm1, outjm1) + [y=false] M1(inim1,

guard1, msg1, val1, prm1, outjm1))

The process modeling the message is executed when the
“inim1” channel is fired, after that, the condition will be
evaluated using the “guard1” channel. If the condition is not
verified, the message will not be sent. If the condition is
verified, the message process proceeds to send either one
message, multiple messages consequently or multiple messages
concurrently.

 Definition 3: (Processes communication)

The objects are related using the connectors, which are
consequently represented as links between processes
representing objects and processes representing messages and
vice versa. They relate output ports of source processes with
input ports of target processes. Here, we can use the
communication reduction rule defined in [4]:

COMM : (…+ x(y).P) | (… + xz.Q) P {z / y} | Q

This rule represents the communication between two
complementary processes (have complementary subjects) and
consequently all free occurrence of y in P will be replaced by z
using the substitution {z / y} after the communication. Based
on this rule, the author in [4] has introduced a linking operator

relation “ ” on two π-calculus processes as follow:

P Q(t/p, t/q)
def

 ν t ({t/p}P | {t/q}Q)

This relation indicates that port p of the process P is linked
with the port q of the process Q and then the channel t will be
internalized.

 Rule 3: (links)

We aspire from the interesting relation defined in
(definition 3) to facilitate the expression of the translation from
an object to message and vice versa represented as processes.
Furthermore, we define a process called “Connector” that links
all object processes “Oi” and message processes “Mj” of a
system as bellow:

Connector
def

 Iji, ν c ({c/oi}Oi | {c/mj}Mj)

 Rule 4: (CDs)

Suppose an UML communication diagram CD = (CDname,
Elements, αcond , αmsg , αval , αprm , αin , αout). ΩCDname(CD) =
CDname. The semantics of this communication diagram is
modeled in the π-calculus by the process expression:

CDname
def

 Ii iO | Jj jM | Connector

Where “Oi” and “Mj” represent respectively the objects
and messages processes resulting from applying the function
defined in (Definition 2) in (rule 1) and (rule 2) on the
communication diagram. Thus the model can be seen as π-
calculus concurrent processes which are running in parallel.

V. EXAMPLE: ONLINE BOOKSHOP

To illustrate our approach, we consider an example of an
UML communication diagram for an Online Bookshop [19]
which is described in Figure 5.

Web customer which is depicted as actor can search, view,
select and buy books. Communication starts with the iterative
message “1 *: find_books()” which could be repeated some
unspecified number of times. Client searches inventory of
books “1.1 : search()”, and if he is interested in some book, he
can view description of the book “1.2 [interested]:
view_book()”. If client decides to buy, he can add the book to
the shopping cart “1.3 [decided to buy]: add_to_cart()”.

Checkout “2 : checkout()” includes getting list of books
“2.1 : get_books()” from shopping cart, creating order “2.2 [not
empty(cart)] : make_order()”, and updating inventory “2.3
[order complete] : update_inventory()”, if order was
completed.

Fig. 5. An example of UML communication diagram for online bookshop.

The execution semantics of the Online Bookshop
interaction modeled as a communication diagram is given by
the following π-calculus specification

Symposium on Complex Systems and Intelligent Computing (CompSIC)
University of Souk Ahras - Université Mohamed Chérif Messaadia de Souk-Ahras
http://www.univ-soukahras.dz/en/publication/article/410

http://www.univ-soukahras.dz/en/publication/article/410

VI. CONCLUDING REMARKS

In this paper we proposed an intuitive yet systematic
formalization of UML communication diagrams using a π-
calculus computation model. A major motivation for this work
is to provide rigorous execution semantics for UML objects
interactions modeled as communication diagram models. An
eventual aim of our paper is to make possible model
equivalence and model checking of communication diagrams
by exploring the rich theory and background of the π-calculus.
In our proposition, we provided a full bottom-up formalization
of a communication diagram which is defined by a set of
concurrent mutual-recursively defined π-calculus processes,
each of them corresponds to a lifeline or a message.

The generated specification can be considered as
underlying formal basis that strengthens UML communication
diagrams and allows analysis, verification and reasoning about
the behavior of systems modeled in these diagrams. In order to
illustrate the applicability of our approach, we have applied it
to an example of an online bookshop system modeled in a
communication diagram and we have shown how to generate
the π-calculus specification from it. Using our approach, each
system modeled as a communication diagram can be analyzed
and verified using π-calculus tools, for example, this will allow

analyzing the dynamic behavior of a program modeled as a
communication diagram like indicated in the second example.

