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Abstract—UML is a general-purpose modeling language for 

object oriented systems. UML suffers from lack of semantics 

design due to its semi-formal structure. Formal methods have 

been used largely in order to deal with this problem. This paper 

presents a formalization of UML communication diagrams 

(collaboration diagrams in UML 1.x) semantics using π-calculus 

computation model. The formalization provides a formal 

theoretical basis as well as formal analysis and checking for UML 

communication diagrams. We illustrate our approach by an 

example in order to explain the general purpose usability of our 

approach for a wide audience. It also illustrates a practical usage 

which proved the effectiveness of the translation. 

Keywords—UML, communication diagram, π-calculus, formal 

method, formalization, MDA. 

I.  INTRODUCTION 

UML (Unified Modeling Language) is a semi-formal 
language to visualize, specify, build and document all the 
artifacts and aspects of software systems [1]. UML provides 
interaction diagrams to represent the communications with and 
within the software. There are two common variant of 
interaction diagrams; the sequence diagram and the 
communication diagram. Whereas the sequence diagram shows 
temporal representation of the interactions between the objects 
and the chronology of the exchanged messages between the 
objects and with the actors, the communication diagram 
displays a spatial representation of the objects and their 
interactions.  

The formalization of UML diagrams using formal methods 
has been adopted largely in order to deal with its problem of 
imprecise semantics. In this paper, we propose to use the π -
calculus computation model to compensate the lack of 
semantics in UML communication diagrams by defining a 
theoretical formal basis for them. In order to do that, we 
examine the graphical syntax of such diagrams which is 
precisely specified and also the semantics that is imprecisely 
defined. Then we tried to develop an incremental semantic 
correspondence between UML communication diagrams and 
the π-calculus using the abilities of this later in capturing the 
way in which the objects interact.  

Little research effort has been devoted at tackling the 
formalization of UML communication diagrams; due the fact 
that large numbers of designers claim that the other UML 
interaction diagram (i.e. the sequence diagram) is more 
appropriate in the modeling task. Unfortunately, this is not true 
because the UML specification [1] tells us that each type of the 
proposed diagrams provides slightly different abilities and 
capabilities that make it more appropriate and adapted for 
certain situations. Furthermore, communication diagrams are 
more suitable [7][18] and often used to provide a glance-view 
of a collection of collaborating objects, in particular within a 
real-time environment, offer an alternate view of interaction 
with sequence diagrams, add functionality to classes by 
exploring the behavior results from the interaction of its 
objects, model the implementation logic of a complex 
operation; in particular when it interacts with several other 
objects, and to describe the roles taken by objects in a system, 
and the different relationships involved in those roles. 

The main contribution of this paper is the formalization of 
the execution semantics of UML communication diagrams 
using the π-calculus computation model and consequently 
strengthening these diagrams by providing for them a formal 
semantic foundation. Other outcome is to advance state-of-the-
art of the formalization of all UML diagrams by means of 
process algebras. Furthermore, our work can be seen as a 
refinement and extension of the study in [15] in which the 
authors proceed to capture the dynamic behavior of programs 
using collaboration diagrams. Using our contribution, which 
maps a communication diagram to the correspond π-calculus 
specification and by the means of some π-calculus tools like 
MWB [2][3], we can proceed to model checking and 
equivalence checking of programs which have the dynamic 
behavior modeled as collaboration diagrams. 

