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Abstract

In this paper we study a class of nonlinear elliptic problems involving the p (x)-
Laplacian operator. Under some additional assumptions on the nonlinearities, the
corresponding functional verifies the Palais-Smale condition. So, we can use the
Mountain Pass Theorem to prove the existence of nontrivial solution.
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1. Introduction

The aim of this paper is to prove some existence results for nonlinear elliptic problem


−�p(x)u = λV (x) |u|q(x)−2 u + f (x, u), x ∈ R
N

u ≥ 0, u �= 0, u ∈ W

(1.1)

�p(x) is so-called p (x)-Laplacian operator i.e. �p(x)u = div(|∇u|p(x)−2 ∇u). In the
case p (x) = p, then div

(|∇u|p−2 ∇u
)

is well-known p-Laplacian and the problem is the
usual p-Laplacian equation. f is real-valued function with domain R

N×R; u is unknown
real valued function defined in R

N and belonging to appropriate function spaces; λ is
positive parameter; p and q are reals functions satisfying p (x) , q (x) ∈ C+

(
R

n
)
.

Problems involving the p (x)-Laplacian operator arise from many branches of math-
ematics as in the study of elastic mechanics (see [22]), electrorheological fluids (see [1],
[7]), (see [17]) or image restoration (see [6]).

Let the eigenvalue problem involving variable exponent growth conditions intensively
studied is the following

−�p(x)u = λV (x) |u|q(x)−2 u, in �. (1.2)

where � is bounded domain in R
N, n ≥ 3, with smooth boundary ∂�,

In [21] the author studied the problem (1.2) in bounded domain where V (x) = 1,

under the assumption 1 < min
�

q (x) < min
�

p (x) < max
�

q (x) , the continuous spectrum

is proved.
However [18] the author established in bounded domain, using the simple variational

arguments based on the Ekeland’s principle, that there exists λ∗ > 0 such that for any
λ ∈ (

0, λ∗) is an eigenvalue for the above problem.
This paper is organized as follows. In Section 1 we recall some previous results.

In Section 2, we state some basic results for the variable exponent Lebesgue-Sobolev
spaces, which are given in Fan and Zhao (see [11]), O. Kovăcı̃k, J. Răkosnı̃k (see [19]).
In Section 3, we give sufficient conditions on V and f to obtain the existence of solution
for the problem (1.1) above.

2. Preliminary results

We recall some background facts concerning the generalized Lebesgue-Sobolev spaces
and introduce some notations used below.
Let

C+ (�) = {p ∈ C (�) : p (x) > 1, for every x ∈ � }
p+ = max {p (x) ∈ �} et p− = min {p (x) ∈ �} for every p ∈ C+ (�) .

Denote by M (�) the set of measurable real-valued functions defined on �.
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We introduce for p ∈ C+ (�), the space

Lp(x) (�) =
{
u ∈ M (�) such that,

∫
�

|u (x)|p(x) dx < +∞
}

equipped with the so called Luxemburg norm

|u|p(x),� = inf

{
t > 0 :

∫
�

∣∣∣∣u (x)

t

∣∣∣∣
p(x)

dx ≤ 1

}
.

In what follow |u|p(x) will denote |u|p(x),RN . It is well-know that this norm confers a
reflexive Banach structure.

Define the variable exponent Sobolev space W the closure of C∞
0

(
R

N
)

under the
norm

‖u‖p(x) = |∇u|p(x) .

Moreover, we recall some previous results.

Proposition 2.1. ([8]) If p ∈ C+
(
R

N
)
, then Lp(x)

(
R

N
)

and W 1,p(x)
(
R

N
)

are sepa-
rable and reflexive Banach spaces.

Proposition 2.2. ([8]) The topological dual space of Lp(x)
(
R

N
)

is Lp′(x)
(
R

N
)
, where

1

p (x)
+ 1

p′ (x)
= 1.

Moreover for any (u, v) ∈ Lp(x)
(
R

N
) × Lp′(x)

(
R

N
)
, we have∣∣∣∣

∫
RN

uvdx

∣∣∣∣ ≤
(

1

p− + 1

(p′)−

)
|u|p(x) |v|p′(x) ≤ 2 |u|p(x) |v|p′(x) .

