Existence of solution for an elliptic problem involving $p(x)$-Laplacian in \mathbb{R}^{N}.

Abdelmalek Brahim
Laboratory of Mathematics, Dynamics and Modelization, Univ Annaba, Fac. of Sciences, B. P. 12. 23000 Annaba, Algeria.

Djellit Ali

Laboratory of Mathematics, Dynamics and Modelization, Univ Annaba, Fac. of Sciences, B. P. 12. 23000 Annaba, Algeria.

Ghannem Lahcen

Labo. MIP. P. Sabatier university, Toulouse 3, France.

Abstract

In this paper we study a class of nonlinear elliptic problems involving the $p(x)$ Laplacian operator. Under some additional assumptions on the nonlinearities, the corresponding functional verifies the Palais-Smale condition. So, we can use the Mountain Pass Theorem to prove the existence of nontrivial solution.

AMS subject classification: 35J60, 35B30, 35B40.
Keywords: $p(x)$-Laplacian equations, Nonlinear elliptic problems, Mountain pass theorem, Palais-Smale condition.

1. Introduction

The aim of this paper is to prove some existence results for nonlinear elliptic problem

$$
\left\{\begin{align*}
-\Delta_{p(x)} u & =\lambda V(x)|u|^{q(x)-2} u+f(x, u), \quad x \in \mathbb{R}^{N} \tag{1.1}\\
& u \geq 0, u \neq 0, u \in W
\end{align*}\right.
$$

$\Delta_{p(x)}$ is so-called $p(x)$-Laplacian operator i.e. $\Delta_{p(x)} u=\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)$. In the case $p(x)=p$, then $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is well-known p-Laplacian and the problem is the usual p-Laplacian equation. f is real-valued function with domain $\mathbb{R}^{N} \times \mathbb{R} ; u$ is unknown real valued function defined in \mathbb{R}^{N} and belonging to appropriate function spaces; λ is positive parameter; p and q are reals functions satisfying $p(x), q(x) \in C_{+}\left(\mathbb{R}^{n}\right)$.

Problems involving the $p(x)$-Laplacian operator arise from many branches of mathematics as in the study of elastic mechanics (see [22]), electrorheological fluids (see [1], [7]), (see [17]) or image restoration (see [6]).

Let the eigenvalue problem involving variable exponent growth conditions intensively studied is the following

$$
\begin{equation*}
-\Delta_{p(x)} u=\lambda V(x)|u|^{q(x)-2} u, \text { in } \Omega . \tag{1.2}
\end{equation*}
$$

where Ω is bounded domain in $\mathbb{R}^{N}, n \geq 3$, with smooth boundary $\partial \Omega$,
In [21] the author studied the problem (1.2) in bounded domain where $V(x)=1$, under the assumption $1<\min _{\bar{\Omega}} q(x)<\min _{\bar{\Omega}} p(x)<\max _{\bar{\Omega}} q(x)$, the continuous spectrum is proved.

However [18] the author established in bounded domain, using the simple variational arguments based on the Ekeland's principle, that there exists $\lambda^{*}>0$ such that for any $\lambda \in\left(0, \lambda^{*}\right)$ is an eigenvalue for the above problem.

This paper is organized as follows. In Section 1 we recall some previous results. In Section 2, we state some basic results for the variable exponent Lebesgue-Sobolev spaces, which are given in Fan and Zhao (see [11]), O. Kovăcĩk, J. Răkosnĩk (see [19]). In Section 3, we give sufficient conditions on V and f to obtain the existence of solution for the problem (1.1) above.

2. Preliminary results

We recall some background facts concerning the generalized Lebesgue-Sobolev spaces and introduce some notations used below.
Let

$$
C_{+}(\Omega)=\{p \in C(\Omega): p(x)>1, \text { for every } x \in \Omega\}
$$

$p^{+}=\max \{p(x) \in \Omega\}$ et $p^{-}=\min \{p(x) \in \Omega\}$ for every $p \in C_{+}(\Omega)$.
Denote by $\mathcal{M}(\Omega)$ the set of measurable real-valued functions defined on Ω.

We introduce for $p \in C_{+}(\Omega)$, the space

$$
L^{p(x)}(\Omega)=\left\{u \in \mathcal{M}(\Omega) \text { such that, } \int_{\Omega}|u(x)|^{p(x)} d x<+\infty\right\}
$$

equipped with the so called Luxemburg norm

$$
|u|_{p(x), \Omega}=\inf \left\{t>0: \int_{\Omega}\left|\frac{u(x)}{t}\right|^{p(x)} d x \leq 1\right\}
$$

In what follow $|u|_{p(x)}$ will denote $|u|_{p(x), \mathbb{R}^{N}}$. It is well-know that this norm confers a reflexive Banach structure.