The rest of the paper is structured as follows. In Section 2, 
we present related works. In Section 3, we present basic 
notions about UML communication diagrams and the π-
calculus. In Section 4, we propose a formalization of 
communication diagrams using the π-calculus. In Section 5, we 
illustrate our approach through an example. Section 6 
concludes the work by remarks and future works. 
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II. RELATED WORK 

There is a large body of work attempting to formalize the 
semantics of UML diagrams, but to the best of our knowledge, 
a few works have addressed directly the formalization of 
communication diagrams. Lano et al. [5] have formalized 
collaboration diagrams using Structured Temporal Theories in 
an effort to describe semantics for a subset of UML diagrams. 
Övergaard, in [17], developed a sequence-based formalization 
of collaboration diagrams in terms of roles and interactions. In 
[6] a Colored Petri Nets-based approach is proposed to 
represent collaboration diagrams. In [7] an integrated approach 
graph transformation rules and graph processes is used to 
formalize collaboration diagrams. In [8] the authors use Object 
Petri Net Models to formalize UML statechart and 
collaboration diagrams for analysis purposes. In [9] the authors 
propose an approach for integrating UML statechart and 
collaboration diagrams by their formalization using 
Hierarchical Predicate Transition Nets (HPrTNs). In [10] a 
graph transformation based approach is developed for the 
automatic generation of Coloured Petri Net Models from UML 
statechart and collaboration diagrams. Merah et al. [16] 
translate UML2 communication diagrams to Buchi automata 
using the ATL transformation language. In [11] the authors 
transform the communication diagrams of Fuzzy UML [12] 
(which is a modeling language that combines the UML with 
Fuzzy logic) to Fuzzy Petri nets.  

With regard to previous studies, we notice the following 
concerns: 

 The works in [20], [6], [8], [9], and [10] have not 

addressed directly the formalization of communication 

diagrams, but as part of theirs contributions to attain 

other objectives.  

 The informal definition of the semantic mapping in all 

previous work, especially in [7], [16]. Which make them 

insufficient to fully define the translation. 

 The authors in [16] propose a non-persistent mapping 

which neglects the most essential features those that 

reflect the behavioral-semantics of communication 

diagrams such as asynchronous communication, 

conditional messages, concurrent messages and 

concurrent loops. Thus, the approach proposed by [16] is 

very limited and does not fully conform to the semantics 

of UML. 

 The authors in [7] provide a formalization which covers 

three aspects of models which can be expressed in 

collaboration diagrams: structure, interaction and a novel 

state transformation proposed-aspect. However, the 

examination of the proposed-approach indicates that it is 

oriented to the former and later aspects, and the 

interaction aspect was ambiguously and badly modeled 

and covered. No formalization is provided for example 

even to basic interactions such as exchanging messages 

which deviates the formalization from the main 

semantics-purpose of communication diagrams. An 

interested reader can rapidly detect that the novel aspect 

proposed in [7] has immediately turned the approach to a 

statechart-oriented contribution because the focus in the 

formalization is on the lifecycle of each object instead of 

communication between objects. 
In contrast to all these works, our contribution provides 

multiple benefits over them: 

 Our study addresses directly communication diagrams 

from the UML2 specification [1] in contrast to the works 

in [20], [6], [8], [9], and [10]. It tackles the main 

objective of a communication diagram such as defined in 

the OMG specification i.e. the underling structure and 

interaction of system’s objects unlike in [7]. 

 Our study is a first attempt in regard to the formalization 

of UML communication diagrams using the π-calculus. 

The target semantic domain chosen in our translation 

provides a rich theory and tools, which will allow and 

automate formal analysis and verification of 

communication diagrams such as model checking and 

equivalence checking.  

 Our study provides a full formal definition of the 

semantic mapping between UML communication 

diagrams and the π-calculus, especially in contrast to [7], 

and [16], which will allow easily the automation of the 

translation for rigorous analysis tasks.  

 We provide an exhaustive approach in our formalization 

(Unlike in [16]), so that all systems modeled in such 

diagrams can be perfectly described in our process 

algebras.  

 Our approach covered the aspect of using collaboration 

diagrams invented in [7], i.e., the specification of 

system’s state transformation.  

III. BACKGROUND  

A. UML Communication Diagrams (CDs) 

A communication diagram (collaboration diagrams in UML 
1.x) is one of interaction diagrams that display a spatial 
representation of the objects and their interactions. We present 
in this section the syntax and semantics of these diagrams. 

