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abstract: In this paper we study of the existence of solutions for a class of elliptic
system with nonlocal term in RN . The main tool used is the variational method,
more precisely, the Mountain Pass Theorem.
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1. Introduction

The purpose of this paper is to investigate existence results for the following
class of nonlocal elliptic system in RN





−M1

(∫

RN

1

p (x)
|∇u|

p(x)
dx
)
∆p(x)u =

∂F

∂u
(x, u, v) in R

N

−M2

(∫

RN

1

q (x)
|∇v|q(x)dx

)
∆q(x)v =

∂F

∂v
(x, u, v) in R

N

, (1.1)

with p and q are real valued functions satisfying 1 < p (x) , q (x) < N (N ≥ 2)
for every x ∈ RN , and M1 and M2 are continuous and bounded functions. We
confine ourselves to the case where M1 = M2 = M for simplicity. Notice that
the results of this paper remain valid for M1 6= M2 by adding some hypothesis on
M1 and M2. The real valued function F ∈ C1

(
RN × R2

)
satisfies some assump-

tions. The unknown real valued functions u and v stay in appropriate spaces. The

operator ∆p(x)u = div
(
|∇u|

p(x)−2
∇u
)
designates the p(x)-Laplacian.

The problem (1.1) discribes the stationary version presented by Kirchhoff [16].
More precisely, Kirchhoff proposed the following model

ρ utt −

(
P0

h
+

E

2L

∫ L

0

u2
x dx

)
uxx = 0. (1.2)
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This equation is as an extension of the classical d’Alembert’s wave equation by
considering the effects of changes in the length of the strings during the vibrations.
The parameters in equation (1.2) have the following meanings: E is the Young
modulus of the material, ρ is the mass density, L is the length of the string, h is
the area of cross-section, and P0 is the initial tension.

The study of elliptic problems involving p(x)−Laplacian has interested in recent
years, for the existence of solutions see [1], [9] and [12], and the eigenvalue involving
p (x)−Laplacian problems see [10] and [11].

For the elliptic equations involving p (x)−Kirchhoff type, we refer the reader
to the works [2] , [13], [14], [17], [18] and [21]. They use different methods to
establish the existence of solutions.

In our context, the author in [4], obtained the existence and multiplicity of
solutions for the vector valued elliptic system




−M1

(∫

RN

1

p (x)
|∇u|p(x) dx

)
div
(
|∇u|p(x)−2 ∇u

)
=

∂F

∂u
(x, u, v) in Ω

−M2

(∫

RN

1

q (x)
|∇v|

q(x)
dx

)
div
(
|∇v|

q(x)−2
∇v
)
=

∂F

∂v
(x, u, v) in Ω

u = v = 0 on ∂Ω

where Ω is bounded domain in RN , with smooth boundary ∂Ω, p (x) , q (x) ∈
C+

(
Ω
)
with 1 < p− = min

Ω
p (x) < p+ = max

Ω
p (x) , 1 < q− = min

Ω
q (x) <

q+ = max
Ω

q (x) , M1 (t) , M2 (t) are continuous functions such that M1 (t) = M2 (t).

The author apply the direct variational approach and the theory of the variable
exponent Sobolev spaces.

In [3], the authors show, using the Ekeland variational principle, the existence
of solution for the problem




−M1

(∫

RN

1

p (x)
|∇u|

p(x)
dx

)
div
(
|∇u|

p(x)−2
∇u
)
=

∂F

∂u
(u, v) + ρ1 (x) in Ω,

−M2

(∫

RN

1

q (x)
|∇v|

q(x)
dx

)
div
(
|∇v|

q(x)−2
∇v
)
=

∂F

∂v
(u, v) + ρ2 (x) in Ω,

∂u

∂n
=

∂v

∂n
= 0 on ∂Ω.