Define the variable exponent Sobolev space W the closure of $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ under the norm

$$
\|u\|_{p(x)}=|\nabla u|_{p(x)} .
$$

Moreover, we recall some previous results.
Proposition 2.1. ([8]) If $p \in C_{+}\left(\mathbb{R}^{N}\right)$, then $L^{p(x)}\left(\mathbb{R}^{N}\right)$ and $W^{1, p(x)}\left(\mathbb{R}^{N}\right)$ are separable and reflexive Banach spaces.

Proposition 2.2. ([8]) The topological dual space of $L^{p(x)}\left(\mathbb{R}^{N}\right)$ is $L^{p^{\prime}(x)}\left(\mathbb{R}^{N}\right)$, where

$$
\frac{1}{p(x)}+\frac{1}{p^{\prime}(x)}=1 .
$$

Moreover for any $(u, v) \in L^{p(x)}\left(\mathbb{R}^{N}\right) \times L^{p^{\prime}(x)}\left(\mathbb{R}^{N}\right)$, we have

$$
\left|\int_{\mathbb{R}^{N}} u v d x\right| \leq\left(\frac{1}{p^{-}}+\frac{1}{\left(p^{\prime}\right)^{-}}\right)|u|_{p(x)}|v|_{p^{\prime}(x)} \leq 2|u|_{p(x)}|v|_{p^{\prime}(x)} .
$$

Let us now define the modular corresponding to the norm $|.|_{p(x)}$ by

$$
\rho(u)=\int_{\mathbb{R}^{N}}|u|^{p(x)} d x .
$$

Proposition 2.3. ([11],[19]) For all $u \in L^{p(x)}\left(\mathbb{R}^{N}\right)$, we have

$$
\min \left\{|u|_{p(x)}^{p^{-}},|u|_{p(x)}^{p^{+}}\right\} \leq \rho(u) \leq \max \left\{|u|_{p(x)}^{p^{-}},|u|_{p(x)}^{p^{+}}\right\} .
$$

In addition, we have
(i) $|u|_{p(x)}<1($ resp. $=1 ;>1) \Leftrightarrow \rho(u)<1$ (resp. $=1 ;>1$),
(ii) $|u|_{p(x)}>1 \Longrightarrow|u|_{p(x)}^{p^{-}} \leq \rho(u) \leq|u|_{p(x)}^{p^{+}}$,
(iii) $|u|_{p(x)}>1 \Longrightarrow|u|_{p(x)}^{p^{+}} \leq \rho(u) \leq|u|_{p(x)}^{p^{-}}$,
(iv) $\rho\left(\frac{u}{|u|_{p(x)}}\right)=1$.

Proposition 2.4. ([8]) Let $p(x)$ and $s(x)$ be measurable functions such that $p(x) \in$ $L^{\infty}\left(\mathbb{R}^{N}\right)$ and $1 \leq p(x) s(x) \leq \infty$ almost every where in \mathbb{R}^{N}. If $u \in L^{s(x)}\left(\mathbb{R}^{N}\right)$, $u \neq 0$, then

$$
\begin{gathered}
|u|_{p(x) s(x)} \leq 1 \Longrightarrow|u|_{p(x) s(x)}^{p^{-}} \leq\left||u|^{p(x)}\right|_{s(x)} \leq|u|_{p(x) s(x)}^{p^{+}}, \\
|u|_{p(x) s(x)} \geq 1 \Longrightarrow|u|_{p(x) s(x)}^{p^{+}} \leq\left||u|^{p(x)}\right|_{s(x)} \leq|u|_{p(x) s(x)}^{p^{-}} .
\end{gathered}
$$

In particular, if $p(x)=p$ is a constant, then

$$
\left||u|^{p}\right|_{s(x)}=|u|_{p s(x)}^{p} .
$$

Proposition 2.5. ([11]) If $u, u_{n} \in L^{p(x)}\left(\mathbb{R}^{N}\right), n=1,2, \ldots$, then the following statements are mutually equivalent:
(1) $\lim _{n \rightarrow \infty}\left|u_{n}-u\right|_{p(x)}=0$,
(2) $\lim _{n \rightarrow \infty} \rho\left(u_{n}-u\right)=0$,
(3) $u_{n} \rightarrow u$ in measure in \mathbb{R}^{N} and $\lim _{n \rightarrow \infty} \rho\left(u_{n}\right)=\rho(u)$.