1) Structural elements of UML CDs.  
We present below the notational elements of UML 

communication diagrams [1, 19] in (Fig. 1) and we show the 
different combination of these elements which used to build the 
diagrams. 

Other visual stereotypes symbols of the robustness diagram 
can be considered since they are used to improve the 
readability of the communication diagrams [18]. (Fig. 2) 
depicts these symbols.  
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Fig. 1. Structural elements of UML CDs. 

 
 

Fig. 2. Visual stereotypes symbols used in UML CDs. 

2) Semantics of UML CDs.  
A Communication Diagram shows the interactions through 

an architectural view where the arcs between the 
communicating lifelines are decorated with description of the 
exchanged messages and their sequencing [1].  

In (Figure 1) several constituents of a communication 
diagram are depicted. In fact, it is often described within a 
frame. It contains multiple lifelines (objects) which are related 
by means of connectors and which interact using messages 
exchanging. A lifeline can be anonymous (has no name), and 
with/without selector (the lifeline is selected with selector). A 
message represents the entity of interaction. It can be 
conditional message (with a guard condition), with sequential 
loop (one by one iteration), and with/without concurrent loop 
(parallel iteration). Furthermore, we can have sequential 
messages (one by one) or concurrent messages (in parallel) in 
the communication diagram. 

With regard to the visual stereotypes symbols in (Figure 2), 
an actor represents all systems with which the modeled system 
interacts. Process/Controller classes implement logic which 
corresponds to multiple business entities. Domain classes 
implement basic business entities. Interface classes allow 
actors to interact with the system described via an interface. An 
association is revealed whenever an actor interacts with a class, 
or two classes interact. 

Communication diagrams can be used on two different 
levels [18]; Instance-level UML communication diagrams and 
Specification-Level Diagrams. 

a) Instance-level UML communication diagrams:  they 

are the most common used style of UML communication 

diagram. They display the interactions between instances 

(objects). They are usually created to describe and explore the 

internal design of object-oriented system. We focus on these 

diagrams since they provide both structural and interaction 

aspects of systems. Figure 3 shows an example of such 

diagrams. 

 

 
 

Fig. 3. An instance-level UML communication diagram. 

b) Specification-Level Diagrams: they are not the 

common used style of UML communication diagram due to 

the suitability of UML class diagrams which are extensively 

used by modelers to identify the roles. They are typically used 

to describe and explore the roles that domain classes take in a 

system. Figure 4  shows an example of such diagrams. 

 

 
 

Fig. 4. A specification-level UML communication diagram. 

B. π-calculus 

The π-calculus [4] has been introduced as a new and 
fundamental way of thinking about concurrent interactive 
processes, and one which is amenable to rigorous treatment [4]. 
It is a process algebra developed to cover the limitation of the 
process calculus CCS (Calculus of Communicating Systems) in 
terms of expression power by authorizing the passage of 
“channels” between processes; it can be used for the 
representation, the analysis, the verification and simulation of 
concurrent systems. The abstract syntax for the π-calculus is 
built from the following BNF grammar (x and y are any names 
in the set of names N) [4]: 

P ::=   0                   Nil; empty process 

      |  x (y) . P          Input prefix; receive y along x 

      |  x <y> . P        Output prefix; send y along x 

      |  τ . P                Silent prefix; an internal action 

      |  P | P               Parallel composition  

      |  P + P              non-deterministic choice 

      | (ν x) P             Restriction of name x to process P 

      | ! P                   Replication of process P 

      | [x = y] P          Match; if x = y then P 

      | [x = y] P          Mismatch; if x = y then P 

  | A(y1, … , yn)   Process Identifier  

There are several extensions of the π-calculus, in our paper 
we choose the polyadic version that extends the monadic π-

Symposium on Complex Systems and Intelligent Computing (CompSIC)
University of Souk Ahras - Université Mohamed Chérif Messaadia de Souk-Ahras
http://www.univ-soukahras.dz/en/publication/article/410

http://www.univ-soukahras.dz/en/publication/article/410


calculus in which a message consists of multiple names rather 
than one. This is because with this version we can demonstrate 
and illustrate sufficiently our formalization approach.     