2. Preliminary results

In this section we recall some definitions and basic properties of the variable
exponent Lebesgue–Sobolev spaces and introduce some notations used below.
Let

C+

(
R

N
)
=
{
p ∈ C

(
R

N
)
: p (x) > 1, for every x ∈ R

N
}

p+ = max
{
p (x) , x ∈ RN

}
et p− = min

{
p (x) , ∈ RN

}
for every p ∈ C+

(
RN
)
.



Existence of Solutions for an Elliptic... 195

Denote by S
(
RN
)
the set of measurable real-valued functions defined on RN .

We introduce for p ∈ C+

(
RN
)
, the space

Lp(x)
(
R

N
)
=

{
u ∈ S

(
R

N
)
such that,

∫

RN

|u (x)|
p(x)

dx < +∞

}

equipped with the so called Luxemburg norm

|u|p(x) = inf

{
t > 0 :

∫

RN

∣∣∣∣
u (x)

t

∣∣∣∣
p(x)

dx ≤ 1

}

This is a Banach space, called generalized Lebesgue-space.
Define the variable exponent Sobolev space Wp(x) the closure of C∞

0

(
RN
)
under

the norm

‖u‖p(x) = |∇u|p(x)

Moreover, we recall some previous results.

Proposition 2.1. ( [5]) If p ∈ C+

(
RN
)
, then Lp(x)

(
RN
)
and W 1,p(x)

(
RN
)
are

separable and reflexive Banach spaces.

Proposition 2.2. ( [5]) The topological dual space of Lp(x)
(
RN
)
is Lp′(x)

(
RN
)
,

where

1

p (x)
+

1

p′ (x)
= 1.

Moreover for any (u, v) ∈ Lp(x)
(
RN
)
× Lp′(x)

(
RN
)
, we have

∣∣∣∣
∫

RN

uvdx

∣∣∣∣ ≤
(

1

p−
+

1

(p′)
−

)
|u|p(x) |v|p′(x) ≤ 2 |u|p(x) |v|p′(x) .

Let us now define the modular corresponding to the norm |.|p(x) by

ρ (u) =

∫

RN

|u|
p(x)

dx.

Proposition 2.3. ( [8], [15]) For all u ∈ Lp(x)
(
RN
)
, we have

min
{
|u|

p−

p(x) , |u|
p+

p(x)

}
≤ ρ (u) ≤ max

{
|u|

p−

p(x) , |u|
p+

p(x)

}
.

In addition, we have
(i) |u|p(x) < 1 (resp. = 1;> 1) ⇔ ρ (u) < 1 (resp.= 1;> 1),

(ii) |u|p(x) > 1 =⇒ |u|
p−

p(x) ≤ ρ (u) ≤ |u|
p+

p(x) ,

(iii) |u|p(x) > 1 =⇒ |u|p
+

p(x) ≤ ρ (u) ≤ |u|p
−

p(x) ,

(iv) ρ

(
u

|u|p(x)

)
= 1.
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Proposition 2.4. ( [5]) Let p (x) and s (x) be measurable functions such that
p(x) ∈ L∞

(
RN
)
and 1 ≤ p (x) s (x) ≤ ∞ almost every where in RN . If u ∈

Ls(x)
(
RN
)
, u 6= 0, then

|u|p(x)s(x) ≤ 1 =⇒ |u|
p−

p(x)s(x) ≤
∣∣∣|u|p(x)

∣∣∣
s(x)

≤ |u|
p+

p(x)s(x) ,

|u|p(x)s(x) ≥ 1 =⇒ |u|p
+

p(x)s(x) ≤
∣∣∣|u|p(x)

∣∣∣
s(x)

≤ |u|p
−

p(x)s(x) .

In particular, if p (x) = p is a constant, then

||u|p|s(x) = |u|p
ps(x) .

Proposition 2.5. ( [8]) If u, un ∈ Lp(x)
(
RN
)
, n = 1, 2, ..., then the following

statements are mutually equivalent:
(1) lim

n→∞
|un − u|p(x) = 0,

(2) lim
n→∞

ρ (un − u) = 0,

(3) un → u in measure in RN and lim
n→∞

ρ (un) = ρ (u) .