Let us now define the modular corresponding to the norm |.|p(x) by

ρ (u) =
∫

RN

|u|p(x) dx.

Proposition 2.3. ([11],[19]) For all u ∈ Lp(x)
(
R

N
)
, we have

min
{
|u|p−

p(x) , |u|p+
p(x)

}
≤ ρ (u) ≤ max

{
|u|p−

p(x) , |u|p+
p(x)

}
.

In addition, we have

(i) |u|p(x) < 1 (resp. = 1; > 1) ⇔ ρ (u) < 1 (resp. = 1; > 1),

(ii) |u|p(x) > 1 �⇒ |u|p−
p(x) ≤ ρ (u) ≤ |u|p+

p(x) ,
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(iii) |u|p(x) > 1 �⇒ |u|p+
p(x) ≤ ρ (u) ≤ |u|p−

p(x) ,

(iv) ρ

(
u

|u|p(x)

)
= 1.

Proposition 2.4. ([8]) Let p (x) and s (x) be measurable functions such that p(x) ∈
L∞ (

R
N

)
and 1 ≤ p (x) s (x) ≤ ∞ almost every where in R

N. If u ∈ Ls(x)
(
R

N
)
,

u �= 0, then

|u|p(x)s(x) ≤ 1 �⇒ |u|p−
p(x)s(x) ≤

∣∣∣|u|p(x)
∣∣∣
s(x)

≤ |u|p+
p(x)s(x) ,

|u|p(x)s(x) ≥ 1 �⇒ |u|p+
p(x)s(x) ≤

∣∣∣|u|p(x)
∣∣∣
s(x)

≤ |u|p−
p(x)s(x) .

In particular, if p (x) = p is a constant, then∣∣|u|p∣∣
s(x)

= |u|p
ps(x) .

Proposition 2.5. ([11]) If u, un ∈ Lp(x)
(
R

N
)
, n = 1, 2, . . . , then the following

statements are mutually equivalent:

(1) lim
n→∞ |un − u|p(x) = 0,

(2) lim
n→∞ρ (un − u) = 0,

(3) un → u in measure in R
N and lim

n→∞ρ (un) = ρ (u) .

Let p∗ (x) be the critical Sobolev exponent of p (x) defined by

p∗ (x) =




Np(x)

N − p(x)
for p(x) < N

+∞ for p(x) ≥ N

,

and let C0,1 (
R

N
)

be the Lipschitz-continuous functions space.

Proposition 2.6. ([11],[9]) If p (x) ∈ C
0,1
+

(
R

N
)
, then there exists a positive constant

c such that

|u|p∗(x) ≤ cp(x) |∇u|p(x) , for all u ∈ W 1,p(x)
(
R

N
)
.

Proposition 2.7. ([9]) 1) If s ∈ L∞+
(
R

N
)

and p(x) ≤ s (x) � p∗ (x) , ∀x ∈ R
N, then

the embedding
W 1,p(x)

(
R

N
)

↪→ Ls(x)
(
R

N
)
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is continuous but not compact.
2) If p is continuous on � and s is a measurable function on �, with p(x) ≤ s (x) <

p∗ (x) , ∀x ∈ �, then the embedding

W 1,p(x) (�) ↪→ Ls(x) (�)

is compact.

3. Main result and proof

Definition 3.1. u ∈ W is a weak solution of (1.1) if for all v ∈ W,∫
RN

|∇u|p(x)−2 ∇u∇vdx − λ

∫
RN

V (x) |u|q(x)−2 uvdx −
∫

RN

f (x, u) vdx = 0,

The present paper is studied under the following hypotheses. PutF (x, u) =
∫ u

0
f (x, t) dt.

(H1) We suppose that the functions p, q are continuous and satisfy p (x) < N, along
with 1 < p− < p+ < q− < q+ ≤ p∗ (x) . In particular, p verifies the weak

Lipschitz condition, namely, |p(x) − p(y)| ≤ c

|log |x − y|| holds for |x − y| ≤ 1

2
and x, y ∈ R

N.

(H2) We assume f : R
N × R → R is a the Caratheodory function and satisfies f ∈

C1 (
R

N × R, R
)

and

|f (x, u)| ≤ a (x) |u|p(x)
α(x) , ∀ (x, u) ∈ R

N × R.