For the convenience, we define the following shortcuts: ① 
to represent the summation of all processes, ② to represent the 
composition of all processes, ③ to represent a series of 
channels and ④ the restriction operator for multiple names in 
a process as follow: 

Ii iP
def

  P1 + P2 + . . . + Pn                                  …  ①
 

Ii iP
def

  P1 | P2 | . . . | Pn                                        …  ② 

 x1   
def

 x1, x2 ,...., xn                                                                …  ③                                   

(ν x1, x2 ,...., xn) P 
def

 (ν x1)(ν x2) … (ν xn) P   … ④          

IV. THE PROPOSED APPROACH 

A communication diagram shows the spatial organization 
of interacting participants. It represents the interactions in a 
spatial point of view. The π-calculus describes the interaction 
of linked processes in a virtual space. The reason for using the 
π-calculus computation model is that it is more suitable for 
reasoning. In fact, the behavior of a communication diagram 
can be perfectly modeled using the π-calculus because this 
computation model provides multiple constructs, which are 
able to describe the meaning of different interactions in such 
diagrams. Furthermore, it contains a rich theory and 
background for the analysis and verification of these systems 
modeled as process expressions.   

We propose in this section inspired by [13, 14] a formal 
definition of UML communication diagrams; first, we define a 
communication diagram in terms of sets and functions. Then, 
we start our formalization by formally defining the translation 
mapping between the source and target models.      

A. Formal definition of UML CDs 

 Definition 1: (CDs definition) 

We suppose the types of notational elements of 
communication diagrams as: 

Elements = {Lifelines, Links, Messages, Conds, Msgs, 
Vals, Prms } 

A communication diagram is a 8-tuple:  

CD = ( CDname, Elements, αcond , αmsg,   αval, αprm , αin , 
αout)  

Where: 

- CDname           is the communication diagram name. 

- Lifelines           represents the set of lifelines 

- Links                represents the set of links 

- Messages          represents the set of messages 

- Conds               represents the set of conditions. 

- Msgs                 represents the set of messages names. 

- Vals                  represents the set of return values. 

- Prms                 represents the set of parameters. 

- αcond : Messages              Conds         Defines for a 

messages its condition.  

- αmsg    : Messages             Msgs          Specifies for a 

message its name.  

- αval    : Messages              Vals            Specifies for a 

message its return value.  

- αprm   : Messages             Prms          Specifies for a 
message its parameters.  

- αin   : Lifelines U Messages           Links     Relates a 
lifeline (resp. message) to links (considered as entering links).  

- αout : Lifelines U Messages           Links     Relates a 
lifeline (resp. message) to links (considered as leaving links).   

 Definition 2: (Process expression function) 

In order to capture the semantics of communication 
diagrams, we define a function Ω for representing UML 
communication diagrams as process expressions in the π-
calculus. The function Ω is defined as follows:  

Ω Elements : Elements             Pi-calculus 

 EElements, P Pi-calculus, where Ω ElementsE (E) 

= P. Which means that each elements of the communication 
diagram has it’s correspond process expression “P” in the pi-
calculus. 

Using this function, we can map each notational element of 
the communication diagram into the adequate π-calculus 
specification as process expressions. 

B. Formalization of UML CDs 

The technique adopted to formalize UML communication 
diagrams is to define the appropriate π-calculus representation 
for each of their notational elements. The task is repeated until 
no elements are left and a complete π-calculus specification for 
a communication diagram is generated. The lifelines are 
modeled as processes, the messages as processes and the links 
as connectors.   