Let p∗ (x) be the critical Sobolev exponent of p (x) defined by

p∗ (x) =





Np(x)

N − p(x)
for p(x) < N

+∞ for p(x) ≥ N

,

and let C0,1
(
RN
)
be the Lipschitz-continuous functions space.

Proposition 2.6. ( [8], [7]) If p (x) ∈ C
0,1
+

(
RN
)
, then there exists a positive

constant c such that

|u|p∗(x) ≤ cp(x) |∇u|p(x) , for all u ∈ W 1,p(x)
(
R

N
)
.

Proposition 2.7. ( [7]) 1) If s ∈ L∞
+

(
RN
)
and p(x) ≤ s (x) ≪ p∗ (x) ,

∀x ∈ RN , then the embedding

W 1,p(x)
(
R

N
)
→֒ Ls(x)

(
R

N
)

is continuous but not compact.
2) If p is continuous on Ω and s is a measurable function on Ω,
with p(x) ≤ s (x) < p∗ (x) , ∀x ∈ Ω, then the embedding

W 1,p(x) (Ω) →֒ Ls(x) (Ω)

is compact.
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3. Existence of solutions

The solution of (1.1) belongs to the product spaceWp(x),q(x)(R
N ) = Wp(x)(R

N )×
Wq(x)(R

N ) equipped with the norm ‖(u, v)‖p(x) = ‖u‖p(x) + ‖v‖q(x) .

In what follows, Wp(x),q(x) denote Wp(x),q(x)

(
RN
)
.

Definition 3.1. We say that (u, v) ∈ Wp(x),q(x) is a weak solution of (1.1) if for
all (z, w) ∈ Wp(x),q(x) if

M

(∫

RN

1

p (x)
|∇u|

p(x)
dx

)∫

RN

|∇u|
p(x)−2

∇u∇zdx

+M

(∫

RN

1

q (x)
|∇v|

q(x)
dx

)∫

RN

|∇v|
q(x)−2

∇v∇wdx

−

∫

RN

∂F

∂u
(x, u, v) zdx−

∫

RN

∂F

∂v
(x, u, v)wdx = 0.

The Euler-Lagrange functional associated to problem (1.1) is defined as

I : Wp(x),q(x) → R, I (u, v) = J (u, v)−K (u, v)

J (u, v) = M̂

(∫

RN

1

p (x)
|∇u|

p(x)
dx

)
+ M̂

(∫

RN

1

q (x)
|∇v|

q(x)
dx

)

K (u, v) =

∫

RN

F (x, u, v) dx

such that M̂ (t) =
∫ t

0
M (s) ds.

Hypotheses

In this paper, we will use the following assumptions.

(H1) F ∈ C1
(
RN × R2,R

)
and F (x, 0, 0) = 0.

(H2) There exist positive functions ai, bi such that:

∣∣∣∣
∂F

∂u
(x, u, v)

∣∣∣∣ ≤ a1 (x) |u|
γ1−1 + a2 (x) |v|

γ2−1

∣∣∣∣
∂F

∂v
(x, u, v)

∣∣∣∣ ≤ b1 (x) |u|
µ1−1

+ b2 (x) |v|
µ2−1

,

where 1 < γ1, γ2, µ1, µ2 < inf (p(x), q (x)) , and p (x) , q (x) > N
2 , for all x ∈ RN .

a1 ∈ Lα1(x)
(
RN
)
; a2, b1 ∈ Lβ(x)

(
RN
)
; b2 ∈ Lα2(x)

(
RN
)
,

and α1 (x) =
p (x)

p (x)− 1
; β (x) =

p∗ (x) q∗ (x)

p∗ (x) q∗ (x)− p∗ (x) − q∗ (x)
, α2 (x) =

q (x)

q (x)− 1
.
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(H3) There exist constants R > 0, θ > 1 and µ < 1 −
1

θ
, and a positive function

H : RN × R2 → R such that for x ∈ RN , |u| , |v| ≤ R and t > 0 sufficiently

small, we have F

(
x, t

1
p+ u, t

1
q+ v

)
≥ tθH (x, u, v) .