Let $p^{*}(x)$ be the critical Sobolev exponent of $p(x)$ defined by

$$
p^{*}(x)= \begin{cases}\frac{N p(x)}{N-p(x)} & \text { for } p(x)<N \\ +\infty & \text { for } p(x) \geq N\end{cases}
$$

and let $C^{0,1}\left(\mathbb{R}^{N}\right)$ be the Lipschitz-continuous functions space.
Proposition 2.6. ([11],[9]) If $p(x) \in C_{+}^{0,1}\left(\mathbb{R}^{N}\right)$, then there exists a positive constant c such that

$$
|u|_{p^{*}(x)} \leq c_{p(x)}|\nabla u|_{p(x)}, \quad \text { for all } u \in W^{1, p(x)}\left(\mathbb{R}^{N}\right)
$$

Proposition 2.7. ([9]) 1) If $s \in L_{+}^{\infty}\left(\mathbb{R}^{N}\right)$ and $p(x) \leq s(x) \ll p^{*}(x), \forall x \in \mathbb{R}^{N}$, then the embedding

$$
W^{1, p(x)}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{s(x)}\left(\mathbb{R}^{N}\right)
$$

is continuous but not compact.
2) If p is continuous on $\bar{\Omega}$ and s is a measurable function on Ω, with $p(x) \leq s(x)<$ $p^{*}(x), \forall x \in \Omega$, then the embedding

$$
W^{1, p(x)}(\Omega) \hookrightarrow L^{s(x)}(\Omega)
$$

is compact.

3. Main result and proof

Definition 3.1. $u \in W$ is a weak solution of (1.1) iffor all $v \in W$,

$$
\int_{\mathbb{R}^{N}}|\nabla u|^{p(x)-2} \nabla u \nabla v d x-\lambda \int_{\mathbb{R}^{N}} V(x)|u|^{q(x)-2} u v d x-\int_{\mathbb{R}^{N}} f(x, u) v d x=0,
$$

The present paper is studied under the following hypotheses. Put $F(x, u)=\int_{0}^{u} f(x, t) d t$.
(H1) We suppose that the functions p, q are continuous and satisfy $p(x)<N$, along with $1<p^{-}<p^{+}<q^{-}<q^{+} \leq p^{*}(x)$. In particular, p verifies the weak Lipschitz condition, namely, $|p(x)-p(y)| \leq \frac{c}{|\log | x-y| |}$ holds for $|x-y| \leq \frac{1}{2}$ and $x, y \in \mathbb{R}^{N}$.
(H2) We assume $f: \mathbb{R}^{N} \times \mathbb{R} \rightarrow \mathbb{R}$ is a the Caratheodory function and satisfies $f \in$ $C^{1}\left(\mathbb{R}^{N} \times \mathbb{R}, \mathbb{R}\right)$ and

$$
|f(x, u)| \leq a(x)|u|^{\frac{p(x)}{\alpha(x)}}, \forall(x, u) \in \mathbb{R}^{N} \times \mathbb{R} .
$$

Here $a \in L^{\alpha(x)}\left(\mathbb{R}^{N}\right)$, is nonnegative mesurable function, along with $\frac{1}{\alpha(x)}+$ $\frac{1}{p(x)}=1$.
(H3) Suppose that $0 \leq \theta F(x, u) \leq u f(x, u)$, such that $p^{+}<\theta<q^{-}, x \in \mathbb{R}^{N}$.
(H4) The potential $V \in L^{\infty}\left(\mathbb{R}^{N}\right) \cap L^{r(x)}\left(\mathbb{R}^{N}\right)$ is nonnegative, and $\frac{1}{r(x)}+\frac{1}{q(x)}=1$.
Remark 3.2. As in [3] the hypothesis (H3) implies that, for all $t>1, F(x, t u) \geq$ $t^{\theta} F(x, u)$. Moreover, in vew of (H1), $W=W^{1, p(x)}$.

The main result for this paper is given by the following theorem.
Theorem 3.3. If the hypotheses $(\mathrm{H} 1)-(\mathrm{H} 4)$ fulfilled, then the problem (1.1) has a nontrivial weak solution for all $\lambda>0$.