 Rule 1: (lifeline “object”) 

Suppose O1   Lifelines, αin (O1) = {INi}, αout (O1) = 
{OUTj}, ΩLinks(INi) = inio1 , ΩLinks(OUTj) = outjo1 , for i = 1,…, 
n. j = 1,…, m. f = n + m is the number of links associated with 
the lifeline. “seq” is a channel for evaluating the sequence 
number of the next message that will be sent. ΩLiflines (O1) = 
O1(inio1, seq, outjo1). We model the semantics of a lifeline by 
the behavior of the parameterized process O1(inio1, seq, outjo1) 
as follows (While i and j represent different inputs and outputs 
respectively of the object): 

O1(inio1, seq, outjo1) 

def

   inio1. τ. (ν x) seq<x>.x(s). !outjo1<s>. 
O1(inio1, seq, outjo1)   

An event that occurs in the process modeling the object is 
specified using the internal action “τ”. We use the “seq” 
channel to evaluate the sequence number of the message 
generated in response to the event produced. The output action 
seq<x> and the input action x(s) specify the sequence number 
of the next message. The concerned message process will be 
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fired using the output action “outjo1<s>” in the process. The 
replication operator “!” is used to indicate that the process 
modeling the object will trigger multiple messages processes 
(towards different objects), by outputting multiple copies of the 
“s” channel, if they have letters on messages i.e. different 
threads concurrently (in parallel). The recurrence of the process 
O1(inio1, seq, outjo1)  in the end of the expression is to deal with 
sequential messages (one by one).   

 Rule 2: (message) 

We take the following notation that gives us a general 
representation of messages and summarizes those described in 
(Figure 1).   

[[<seq>][<cond>][*[||][[<iter>]]]:][<var>:=]<msg>([<prm>]) 

 
Suppose M1   Messages, αin(M1) = {INi}, αout(M1) = 

{OUTj}, ΩLinks(INi) = inim1 , ΩLinks(OUTj) = outjm1 , for i = 
1,…, n. j = 1,…, m. f = n + m is the number of links associated 
with the message. αmsg (M1) = {MSG1}, ΩMsgs(MSG1) = msg1, 
“msg1” is a channel which represents the message that will be 
sent.  

- A simple message: 

When we have a simple message, ΩMessages(M1) = 
M1(inim1, msg1, outjm1), the semantics of the message is 
represented in the π-calculus as a process with parameters 
M1(inim1, msg1, outjm1) as follow: 

M1(inim1, msg1, outjm1)
def

  inim1(s).outjm1<msg1>.M1(inim1, 

msg1, outjm1) 

The process modeling the message waits its turn to be 
executed (i.e. message sending), this is represented by an input 
on the “inim1” channel. The output action “outjm1<msg1>” sends 
the message. 

- A message with return value: 

When we have a message with return value VAL1  VAL, 
αval (M1) = {VAL1}, ΩVals (VAL1) = val1, ΩMessages(M1) = 
M1(inim1, msg1, val1, outjm1), the semantics of the message is 
represented in the pi-calculus as a process with parameters 
M1(inim1, msg1, val1, outjm1) as follows: 

M1(inim1, msg1, val1, outjm1)

def

  inim1(s).outjm1<msg1, val1>. 

M1(inim1, msg1, val1, outim1) 

When the message has a return value, the process modeling 

the message outputs the “val1” channel on the channel “outim1” 
which will be used to get back the returned value. 

- A message with parameters and a return value: 

When we have a message with a return value and 
parameters PRM1  PRM, αprm(M1) = {PRM1},  
ΩPrms(PRM1) = prm1, ΩMessages(M1) = M1(inim1, msg1, val1, 
prm1, outjm1), the semantics of the message is represented in 
the π-calculus as a process with parameters M1(inim1, msg1, 
val1, prm1, outjm1) as follows: 

M1(inim1, msg1, val1, prm1, outjm1)
def

  inim1(s). ((ν p) prm1<p> |  

p (pts)).outjm1<msg1, pts, val1> . M1(inim1, msg1, val1, prm1, 

outjm1) 

The “prm1” channel is used to obtain the list of parameters 
modeled as “pts” channels. When the message has some 
parameters, the process modeling the message creates a 
channel “p” and executes the output action “prm1 <p>” and the 
input action “p (pts)” to retrieve the parameters. The channel 
“msg1” will be thereafter sent with multiple channels which 
represent the parameters and the returned value.  