Here a ∈ Lα(x)
(
R

N
)
, is nonnegative mesurable function, along with

1

α (x)
+

1

p (x)
= 1.

(H3) Suppose that 0 ≤ θF (x, u) ≤ uf (x, u) , such that p+ < θ < q−, x ∈ R
N.

(H4) The potential V ∈ L∞ (
R

N
)∩Lr(x)

(
R

N
)

is nonnegative, and
1

r (x)
+ 1

q (x)
= 1.

Remark 3.2. As in [3] the hypothesis (H3) implies that, for all t > 1, F (x, tu) ≥
tθF (x, u) . Moreover, in vew of (H1), W = W 1,p(x).

The main result for this paper is given by the following theorem.

Theorem 3.3. If the hypotheses (H1)–(H4) fulfilled, then the problem (1.1) has a non-
trivial weak solution for all λ > 0.
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We need some lemmas to prove main result. The energy functional corresponding to
problem (1.1) is defined by

Jλ (u) =
∫

Rn

1

p (x)
|∇u|p(x) dx −

∫
Rn

λ
V (x)

q (x)
|u|q(x) dx −

∫
Rn

F (x, u) dx

and we put

ϕ (u) =
∫

Rn

1

p (x)
|∇u|p(x) dx,

ψ (u) =
∫

Rn

V (x)

q (x)
|u|q(x) dx,

K (u) =
∫

Rn

F (x, u) dx.

Lemma 3.4. The functional Jλ is well defined and C1 (W, R) . Moreover

〈
J ′

λ (u) , v
〉 =

∫
Rn

(
|∇u|p(x)−2 ∇u∇v − λV (x) |u|q(x)−2 uv

)
dx −

∫
Rn

f (x, u) vdx.

By (H2) togheter with (H4), it is easy to see that J ′
λ belongs to the topological dual

of W.

Lemma 3.5. There exists positives constants R and ρ such that Jλ (u) ≥ ρ on ‖u‖p(x) =
R.

Proof. By the Hölder inequality, we get∫
Rn

|F (x, u)| dx ≤
∫

Rn

∣∣∣∣a (x)

q (x)
|u|q(x)

∣∣∣∣ dx

≤ 2

q− |a|α(x)

∣∣∣|u|q(x)
∣∣∣
p(x)

≤ 2c1

q− |a|α(x) ‖u‖qi

p(x) ,

i = + if ‖u‖p(x) > 1, and i = − if ‖u‖p(x) < 1

and we are∫
Rn

V (x)

q (x)
|u|q(x) dx ≤ 2

q− |V |r(x)

∣∣∣|u|q(x)
∣∣∣
r ′(x)

≤ 2

q− |V |r(x) |u|qi

q(x)r ′(x)

≤ 2c2

q− |V |r(x) ‖u‖qi

p(x) ,

i = + if ‖u‖p(x) > 1, and i = − if ‖u‖p(x) < 1
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Jλ (u) =
∫

Rn

(
1

p (x)
|∇u|p(x) − λ

V (x)

q (x)
|u|q(x)

)
dx −

∫
Rn

F (x, u) dx

≥ 1

p+

∫
Rn

|∇u|p(x) dx − 2λc2

q− |V |r(x) ‖u‖qi

p(x) − 2c1

q− |a|α(x) ‖u‖qi

p(x)

≥ 1

p+ ‖u‖pi

p(x) − 2λc2

q− |V |r(x) ‖u‖qi

p(x) − 2c1

q− |a|α(x) ‖u‖qi

p(x)

≥ 1

p+ ‖u‖pi

p(x) −
(

2λc2

q− |V |r(x) + 2c1

q− |a|α(x)

)
‖u‖qi

p(x)

where c1, c2 are positives constants. So, for all λ > 0, and u ∈ W with ‖u‖p(x) = R

sufficiently small, there exists ρ > 0 such that

Jλ (u) ≥ ρ > 0

�

Lemma 3.6. There exists e ∈ W with ‖e‖p(x) > R such that Jλ (e) < 0.