We need some lemmas to prove main result. The energy functional corresponding to problem (1.1) is defined by

$$
J_{\lambda}(u)=\int_{\mathbb{R}^{n}} \frac{1}{p(x)}|\nabla u|^{p(x)} d x-\int_{\mathbb{R}^{n}} \lambda \frac{V(x)}{q(x)}|u|^{q(x)} d x-\int_{\mathbb{R}^{n}} F(x, u) d x
$$

and we put

$$
\begin{aligned}
\varphi(u) & =\int_{\mathbb{R}^{n}} \frac{1}{p(x)}|\nabla u|^{p(x)} d x \\
\psi(u) & =\int_{\mathbb{R}^{n}} \frac{V(x)}{q(x)}|u|^{q(x)} d x \\
K(u) & =\int_{\mathbb{R}^{n}} F(x, u) d x
\end{aligned}
$$

Lemma 3.4. The functional J_{λ} is well defined and $C^{1}(W, \mathbb{R})$. Moreover

$$
\left\langle J_{\lambda}^{\prime}(u), v\right\rangle=\int_{\mathbb{R}^{n}}\left(|\nabla u|^{p(x)-2} \nabla u \nabla v-\lambda V(x)|u|^{q(x)-2} u v\right) d x-\int_{\mathbb{R}^{n}} f(x, u) v d x .
$$

By (H2) togheter with (H4), it is easy to see that J_{λ}^{\prime} belongs to the topological dual of W.

Lemma 3.5. There exists positives constants R and ρ such that $J_{\lambda}(u) \geq \rho$ on $\|u\|_{p(x)}=$ R.

Proof. By the Hölder inequality, we get

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}|F(x, u)| d x & \left.\leq\left.\int_{\mathbb{R}^{n}}\left|\frac{a(x)}{q(x)}\right| u\right|^{q(x)} \right\rvert\, d x \\
& \leq\left.\left.\frac{2}{q^{-}}|a|_{\alpha(x)}| | u\right|^{q(x)}\right|_{p(x)} \\
& \leq \frac{2 c_{1}}{q^{-}}|a|_{\alpha(x)}\|u\|_{p(x)}^{q^{i}}, \\
i & =+ \text { if }\|u\|_{p(x)}>1, \text { and } i=- \text { if }\|u\|_{p(x)}<1
\end{aligned}
$$

and we are

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \frac{V(x)}{q(x)}|u|^{q(x)} d x & \leq\left.\left.\frac{2}{q^{-}}|V|_{r(x)}| | u\right|^{q(x)}\right|_{r^{\prime}(x)} \\
& \leq \frac{2}{q^{-}}|V|_{r(x)}|u|_{q(x) r^{\prime}(x)}^{q^{i}} \\
& \leq \frac{2 c_{2}}{q^{-}}|V|_{r(x)}\|u\|_{p(x)}^{q^{i}}, \\
i & =+ \text { if }\|u\|_{p(x)}>1, \text { and } i=- \text { if }\|u\|_{p(x)}<1
\end{aligned}
$$

$$
\begin{aligned}
J_{\lambda}(u) & =\int_{\mathbb{R}^{n}}\left(\frac{1}{p(x)}|\nabla u|^{p(x)}-\lambda \frac{V(x)}{q(x)}|u|^{q(x)}\right) d x-\int_{\mathbb{R}^{n}} F(x, u) d x \\
& \geq \frac{1}{p^{+}} \int_{\mathbb{R}^{n}}|\nabla u|^{p(x)} d x-\frac{2 \lambda c_{2}}{q^{-}}|V|_{r(x)}\|u\|_{p(x)}^{q^{i}}-\frac{2 c_{1}}{q^{-}}|a|_{\alpha(x)}\|u\|_{p(x)}^{q^{i}} \\
& \geq \frac{1}{p^{+}}\|u\|_{p(x)}^{p^{i}}-\frac{2 \lambda c_{2}}{q^{-}}|V|_{r(x)}\|u\|_{p(x)}^{q^{i}}-\frac{2 c_{1}}{q^{-}}|a|_{\alpha(x)}\|u\|_{p(x)}^{q^{i}} \\
& \geq \frac{1}{p^{+}}\|u\|_{p(x)}^{p^{i}}-\left(\frac{2 \lambda c_{2}}{q^{-}}|V|_{r(x)}+\frac{2 c_{1}}{q^{-}}|a|_{\alpha(x)}\right)\|u\|_{p(x)}^{q^{i}}
\end{aligned}
$$

where c_{1}, c_{2} are positives constants. So, for all $\lambda>0$, and $u \in W$ with $\|u\|_{p(x)}=R$ sufficiently small, there exists $\rho>0$ such that