- If there is a sequential iteration: 

When we have a message with a sequential iteration k (k 
can be specified or unspecified i.e. “*”), ΩMessages(M1) = 
M1(inim1, msg1, outjm1), the semantics of the message is 
represented in the π-calculus as a process with parameters 
M1(inim1, msg1, outjm1) as follows: 

M1(inim1, msg1, outjm1)

def

 inim1(s).outjm1<msg1>. … .outjm1<msg1>. 

M1(inim1, msg1, outjm1) 

The message process will send sequentially (one by one) a 
specified or unspecified number of messages “msg1” to the 
object Oj.  

- If there is a parallel iteration: 

When we have a message with a parallel iteration k (k can 
be specified or unspecified i.e. “*”), ΩMessages(M1) = M1(inim1, 
msg1, outjm1), the semantics of the message is represented in 
the π-calculus as a process with parameters M1(inim1, msg1, 
outjm1) as follows: 

M1(inim1, msg1, outjm1)
def

  inim1(s).

 




k

k 1

outjm1<msg1>. 

M1(inim1, msg1, outjm1) 

The message process will send concurrently a specified or 
unspecified number of message “msg1” to the object Oj.  

- If it is a conditional message: 

When we have a message with a condition COND1  
COND, αcond (M1) = {COND1}, ΩConds (COND1) = guard1, 
ΩMessages(M1) = M1(inim1, guard1, msg1, outjm1), the semantics 
of the message is represented in the π-calculus as a process 
with parameters M1(inim1, guard1, msg1, outjm1) as follows: 

M1(inim1, guard1, msg1, outjm1)
def

  inim1(s).(ν g)guard1<g>. 

g(y).([y=true] outjm1<msg1>.M1(inim1, guard1, msg1, outjm1) + 

[y=false] M1(inim1, guard1, msg1, outjm1)) 

The message process creates a channel “g” and executes the 
output action “guard1<g>” and the input action “g(y)” to 
retrieve the current evaluation of the condition. If the condition 
is verified, the matching construct “[y=true]” allows the 
submission of the message along the output action 
“outim1<msg1>” to the target process which models “Oj”. In the 
other case the message will not be sent and the process will 
wait until the condition is verified.    

k times 
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K times 

- A full message: 

When we have a full message M1, ΩMessages(M1) = 
M1(inim1, guard1, msg1, val1, prm1, outjm1), the semantics of 
the message is represented in the π-calculus as a process with 
parameters M1(inim1, guard1, msg1, val1, prm1, outjm1) as 
follows: 

M1(inim1, guard1, msg1, val1, prm1, outjm1)
def

  inim1(s).(ν g) 

guard1<g>. g(y).([y=true] ((ν p) prm1 <p> | p (pts))              

(outjm1<msg1, pts, val1>. … .outjm1<msg1, pts, val1>. …  +  

 

 Kk
outjm1<msg1, pts, val1> ) .  

M1(inim1, guard1, msg1, val1, prm1, outjm1) + [y=false] M1(inim1, 

guard1, msg1, val1, prm1, outjm1)) 

The process modeling the message is executed when the 
“inim1” channel is fired, after that, the condition will be 
evaluated using the “guard1” channel. If the condition is not 
verified, the message will not be sent. If the condition is 
verified, the message process proceeds to send either one 
message, multiple messages consequently or multiple messages 
concurrently.   