Proof. Choose u0 ∈ W, ‖u0‖p(x) > 1. For t large enough we obtain

Jλ (tu0) =
∫

Rn

(
1

p (x)
|∇tu0|p(x) − λ

V (x)

q (x)
|tu0|q(x)

)
dx −

∫
Rn

F (x, tu0) dx

≤ 1

p−

∫
Rn

|∇tu0|p(x) dx − λ
1

q+

∫
Rn

V (x) |tu0|q(x) dx

≤ tp+

p− ‖u0‖p+
p(x) − 2λctq

−

q+

∫
Rn

V (x) |u0|q(x) dx.

This yields Jλ (tu0) → −∞, as t → +∞ since

0 ≤
∫

Rn

V (x) |u0|q(x) dx ≤ 2c2 |V |r(x) ‖u0‖q+
p(x) .

�

Lemma 3.7. The functional Jλ satisfies the Palais-Smale condition (PS)c, for any c ∈ R.

Proof. Let (un) be a (PS)c sequence for the functional Jλ in W i.e. Jλ (un) is bounded
and J ′

λ (un) → 0. Then the sequence un is bounded in W.

Indeed, since Jλ (un) is bounded, we have

C1 ≥ Jλ (un) =
∫

Rn

(
1

p (x)
|∇un|p(x) − λ

V (x)

q (x)
|un|q(x)

)
dx −

∫
Rn

F (x, un) dx

≥
∫

Rn

(
1

p (x)
|∇un|p(x) − λ

V (x)

q (x)
|un|q(x)

)
dx −

∫
Rn

F (x, un) dx

≥
∫

Rn

(
1

p (x)
|∇un|p(x) dx − λ

V (x)

q (x)
|un|q(x)

)
dx −

∫
Rn

un

θ
f (x, un) dx.
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Furthermore〈
J ′

λ (un) , un

〉 =
∫

Rn

|∇un|p(x) − λV (x) |un|q(x) dx −
∫

Rn

f (x, un) undx

Then

C1 ≥ 1

p+

∫
Rn

|∇un|p(x) dx − 1

q−

∫
Rn

λV (x) |un|q(x) dx + 1

θ

〈
J ′

λ (un) , un

〉
−1

θ

∫
Rn

|∇un|p(x) dx + 1

θ

∫
Rn

λV (x) |un|q(x) dx

≥
(

1

p+ − 1

θ

) ∫
Rn

|∇un|p(x) dx

+
(

1

θ
− 1

q−

) ∫
Rn

λV (x) |un|q(x) dx + 1

θ

〈
J ′

λ (un) , un

〉
Arguing by contradiction, we assume that (un) is unbounded in W. In particular we

can choose ‖un‖ ≥ 1 for n sufficiently large. Hence, there exists C3 > 0 such that

−C3 ‖un‖p(x) ≤ 〈
J ′

λ (un) , un

〉 ≤ C3 ‖un‖p(x)

since J ′
λ (un) → 0. To this end,

C1 ≥
(

1

p+ − 1

θ

)
‖un‖p+

p(x) +
(

1

θ
− 1

q−

) ∫
Rn

λV (x) |un|q(x) dx − 1

θ
C3 ‖un‖p(x)

≥
(

1

p+ − 1

θ

)
‖un‖p+

p(x) − 1

θ
C3 ‖un‖p(x) .

This implies a contradiction.
Hence the sequence (un) is bounded in W . Thus, there exists a subsequence, again

denoted (un), weakly convergent to u in W . We prove that (un) is strongly convergent
to u in W .

To this end, we consider the following equality〈
J ′

λ (un) − J ′
λ (u) , un − u

〉 = (1.3)〈
ϕ′ (un) − ϕ′ (u) , un − u

〉 − 〈
ψ ′ (un) − ψ ′ (u) , un − u

〉 − 〈
K ′ (un) − K ′ (u) , un − u

〉
.