$$
J_{\lambda}(u) \geq \rho>0
$$

Lemma 3.6. There exists $e \in W$ with $\|e\|_{p(x)}>R$ such that $J_{\lambda}(e)<0$.
Proof. Choose $u_{0} \in W,\left\|u_{0}\right\|_{p(x)}>1$. For t large enough we obtain

$$
\begin{aligned}
J_{\lambda}\left(t u_{0}\right) & =\int_{\mathbb{R}^{n}}\left(\frac{1}{p(x)}\left|\nabla t u_{0}\right|^{p(x)}-\lambda \frac{V(x)}{q(x)}\left|t u_{0}\right|^{q(x)}\right) d x-\int_{\mathbb{R}^{n}} F\left(x, t u_{0}\right) d x \\
& \leq \frac{1}{p^{-}} \int_{\mathbb{R}^{n}}\left|\nabla t u_{0}\right|^{p(x)} d x-\lambda \frac{1}{q^{+}} \int_{\mathbb{R}^{n}} V(x)\left|t u_{0}\right|^{q(x)} d x \\
& \leq \frac{t^{p+}}{p^{-}}\left\|u_{0}\right\|_{p(x)}^{p^{+}}-\frac{2 \lambda c t^{q^{-}}}{q^{+}} \int_{\mathbb{R}^{n}} V(x)\left|u_{0}\right|^{q(x)} d x .
\end{aligned}
$$

This yields $J_{\lambda}\left(t u_{0}\right) \rightarrow-\infty$, as $t \rightarrow+\infty$ since

$$
0 \leq \int_{\mathbb{R}^{n}} V(x)\left|u_{0}\right|^{q(x)} d x \leq 2 c_{2}|V|_{r(x)}\left\|u_{0}\right\|_{p(x)}^{q^{+}}
$$

Lemma 3.7. The functional J_{λ} satisfies the Palais-Smale condition $(\mathrm{PS})_{c}$, for any $c \in \mathbb{R}$.
Proof. Let $\left(u_{n}\right)$ be a $(\mathrm{PS})_{c}$ sequence for the functional J_{λ} in W i.e. $J_{\lambda}\left(u_{n}\right)$ is bounded and $J_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$. Then the sequence u_{n} is bounded in W.

Indeed, since $J_{\lambda}\left(u_{n}\right)$ is bounded, we have

$$
\begin{aligned}
C_{1} & \geq J_{\lambda}\left(u_{n}\right)=\int_{\mathbb{R}^{n}}\left(\frac{1}{p(x)}\left|\nabla u_{n}\right|^{p(x)}-\lambda \frac{V(x)}{q(x)}\left|u_{n}\right|^{q(x)}\right) d x-\int_{\mathbb{R}^{n}} F\left(x, u_{n}\right) d x \\
& \geq \int_{\mathbb{R}^{n}}\left(\frac{1}{p(x)}\left|\nabla u_{n}\right|^{p(x)}-\lambda \frac{V(x)}{q(x)}\left|u_{n}\right|^{q(x)}\right) d x-\int_{\mathbb{R}^{n}} F\left(x, u_{n}\right) d x \\
& \geq \int_{\mathbb{R}^{n}}\left(\frac{1}{p(x)}\left|\nabla u_{n}\right|^{p(x)} d x-\lambda \frac{V(x)}{q(x)}\left|u_{n}\right|^{q(x)}\right) d x-\int_{\mathbb{R}^{n}} \frac{u_{n}}{\theta} f\left(x, u_{n}\right) d x .
\end{aligned}
$$

Furthermore

$$
\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle=\int_{\mathbb{R}^{n}}\left|\nabla u_{n}\right|^{p(x)}-\lambda V(x)\left|u_{n}\right|^{q(x)} d x-\int_{\mathbb{R}^{n}} f\left(x, u_{n}\right) u_{n} d x
$$

Then

$$
\begin{aligned}
C_{1} \geq & \frac{1}{p^{+}} \int_{\mathbb{R}^{n}}\left|\nabla u_{n}\right|^{p(x)} d x-\frac{1}{q^{-}} \int_{\mathbb{R}^{n}} \lambda V(x)\left|u_{n}\right|^{q(x)} d x+\frac{1}{\theta}\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle \\
& -\frac{1}{\theta} \int_{\mathbb{R}^{n}}\left|\nabla u_{n}\right|^{p(x)} d x+\frac{1}{\theta} \int_{\mathbb{R}^{n}} \lambda V(x)\left|u_{n}\right|^{q(x)} d x \\
\geq & \left(\frac{1}{p^{+}}-\frac{1}{\theta}\right) \int_{\mathbb{R}^{n}}\left|\nabla u_{n}\right|^{p(x)} d x \\
& +\left(\frac{1}{\theta}-\frac{1}{q^{-}}\right) \int_{\mathbb{R}^{n}} \lambda V(x)\left|u_{n}\right|^{q(x)} d x+\frac{1}{\theta}\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle
\end{aligned}
$$