(H4) F satisfies the Ambrosetti-Rabinowitz condition,

0 < F (x, u, v) ≤ u
∂F

∂u
(x, u, v) + v

∂F

∂v
(x, u, v).

(H5) There exists m0 > 0, µ; 0 < µ < 1 such that m0 ≤ M (t) and M̂(t) ≥
(1− µ)M(t)t.

The following existence theorem is based on an important compactness prop-
erty of functionals. We first prove some lemmas.

Lemma 3.1. [4] the functional I is well defined on Wp(x),q(x), and it is of class
C1, and we have

I ′ (u, v) (z, w) = M

(∫

RN

1

p (x)
|∇u|

p(x)
dx

)∫

RN

|∇u|
p(x)−2

∇u∇zdx+

M

(∫

RN

1

q (x)
|∇v|q(x) dx

)∫

RN

|∇v|q(x)−2 ∇v∇wdx

−

∫

RN

∂F

∂u
(x, u, v) zdx−

∫

RN

∂F

∂v
(x, u, v)wdx

Lemma 3.2. Under assumptions (H1) - (H5), there exist ρ, α > 0 such that
I (u, v) ≥ α if ‖(u, v)‖p(x) = ρ for all (u, v) ∈ Wp(x),q(x).

Proof: we have as in [5]

F (x, u, v) =

∫ u

0

∂F

∂s
(x, s, v) ds+ F (x, 0, v)

=

∫ u

0

∂F

∂s
(x, s, v) ds+

∫ v

0

∂F

∂s
(x, 0, s) ds+ F (x, 0, 0)

≤

∫ u

0

(
a1 (x) |s|

γ1−1
+ a2 (x) |v|

γ2−1
)
ds+

∫ v

0

b2 (x) |s|
µ2−1

ds

≤ c1

[
a1 (x) |u|

γ1 + a2 (x) |v|
γ2−1

|u|+ b2 (x) |v|
µ2

]

∫

RN

F (x, u, v) dx ≤ c2

[
|a1|α1(x)

||u|γ1 |p(x) + |a2|β(x)

∣∣∣|v|γ2−1
∣∣∣
q∗(x)

|u|p∗(x)

+ |b2|α2(x)
||v|

µ2 |q(x)

]

We consider the fact that Wp(x) →֒ Ls(x)p(x)
(
RN
)
, for s (x) > 1, there exists

c1 > 0
||u|

γ1 |p(x) = |u|
γ1

γ1p(x)
≤ c1 ‖u‖

γ1

p(x)
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and ∣∣∣|v|γ2−1
∣∣∣
q∗(x)

= |v|
γ2−1
(γ2−1)q∗(x) ≤ c2 ‖v‖

γ2−1
q(x)

again
||v|

µ2 |q(x) = |v|
µ2

µ2q(x)
≤ c3 ‖v‖

µ2

q(x) .

Then,

|K (u, v)| ≤ c4

[
|a1|α1(x)

|u|
γ1

γ1p(x)
+ |a2|β(x) |v|

γ2−1
(γ2−1)q∗(x) |u|p∗(x)

+ |b2|α2(x)
|v|

µ2

µ2q(x)

]

we obtain

|K (u, v)| ≤ c
[
|a1|α1(x)

‖u‖
γ1

p(x) + |a2|β(x) ‖v‖
γ2−1

q(x) ‖u‖p(x) + |b2|α2(x)
‖v‖

µ2

q(x)

]
.