Obviously, the term in the left hand side tends to zero for n large enough. First, we
show that

〈
K ′ (un) − K ′ (u) , un − u

〉 → 0 as n → ∞.
Let BR be the ball in R

N of radius R centered at the origin and B ′
R = R

N − BR. We
use well-know compacteness argument in unbounded domains. Roughly speaking, we
write ∣∣〈K ′ (un) − K ′ (u) , un − u

〉∣∣ =
∣∣∣∣
∫

Rn

(f (x, un) − f (x, u)) (un − u) dx

∣∣∣∣
≤

∫
BR

|f (x, un) − f (x, u)| |un − u| dx

+
∫

B ′
R

|f (x, un) − f (x, u)| |un − u| dx
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Taking into account Proposition 2.7 togheter with the compact embeddingW 1,p(x) (BR) ↪→
Lp(x) (BR), the first term in the right hand side of the above inequality vanishes as
n → ∞. Contrariwise, the second term vanishes as R → ∞. In fact, we have∫

BR

|f (x, un) − f (x, u)| |un − u| dx ≤ 2 |f (x, un) − f (x, u)|α(x) |un − u|p(x),BR
.

In virtue of (H2) the Nemyckii operator is bounded. Hence, we obtain∫
BR

|f (x, un) − f (x, u)| |un − u| dx ≤ ε

2
.

On the other hand, we have∫
B ′

R

|f (x, un) − f (x, u)| |un − u| dx ≤
∫

B ′
R

a (x) |un|p(x) + a (x) |un|p(x)−1 |u| + a (x) |u|p(x) + a (x) |u|p(x)−1 |un| dx ≤ ε

2
,

for R sufficiently l arg e. Indeed,∫
B ′

R

a (x) |un|p(x) dx ≤ 2 |a|α(x)

∣∣∣|un|p(x)
∣∣∣
p(x)

≤ ε

8
,

for R sufficiently l arg e. Using the Young inequality, we get∫
B ′

R

a (x) |un|p(x)−1 |u| dx ≤
∫

B ′
R

a (x)
(
|un|p(x) + |u|p(x)

)
dx

≤ 2 |a|α(x)

(∣∣∣|un|p(x)
∣∣∣
p(x)

+
∣∣∣|u|p(x)

∣∣∣
p(x)

)
≤ ε

8
,

for R sufficiently l arg e.

In the same way, according to R, we show that both the two last terms are less than
ε

8
.

Similarly, using the same arguments, the following holds〈
ψ ′ (un) − ψ ′ (u) , un − u

〉
≤ λ

∫
BR

∣∣∣V (x)
(
|un|q(x)−2 un − |u|q(x)−2 u

)∣∣∣ |un − u| dx

+ λ

∫
B ′

R

V (x)
(
|un|q(x) + |u|q(x)−2 unu + |u|q(x) + |un|q(x)−2 unu

)
dx

≤ c1

∣∣∣V (x)
(
|un|q(x)−2 un − |u|q(x)−2 u

)∣∣∣
r(x)

|un − u|q(x)

+ c2 |V (x)|r(x)

(∣∣∣|un|q(x)
∣∣∣
q(x)

+
∣∣∣|u|q(x)

∣∣∣
q(x)

)
≤ ε.
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for n, R large enough.
It appears from (1.3) that

〈
ϕ′ (un) − ϕ′ (u) , un − u

〉 → 0 as n → ∞. Now, with
the aid of an elementary inequality in R

N, we get if p(x) ≥ 2

22−p+
∫

RN

||∇un| − |∇u||p(x) dx ≤∫
RN

(
|∇un|p(x)−2 ∇un − |∇u|p(x)−2 ∇u

)
(∇un − ∇u) dx → 0 as n → ∞.

Otherwise, use the following inequality in R
N

(p − 1) |ζ − η|2 (|ζ | + |η|)p−2 ≤ (|ζ |p−2 ζ − |η|p−2 η
)
(ζ − η) if 1 < p < 2

and consider the following sets

Up = {
x ∈ R

N, p (x) ≥ 2
} ; Vp = {

x ∈ R
N, 1 < p (x) < 2

}
�

Proof [Proof of theorem 3.3]. Set

� = {γ ∈ C ([0, 1] , W) : γ (0) = 0, γ (1) = e}
c := inf

γ∈�
max

t∈[0,1]
Jλ (γ (t)) .

According to lemma 3.5 and lemma 3.6, the energy functional Jλ satisfies the geometrical
conditions of the Mountain pass theorem. Hence c is a critical value of Jλ associated with
a critical point u ∈ W , which is precisely one solution of (1.1). The proof is complete.

�
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