Arguing by contradiction, we assume that $\left(u_{n}\right)$ is unbounded in W. In particular we can choose $\left\|u_{n}\right\| \geq 1$ for n sufficiently large. Hence, there exists $C_{3}>0$ such that

$$
-C_{3}\left\|u_{n}\right\|_{p(x)} \leq\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle \leq C_{3}\left\|u_{n}\right\|_{p(x)}
$$

since $J_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$. To this end,

$$
\begin{aligned}
C_{1} & \geq\left(\frac{1}{p^{+}}-\frac{1}{\theta}\right)\left\|u_{n}\right\|_{p(x)}^{p^{+}}+\left(\frac{1}{\theta}-\frac{1}{q^{-}}\right) \int_{\mathbb{R}^{n}} \lambda V(x)\left|u_{n}\right|^{q(x)} d x-\frac{1}{\theta} C_{3}\left\|u_{n}\right\|_{p(x)} \\
& \geq\left(\frac{1}{p^{+}}-\frac{1}{\theta}\right)\left\|u_{n}\right\|_{p(x)}^{p^{+}}-\frac{1}{\theta} C_{3}\left\|u_{n}\right\|_{p(x)} .
\end{aligned}
$$

This implies a contradiction.
Hence the sequence $\left(u_{n}\right)$ is bounded in W. Thus, there exists a subsequence, again denoted $\left(u_{n}\right)$, weakly convergent to u in W. We prove that $\left(u_{n}\right)$ is strongly convergent to u in W.

To this end, we consider the following equality

$$
\begin{equation*}
\left\langle J_{\lambda}^{\prime}\left(u_{n}\right)-J_{\lambda}^{\prime}(u), u_{n}-u\right\rangle= \tag{1.3}
\end{equation*}
$$

$\left\langle\varphi^{\prime}\left(u_{n}\right)-\varphi^{\prime}(u), u_{n}-u\right\rangle-\left\langle\psi^{\prime}\left(u_{n}\right)-\psi^{\prime}(u), u_{n}-u\right\rangle-\left\langle K^{\prime}\left(u_{n}\right)-K^{\prime}(u), u_{n}-u\right\rangle$.
Obviously, the term in the left hand side tends to zero for n large enough. First, we show that $\left\langle K^{\prime}\left(u_{n}\right)-K^{\prime}(u), u_{n}-u\right\rangle \rightarrow 0 \quad$ as $\quad n \rightarrow \infty$.

Let B_{R} be the ball in \mathbb{R}^{N} of radius R centered at the origin and $B_{R}^{\prime}=\mathbb{R}^{N}-B_{R}$. We use well-know compacteness argument in unbounded domains. Roughly speaking, we write

$$
\begin{aligned}
\left|\left\langle K^{\prime}\left(u_{n}\right)-K^{\prime}(u), u_{n}-u\right\rangle\right|= & \left|\int_{\mathbb{R}^{n}}\left(f\left(x, u_{n}\right)-f(x, u)\right)\left(u_{n}-u\right) d x\right| \\
\leq & \int_{B_{R}}\left|f\left(x, u_{n}\right)-f(x, u)\right|\left|u_{n}-u\right| d x \\
& +\int_{B_{R}^{\prime}}\left|f\left(x, u_{n}\right)-f(x, u)\right|\left|u_{n}-u\right| d x
\end{aligned}
$$

Taking into account Proposition 2.7 togheter with the compact embedding $W^{1, p(x)}\left(B_{R}\right) \hookrightarrow$ $L^{p(x)}\left(B_{R}\right)$, the first term in the right hand side of the above inequality vanishes as $n \rightarrow \infty$. Contrariwise, the second term vanishes as $R \rightarrow \infty$. In fact, we have

$$
\int_{B_{R}}\left|f\left(x, u_{n}\right)-f(x, u)\right|\left|u_{n}-u\right| d x \leq 2\left|f\left(x, u_{n}\right)-f(x, u)\right|_{\alpha(x)}\left|u_{n}-u\right|_{p(x), B_{R}}
$$

In virtue of (H2) the Nemyckii operator is bounded. Hence, we obtain

$$
\int_{B_{R}}\left|f\left(x, u_{n}\right)-f(x, u)\right|\left|u_{n}-u\right| d x \leq \frac{\varepsilon}{2} .
$$