In the other hand

I (u, v) = M̂

(∫

RN

1

p (x)
|∇u|

p(x)
dx

)
+ M̂

(∫

RN

1

q (x)
|∇v|

q(x)
dx

)

−

∫

RN

F (x, u, v) dx

≥
m0

p+

∫

RN

|∇u|
p(x)

dx+
m0

q+

∫

RN

|∇v|
q(x)

dx

−c
[
|a1|α1(x)

‖u‖
γ1

p(x) + |a2|β(x) ‖v‖
γ2−1
q(x) ‖u‖p(x) + |b2|α2(x)

‖v‖
µ2

q(x)

]

≥
m0

p+
‖u‖

pi

p(x) +
m0

q+
‖v‖

qi

q(x)

−c
[
|a1|α1(x)

‖u‖
γ1

p(x) + |a2|β(x) ‖v‖
γ2−1
q(x) ‖u‖p(x) + |b2|α2(x)

‖v‖
µ2

q(x)

]

such that i = + if ‖u‖p(x) > 1, and i = − if ‖u‖p(x) < 1, c is positive con-

stant. So, for all (u, v) ∈ Wp(x),q(x), 1 < γ1, γ2, µ1, µ2 < inf {p (x) , q (x)} with
‖(u, v)‖p(x) = ρ large enough,

I (u, v) ≥ α > 0.

✷

Lemma 3.3. Assume that (H1) - (H5) holds. Then there exists (e1, e2) ∈ Wp(x),q(x)

with ‖(e1, e2)‖ > ρ such that I (e1, e2) < 0

Proof: From (H5), we can obtain for t > t0

M̂ (t) ≤
M̂ (t0)

t
1

1−µ

0

t
1

1−µ ≤ Ct
1

1−µ



200 B. Abdelmalek, A. Djellit and S. Tas

where C is constant, and t0 is an arbitrarily positive constant.

Choose (u0, v0) ∈ Wp(x),q(x), u0, v0 > 0 and ‖(u, v)‖ > ρ. It follows that if t is
large enough then

I

(
t

1
p+ u0, t

1
q+ v0

)
=M̂

(∫

RN

1

p (x)

∣∣∣∣∇t
1
p+ u0

∣∣∣∣
p(x)

dx

)

+ M̂

(∫

RN

1

q (x)

∣∣∣∣∇t
1
q+ v0

∣∣∣∣
q(x)

dx

)

−

∫

RN

F

(
x, t

1
p+ u0, t

1
q+ v0

)
dx

≤C

(∫

RN

1

p (x)

∣∣∣∣∇t
1
p+ u0

∣∣∣∣
p(x)

dx

) 1
1−µ

+ C

(∫

RN

1

q−

∣∣∣∣∇t
1
q+ v0

∣∣∣∣
q(x)

dx

) 1
1−µ

−

∫

RN

F

(
x, t

1
p+ u0, t

1
q+ v0

)
dx

≤Ct
1

1−µ

(∫

RN

1

p−
|∇u0|

p(x)
dx

) 1
1−µ

+ Ct
1

1−µ

(∫

RN

1

q−
|∇v0|

q(x)
dx

) 1
1−µ

− tθH (x, u0, v0)

≤Ct
1

1−µ

[
1

p−
max

{
|∇u0|

p−

1−µ

p(x) , |∇u0|
p+

1−µ

p(x)

}

+
1

q−
max

{
|∇v0|

q−

1−µ

q(x) , |∇v0|
q+

1−µ

q(x)

}]

− tθH (x, u0, v0)

<0.

with t large enough and µ < 1, we conclude that I (tu0, tv0) < 0 and I (tu0, tv0) →
−∞ as t → +∞. ✷

Lemma 3.4. The functional I satisfies the Palais-Smale condition (PS)c for any
c ∈ R.