In our future work, we plan to extend our approach by
formalizing others diagrams such as sequence and interaction
overview diagrams to give a full formal semantics based π-
calculus for all UML diagrams.

REFERENCES

[1] OMG, “OMG Unified Modeling Language, Infrastructure, v2.3”,
http://www.omg.org/spec/ UML/2.3/Superstructure, May 2010.

[2] B. Victor. “A Verification Tool for the Polyadic π-Calculus”.
Department of Computer Systems, Uppsala University, 1994. Licentiate
thesis.

[3] B. Victor and F. Moller, “The Mobility Workbench - A Tool for the π-
calculus”. In D. Dill, ed., Proceedings of the Conference on Computer-
Aided Verification (CAV'94), volume 818 of LNCS, pages 428- 440.
Springer Verlag, 1994.

[4] R. Milner, “Communicating and Mobile Systems: The π-calculus”,
Cambridge University Press, 1999.

[5] Lano and J. Bicarregui, “Formalizing the UML in Structured Temporal
Theories”. In B. Rumpe H. Kilov, editor, Proc. of Second ECOOP
Workshop on Precise Behavioral Semantics, ECOOP'98, Munich,
Germany, 1998.

[6] Pettit IV, R.G. and Gomaa, H.: Validation of Dynamic Behavior in
UML Using Colored PetriNets. Proc. UML2000.

[7] Heckel R. and Sauer S.: Strengthening UML Collaboration Diagrams by
State Transformations. Proc. FASE 2001.

[8] J. Saldhana and S. M. Shatz, "UML Diagrams to Object Petri Net
Models: An Approach for Modeling and Analysis," Proc. of the Int.
Conference on Software Engineering and Knowledge Engineering
(SEKE), Chicago, July 2000, 103-110.

[9] Z. Dong, X. He, "Integrating UML Statechart and Collaboration
Diagrams Using Hierarchical Predicate Transition Nets", In Proceedings
of pUML, pp. 99-112, 2001.

[10] R. Elmansouri, A. Chaoui, E. Kerkouche, and K. Khalfaoui. “From
UML Statechart and Collaboration Diagrams to Coloured Petri Net
Models: A Graph Transformation Based Approach for Modeling and
Analysis of Business Processes in Virtual Enterprises”. In Proceedings
of the Fourth South-East European Workshop on Formal Methods,
IEEE, Washington, DC, USA, (2009).

[11] H. Motameni and T. Ghassempouri. Transforming Fuzzy
Communication Diagram to Fuzzy Petri Net. American Journal of
Scientific Research, 16, (2011).

[12] A. Haroonabadi and M. Teshnehlab. A Novel Method for Behavior
Modeling in Uncertain Information Systems. World Academy of
Science, Engineering and Technology, 41, (2008).

[13] D. Yang and S. S. Zhang, “Using π-calculus to formalize UML activity
diagrams”, in 10th Int. Conf. and Workshop on the Engineering of
Computer-based Systems, IEEE Computer Society, 2004, pp. 47-54.

[14] VITUS S. W. LAM, “on π-calculus semantics as a formal basis for UML
activity diagrams”, International Journal of Software Engineering and
Knowledge Engineering. Vol. 18, No. 4 (2008) 541-567. World
Scientific Publishing Company, 2008.

[15] Ralf Kollmann, Martin Gogolla, “Capturing Dynamic program
Behaviour with UML Collaboration Diagrams”, In Pedro Sousa and
Jurgen Ebert, editors, Proc. 5th European Conference on Software
Maintenance and Reengineering. IEEE, Los Alamitos, 2001.

[16] Elkamel Merah, Nabil Messaoudi, Halima Saidi, Allaoua Chaoui,
“Design of ATL Rules for Transforming UML 2 Communication
Diagrams into Buchi Automata”. International Journal of Software
Engineering & Its Applications, Vol. 7, No. 2, p1-15, Mars 2013.

[17] G. ¨Overgaard. A formal approach to collaborations in the Unified
Modeling Language. In Proc. UML’99 – Beyond the Standard, pages
99–115, volume 1723 of LNCS. Springer-Verlag, 1999.

[18] Scott W. Ambler, “The Elements of UMLTM2.0 Style”, Cambridge
University Press, 2005.

[19] Kirill Fakhroutdinov, http://www.uml-diagrams.org/, 2013.

Symposium on Complex Systems and Intelligent Computing (CompSIC)
University of Souk Ahras - Université Mohamed Chérif Messaadia de Souk-Ahras
http://www.univ-soukahras.dz/en/publication/article/410

http://www.univ-soukahras.dz/en/publication/article/410