On the other hand, we have

$$
\begin{gathered}
\int_{B_{R}^{\prime}}\left|f\left(x, u_{n}\right)-f(x, u)\right|\left|u_{n}-u\right| d x \leq \\
\int_{B_{R}^{\prime}} a(x)\left|u_{n}\right|^{p(x)}+a(x)\left|u_{n}\right|^{p(x)-1}|u|+a(x)|u|^{p(x)}+a(x)|u|^{p(x)-1}\left|u_{n}\right| d x \leq \frac{\varepsilon}{2},
\end{gathered}
$$

for R sufficiently $l \arg e$. Indeed,

$$
\int_{B_{R}^{\prime}} a(x)\left|u_{n}\right|^{p(x)} d x \leq\left.\left. 2|a|_{\alpha(x)}| | u_{n}\right|^{p(x)}\right|_{p(x)} \leq \frac{\varepsilon}{8}
$$

for R sufficiently $l \arg e$. Using the Young inequality, we get

$$
\begin{aligned}
\int_{B_{R}^{\prime}} a(x)\left|u_{n}\right|^{p(x)-1}|u| d x & \leq \int_{B_{R}^{\prime}} a(x)\left(\left|u_{n}\right|^{p(x)}+|u|^{p(x)}\right) d x \\
& \leq 2|a|_{\alpha(x)}\left(\left.\left.| | u_{n}\right|^{p(x)}\right|_{p(x)}+\left||u|^{p(x)}\right|_{p(x)}\right) \leq \frac{\varepsilon}{8},
\end{aligned}
$$

for R sufficiently $l \arg e$.
In the same way, according to R, we show that both the two last terms are less than $\frac{\varepsilon}{8}$.
Similarly, using the same arguments, the following holds

$$
\begin{aligned}
& \left\langle\psi^{\prime}\left(u_{n}\right)-\psi^{\prime}(u), u_{n}-u\right\rangle \\
& \quad \leq \lambda \int_{B_{R}}\left|V(x)\left(\left|u_{n}\right|^{q(x)-2} u_{n}-|u|^{q(x)-2} u\right)\right|\left|u_{n}-u\right| d x \\
& \quad+\lambda \int_{B_{R}^{\prime}} V(x)\left(\left|u_{n}\right|^{q(x)}+|u|^{q(x)-2} u_{n} u+|u|^{q(x)}+\left|u_{n}\right|^{q(x)-2} u_{n} u\right) d x \\
& \leq \\
& \quad c_{1}\left|V(x)\left(\left|u_{n}\right|^{q(x)-2} u_{n}-|u|^{q(x)-2} u\right)\right|_{r(x)}\left|u_{n}-u\right|_{q(x)} \\
& \quad+c_{2}|V(x)|_{r(x)}\left(\left.\left.| | u_{n}\right|^{q(x)}\right|_{q(x)}+\left||u|^{q(x)}\right|_{q(x)}\right) \leq \varepsilon .
\end{aligned}
$$

for n, R large enough.
It appears from (1.3) that $\left\langle\varphi^{\prime}\left(u_{n}\right)-\varphi^{\prime}(u), u_{n}-u\right\rangle \rightarrow 0 \quad$ as $\quad n \rightarrow \infty$. Now, with the aid of an elementary inequality in \mathbb{R}^{N}, we get if $p(x) \geq 2$

$$
\begin{aligned}
2^{2-p^{+}} \int_{\mathbb{R}^{N}}| | \nabla u_{n}|-| \nabla u \|^{p(x)} d x & \leq \\
\int_{\mathbb{R}^{N}}\left(\left|\nabla u_{n}\right|^{p(x)-2} \nabla u_{n}-|\nabla u|^{p(x)-2} \nabla u\right)\left(\nabla u_{n}-\nabla u\right) d x & \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
\end{aligned}
$$

Otherwise, use the following inequality in \mathbb{R}^{N}

$$
(p-1)|\zeta-\eta|^{2}(|\zeta|+|\eta|)^{p-2} \leq\left(|\zeta|^{p-2} \zeta-|\eta|^{p-2} \eta\right)(\zeta-\eta) \text { if } 1<p<2
$$

and consider the following sets

$$
U_{p}=\left\{x \in \mathbb{R}^{N}, p(x) \geq 2\right\} ; \quad V_{p}=\left\{x \in \mathbb{R}^{N}, 1<p(x)<2\right\}
$$

Proof [Proof of theorem 3.3]. Set

$$
\begin{gathered}
\Gamma=\{\gamma \in C([0,1], W): \gamma(0)=0, \gamma(1)=e\} \\
c:=\inf _{\gamma \in \Gamma \max _{t \in[0,1]} J_{\lambda}(\gamma(t)) .} .
\end{gathered}
$$

According to lemma 3.5 and lemma 3.6, the energy functional J_{λ} satisfies the geometrical conditions of the Mountain pass theorem. Hence c is a critical value of J_{λ} associated with a critical point $u \in W$, which is precisely one solution of (1.1). The proof is complete.