 Definition 3: (Processes communication) 

The objects are related using the connectors, which are 
consequently represented as links between processes 
representing objects and processes representing messages and 
vice versa. They relate output ports of source processes with 
input ports of target processes. Here, we can use the 
communication reduction rule defined in [4]: 

 
COMM : (…+ x(y).P) | (… + xz.Q)            P {z / y} | Q          

This rule represents the communication between two 
complementary processes (have complementary subjects) and 
consequently all free occurrence of y in P will be replaced by z 
using the substitution {z / y} after the communication. Based 
on this rule, the author in [4] has introduced a linking operator 

relation “ ” on two π-calculus processes as follow: 

P Q(t/p, t/q) 
def

 ν t ({t/p}P | {t/q}Q) 

This relation indicates that port p of the process P is linked 
with the port q of the process Q and then the channel t will be 
internalized. 

 Rule 3: (links) 

We aspire from the interesting relation defined in 
(definition 3) to facilitate the expression of the translation from 
an object to message and vice versa represented as processes. 
Furthermore, we define a process called “Connector” that links 
all object processes “Oi” and message processes “Mj” of a 
system as bellow: 

Connector 
def

   Iji, ν  c ({c/oi}Oi | {c/mj}Mj) 

 Rule 4: (CDs) 

Suppose an UML communication diagram CD = (CDname, 
Elements, αcond , αmsg ,   αval , αprm , αin , αout). ΩCDname(CD)  = 
CDname. The semantics of this communication diagram is 
modeled in the π-calculus by the process expression: 

CDname 
def

   Ii iO  |  Jj jM | Connector 

Where “Oi”  and  “Mj”  represent respectively the objects 
and messages processes resulting from applying the function 
defined in (Definition 2) in (rule 1) and (rule 2) on the 
communication diagram. Thus the model can be seen as π-
calculus concurrent processes which are running in parallel. 

V. EXAMPLE: ONLINE BOOKSHOP 

To illustrate our approach, we consider an example of an 
UML communication diagram for an Online Bookshop [19] 
which is described in Figure 5. 

Web customer which is depicted as actor can search, view, 
select and buy books. Communication starts with the iterative 
message “1 *: find_books()” which could be repeated some 
unspecified number of times. Client searches inventory of 
books “1.1 : search()”, and if he is interested in some book, he 
can view description of the book “1.2 [interested]: 
view_book()”. If client decides to buy, he can add the book to 
the shopping cart “1.3 [decided to buy]: add_to_cart()”.  

Checkout “2 : checkout()” includes getting list of books 
“2.1 : get_books()” from shopping cart, creating order “2.2 [not 
empty(cart)] : make_order()”, and updating inventory “2.3 
[order complete] : update_inventory()”, if order was 
completed.  

 

 

Fig. 5. An example of UML communication diagram for online bookshop. 

The execution semantics of the Online Bookshop 
interaction modeled as a communication diagram is given by 
the following π-calculus specification 
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VI. CONCLUDING REMARKS  

In this paper we proposed an intuitive yet systematic 
formalization of UML communication diagrams using a π-
calculus computation model. A major motivation for this work 
is to provide rigorous execution semantics for UML objects 
interactions modeled as communication diagram models. An 
eventual aim of our paper is to make possible model 
equivalence and model checking of communication diagrams 
by exploring the rich theory and background of the π-calculus. 
In our proposition, we provided a full bottom-up formalization 
of a communication diagram which is defined by a set of 
concurrent mutual-recursively defined π-calculus processes, 
each of them corresponds to a lifeline or a message.   

The generated specification can be considered as 
underlying formal basis that strengthens UML communication 
diagrams and allows analysis, verification and reasoning about 
the behavior of systems modeled in these diagrams. In order to 
illustrate the applicability of our approach, we have applied it 
to an example of an online bookshop system modeled in a 
communication diagram and we have shown how to generate 
the π-calculus specification from it. Using our approach, each 
system modeled as a communication diagram can be analyzed 
and verified using π-calculus tools, for example, this will allow 

analyzing the dynamic behavior of a program modeled as a 
communication diagram like indicated in the second example.  

In our future work, we plan to extend our approach by 
formalizing others diagrams such as sequence and interaction 
overview diagrams to give a full formal semantics based π-
calculus for all UML diagrams.  
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