Proof: Let (un, vn) ⊂ Wp(x),q(x) be a Palais-Smale sequence at a level c ∈ R,

satisfies I (un, vn) → c and I ′ (un, vn) → 0, we will show that (un, vn) is a bounded
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sequence.

c ≥ I (un, vn)

≥ J (u, v) = M̂

(∫

RN

1

p (x)
|∇un|

p(x)
dx

)
+ M̂

(∫

RN

1

q (x)
|∇vn|

q(x)
dx

)

−

∫

RN

F (x, un, vn) dx

≥
m0

p+

∫

RN

|∇un|
p(x)

dx+
m0

q+

∫

RN

|∇vn|
q(x)

dx−

∫

RN

F (x, un, vn) dx

≥
m0

p+
‖un‖

pi

p(x) +
m0

q+
‖vn‖

qi

q(x) −

∫

RN

F (x, un, vn) dx

and we are

I ′ (un, vn) (un, vn) ≤ εn →
n→∞

0

then

εn ≥ M

(∫

RN

1

p (x)
|∇u|

p(x)
dx

)∫

RN

|∇un|
p(x)−2

∇un∇undx

+M

(∫

RN

1

q (x)
|∇v|q(x) dx

)∫

RN

|∇vn|
q(x)−2 ∇vn∇vndx

−

∫

RN

∂F

∂u
(x, un, vn)undx−

∫

RN

∂F

∂v
(x, un, vn) vndx

≥ m0 ‖un‖
pi

+m0 ‖vn‖
qi

−

∫

RN

∂F

∂u
(x, un, vn)undx

−

∫

RN

∂F

∂v
(x, un, vn) vndx

By the condition (H4), we have

εn + c ≥ I ′ (un, vn) (un, vn)− I (un, vn)

≥ m0

(
1−

1

p+

)
‖un‖

pi

+m0

(
1−

1

q+

)
‖vn‖

qi

+

+

∫

RN

(
F (x, un, vn)−

∂F

∂u
(x, un, vn)un −

∂F

∂v
(x, un, vn) vn

)
dx

≥ m0

(
1−

1

p+

)
‖un‖

pi

+m0

(
1−

1

q+

)
‖vn‖

qi

then (un, vn) is bounded in Wp(x),q(x). There is a subsequence denoted again
(un, vn) weakly convergent in Wp(x),q(x). We will show that (un, vn) is strongly
convergent to (u, v) in Wp(x),q(x).
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To this end , we recall the elementary inequality for any ζ, η ∈ RN :





22−p |ζ − η|p ≤
(
|ζ|p−2

ζ − |η|p−2
η
)
(ζ − η) ,

(p− 1) |ζ − η|
2
(|ζ|+ |η|)

p−2
≤
(
|ζ|

p−2
ζ − |η|

p−2
η
)
(ζ − η)

if p ≥ 2
if 1 < p < 2

Indeed (un, vn) contains a Cauchy subsequence.
Put

Up =
{
x ∈ RN , p (x) ≥ 2

}
Vp =

{
x ∈ RN , 1 < p (x) < 2

}

Uq =
{
x ∈ RN , q (x) ≥ 2

}
Vq =

{
x ∈ RN , 1 < q (x) < 2

}

Therefore for p (x) ≥ 2, using the above inequality, we get

22−p+

M
(∫

RN
1

p(x) |∇un|
p(x)

dx
)
M
(∫

RN
1

p(x) |∇um|
p(x)

dx
)
· · ·

· · ·
∫
Up

|∇un −∇um|
p(x)

dx

≤ M
(∫

RN
1

p(x) |∇un|
p(x)

dx
)
M
(∫

RN
1

p(x) |∇um|
p(x)

dx
)

×
∫
Up

|∇un|
p(x)−2

∇un (∇un −∇um) dx

−M
(∫

RN
1

p(x) |∇um|
p(x)

dx
)
M
(∫

RN
1

p(x) |∇um|
p(x)

dx
)

×
∫
Up

|∇um|
p(x)−2

∇um (∇un −∇um) dx

≤ M
(∫

RN
1

p(x) |∇un|
p(x)

dx
)
M
(∫

RN
1

p(x) |∇um|
p(x)

dx
)