References

[1] E. Acerbi and G. Mingione, Gradient estimates for the $p(x)$-Laplacean system, J. Reine Angew. Math. 584(2005), 117-148.
[2] J.P.G. Azorero, I.P. Alonso, Existence and nonuniqueness for the p-Laplacian: Nonlinear eigenvalues, Comm. Partial Differential Equations 12(1987), 13891430.
[3] M. M. Boureanu, Existence of solutions for an elliptic equation involving the $p(x)$ Laplace operator, Electronic Journal of Differential Equations, Vol. 2006 (2006), No. 97, pp. 1-10.
[4] B. Cekic, R. Mashiyev and G.T. Alisoy, On The Sobolev-type Inequality for Lebesgue Spaces with a Variable Exponent, International Mathematical Forum, 1, 2006, no. 27, 1313-1323.
[5] J. Chabrowski, Y. Fu, Existence of solutions for $p(x)$-Laplacian problems on a bounded domain, J. Math. Anal. Appl. 198 (2004) 149-175.
[6] Y. Chen, S. Levine and R. Rao, Variable exponent, linear growth functionals in image processing, SIAM J. Appl. Math. 66 (2006), 1383-1406.
[7] L. Diening, Theorical and numerical results for electrorheological fuids, Ph.D. thesis, University of Frieburg, Germany, 2002.
[8] A. Djellit, Z. Youbi and S. Tas, Existence of solution for elliptic systems in \mathbb{R}^{N} involving the $p(x)$-Laplacian, Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 131, pp. 1-10.
[9] D. E. Edmunds and J. Rázkosnflk, "Sobolev embedding with variable exponent" Studia Mathematics 143 (2000), 267-293.
[10] X. Fan, J.S. Shen, D. Zhao, Sobolev embedding theorems for spaces $W^{k, p(x)}(\Omega)$, J. Math. Anal. Appl. 262 (2001) 749-760.
[11] X. L. Fan et D. Zhao, "On the spaces $L^{p(x)}$ and $W^{1, p(x) ", ~ J o u r n a l ~ o f ~ M a t h e m a t i c a l ~}$ Analysis and Applications, 263 (2001), 424-446.
[12] X. Fan, A constrained minimization problem involving the $p(x)$-Laplacian in \mathbb{R}^{N}, Nonlinear anal 69(2008), 3661-3670.
[13] X. Fan, Eigenvalues of the $p(x)$-Laplacian Neumann problems, Nonlinear Anal. 67 (2007), 2982-2992.
[14] X. Fan, Q.H. Zhang, D. Zhao, Eigenvalues of $p(x)$-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302 (2005), 306-317.
[15] X. Fan, X.Y. Han, Existence and multiplicity of solutions for $p(x)$-Laplacian equations in \mathbb{R}^{N}, Nonlinear Anal. 59 (2004), 173-188.
[16] Y. Fu and X. Zhang, A multiplicity result for $p(x)$-Laplacian problem in \mathbb{R}^{N}, Nonlinear Anal. 70 (2009), 2261-2269.
[17] T. C. Halsey, Electrorheological fluids, Science, vol. 258, n ${ }^{\circ}$ 5083, pp. 761-766, 1992.
[18] K. Kefi, $p(x)$-Laplacian with indefinite weight, Proceedings of the AMS 139, 12 (2011), 4351-4360.
[19] O. Kovăcĩk, J. Răkosnĩk, On spaces $L^{p(x)}$ and $W^{k, p(x)}$. Czechoslov. Math. J., 41 (1991), 592-618.
[20] A. Lē, Eigenvalue pproblems for the p-Laplacian, Nonlinear Analysis, TMA, (2005).
[21] M. Mihailescu and V. Raduescu, On a Nonhomogenous Quasilinear Eigenvalue Problem in Sobolev Spaces with Variable Exponent, Proceedings of the AMS, 135 (2007), 416-423.
[22] V. Zhikov, Averaging of functionals in the calculus of variations and elasticity, Math. USSR Izv. 29 (1987), 33-66.