×
∫
RN |∇un|

p(x)−2
∇un (∇un −∇um) dx

−M
(∫

RN
1

p(x) |∇un|
p(x)

dx
)
M
(∫

RN
1

p(x) |∇um|p(x) dx
)

×
∫
RN |∇um|p(x)−2 ∇um (∇un −∇um) dx

≤ M
(∫

RN
1

p(x) |∇um|
p(x)

dx
)
J ′ (un, vn) (un − um, 0)

−M
(∫

RN
1

p(x) |∇un|
p(x)

dx
)
J ′ (um, vm) (un − um, 0)

= M
(∫

RN
1

p(x) |∇um|p(x) dx
)
I ′ (un, vn) (un − um, 0)

−M
(∫

RN
1

p(x) |∇un|
p(x)

dx
)
I ′ (um, vm) (un − um, 0)

+M
(∫

RN
1

p(x) |∇um|p(x) dx
)
K ′ (un, vn) (un − um, 0)

−M
(∫

RN
1

p(x) |∇un|
p(x)

dx
)
K ′ (um, vm) (un − um, 0) . Observe by Proposition

2.3. that the positive numerical sequence Xn := M
(∫

RN
1

p(x) |∇un|
p(x)

dx
)

is

bounded. From Bolzano-Weierstrauss, we can extract a convergent subsequence
again denoted Xn. Roughly speaking, there is a subsequence of un (again denoted
un) such that Xn is convergent. So, we can write:

22−p+

XnXm

∫
Up

|∇un −∇um|
p(x)

dx ≤ XmI ′ (un, vn) (un − um, 0)

−XnI
′ (um, vm) (un − um, 0) +XmK ′ (un, vn) (un − um, 0)

−XnK
′ (um, vm) (un − um, 0) .
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When 1 < p (x) < 2, we use the second inequality (see [ [19]]), to get∫
Vp

|∇un −∇um|
p(x)

dx

≤
∫
Vp

|∇un −∇um|
p(x)

(|∇un|+ |∇um|)
p(x)(p(x)−2)

2 · · ·

· · · (|∇un|+ |∇um|)
p(x)(2−p(x))

2 dx

≤ 2
∣∣∣|∇un −∇um|p(x) . |∇un +∇um|

p(x)(p(x)−2)
2

∣∣∣
2

p(x)

· · ·

· · · ×
∣∣∣|∇un +∇um|

p(x)(2−p(x))
2

∣∣∣
2

2−p(x)

≤ 2max
i=±

(∫
RN |∇un −∇um|2 |∇un +∇um|p(x)−2

dx
) pi

2

· · ·

· · · ×max
i=±

(∫
RN |∇un +∇um|p(x) dx

) 2−pi

2

≤ 2max
i=±

(p− − 1)
−pi

2 .max
i=±

[∫
RN |∇un|

p(x)−2 ∇un (∇un −∇um) dx

−
∫
RN |∇um|p(x)−2 ∇um (∇un −∇um) dx

] pi

2

×max
i=±

(∫
RN |∇un +∇um|

p(x)
) 2−pi

2

.

Taking into account Proposition 2.3., Proposition 2.4., the fact that ‖I ′ (un, vn)‖ →
0 as n → ∞ and the fact that the operator K ′ is compact, it is easy to see that

lim
n,m→∞

∫

RN

|∇un −∇um|
p(x)

dx = 0.

In the same way we show that

lim
n,m→∞

∫

RN

|∇vn −∇vm|
p(x)

dx = 0.

Hence, (un, vn) contains a Cauchy subsequence. The proof is complete. ✷

Theorem 3.1. System (1.1) has at least one nontrivial solution (u, v).

Proof: In view of Lemmas 3.1, 3.2, 3.3 and 3.4, we can apply the Mountain-Pass
theorem (see [6]) to conclude that system (1.1) has a nontrivial weak solution. ✷
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