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Abstract
In this paper, we study the existence and uniqueness of the solution of stochastic
differential equation by means of the properties of the associated condensing
nonexpansive random operator. Moreover, by taking account of the results of Diaz
and Metcalf, we prove the convergence of Kirk’s process to this solution for small
times.
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1 Introduction and notations
It has been found over the years that the fixed point theory is a powerful tool for the resolu-
tion of nonlinear problems (differential equations, integro-differential equations, . . .). The
roots of this theory go back to the famous works of Brouwer () and Banach (), the
latter author gave an abstract formulation of the successive approximations method, sys-
tematically used by Liouville () in his results. We note that Banach’s work was estab-
lished in the case of normed spaces and extended in metric spaces by Caccioppoli ().
Since then this theory has become a burgeoning field for several authors who have con-
tributed in the elaboration by thousands of papers of the subject. The development of this
theory has been heavily linked to that of the functional analysis in the s. The Italian
mathematician Darbo has published a result which ensures the existence of fixed point for
a type of operators so called condensing operators generalizing the Schauder fixed point
and Banach contraction principle. This discovery was the subject of several applications
both in linear and nonlinear analysis (integral equations with singular kernels, differen-
tial equations defined on unbounded domains, neutral differential equations, differential
operators having non-empty essential spectra, boundary value problems in Banach spaces
and others). A condensing (or densifying) mapping is a mapping for which the image of any
set is in a certain sense more compact than the set itself, the degree of noncompactness of
a set is measured by means of functions called measures of noncompactness. Among the
application areas of these tools, the theory of probabilistic operators, which is a branch of
stochastic analysis which deals with random operators and their properties, is seen as an
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extension of operators theory (determinist case). This axis of research has emerged in the
s, thanks to the works of East European school of probabilities whose main purpose
was the resolution of stochastic differential equations and stochastic partial differential
equations, modeling the trajectories of random phenomena, studied and developed for
the first time by Itô in . A stochastic differential equation is an ordinary differential
equation perturbed by a white noise (involving the Brownian motion). The history of this
direction goes back to the works of the English botanist Brown who described in  this
motion as that of an organic fine particle in suspension in a gas or a fluid. In the late 
century, scientists (Bachelier, Smoluchowski) addressed the study of this type of motions.
Afterwards, and more precisely in , Einstein published a paper in which he showed
that the probability density of the Brownian motion satisfies the heat equation. The first
rigorous mathematical treatment is due to Wiener in the s of the previous century
who has proven the existence of the Brownian motion. For more details of these equa-
tions, we can quote for example [–].

In this work, we study the existence and uniqueness of the solution of the following Itô
stochastic differential equation

X(t) = X +
∫ t


a

(
θ , X

(
f (θ )

))
dθ +

∫ t


a

(
θ , X

(
f (θ )

))
dw(θ ), (.)

where a and a are Borel measurable functions and  ≤ f (θ ) ≤ θ .
Recall that this equation models for example the motion of a particle subjected to the

infinity of shocks at the time t. Here a is a coefficient of transfer while a is a diffusion
coefficient. In the case where a and a satisfy the Lipschitz condition with respect to
the second variable, the result for f (θ ) ≡ θ was established by Gikhman and Skorohod []
showing that the associated mapping to (.) is a contraction and the solution was obtained
by means of the successive approximations method.

Our goal here is to investigate the problem (.) by imposing general conditions on the
functions a and a, therefore, we show that the associated mapping T is nonexpansive
and condensing mapping having a unique fixed point which is the solution of (.). On the
other hand, we prove that if this solution satisfies the metric property of Diaz and Metcalf,
the convergence of Kirk’s process to this solution is ensured.

Definition . A probability space (�,F ,P) is a triplet for which � is a non-empty set, F
is a σ -algebra of � and P is a probability measure defined on F (P(�) = ).

Notice that some results concerning the existence of fixed point theorems involving
probabilistic metric spaces can be found for example in [–].

A real random variable X is a P-measurable function defined on � with values in R.
A family of random variables Xt(ω) (t ≥ ) (denoted also by X(t,ω) or simply Xt) is called
a stochastic process. For ω ∈ �, the function t −→ X(t,ω) is the path of the stochastic
process X(t,ω).

The mean value or expectation E(X) of the random variable X is defined as the integral

E(X) =
∫

�

X(ω) dP(ω),

if it exists.
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Two random variables X and Y are said to be independent if, for any a, b ∈R,

P
{
ω ∈ � | X(ω) < a and Y (ω) < b

}
= P

{
ω ∈ � | X(ω) < a

} × P
{
ω ∈ � | Y (ω) < b

}
.

Definition . A Wiener process (also called Brownian motion) {wt}t≥ is a stochastic
process with the following properties:

(a) w = ;
(b) for  < t < · · · < tn the random variables wt – wt , wt – wt , . . . , wtn – wtn– are

independent;
(c) the random variables wt+s – wt have a normal distribution with zero expectation and

 as a variance.

Remark . If w is a random variable with zero expectation and variance σ =
√
E(w),

then E|w| =
√


π
σ . Thus, we obtain

E|wtj+ – wtj | =
√


π

√
tj+ – tj

and hence the series
∑

j E|wtn
j+

– wtn
j
| diverges with tn

j+ – tn
j −→ , where  < tn

 < tn
 < · · · <

tn
n = T .

For a pair (w(t), X(t)) of a Wiener process w(t) and random process X(t), we define the
Itô integral as follows:

I(X) =
∫ T


X(t) dw(t).

The Itô integral is not a classical integral, this is due to the nonsmoothness of the paths
w(t) and the divergence of the series

∑
j E|wtn

j+
– wtn

j
|.

With a Wiener process, we can associate a filtration Ft (Ft ⊂ F ),  ≤ t ≤ T , which is a
family of σ -algebra generated by the Brownian paths up to time t, in other words,

Ft = σ
{

X(s) :  ≤ s ≤ t ≤ T
}

.

It is easy to show that the family Ft is nondecreasing (with respect to the inclusion).

Definition . A random variable Y is said to be Ft-measurable if knowledge of Y de-
pends only on the information known up to time t.

Definition . A sequence of real random variables Xn on � converges to the random
variable X in probability, written

Xn
p−→ X,

if for every ε > 

lim
n−→+∞P

{
ω ∈ � | ∣∣Xn(ω) – X(ω)

∣∣ < ε
}

= .
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Let M([, T]) denote the set of all functions X(t,ω) defined and jointly measurable in
t ∈ [, T] and ω ∈ � which are also measurable with respect to Ft for all t ∈ [, T] and
such that

P

{
ω ∈ �

∣∣∣
∫ T



∣∣X(t,ω)
∣∣ dt < ∞

}
= .

In the sequel, without loss of generality, X(t, ·) will be denoted by X(t).
In the case where X(t) = X(tk) for t ∈ [tk , tk+) ( = t < t < t < · · · < tn = T ).

∫ T
 X(t) dw(t)

is given by the formula

∫ T


X(t) dw(t) =

n–∑
k=

X(tk)(wtk+ – wtk ).

In the general case where X(t) is an arbitrary element of M([, T]), then there exists a
sequence of step functions Xn(t) such that

lim
n−→+∞

∫ T



∣∣Xn(t) – X(t)
∣∣ dt =  (in probability)

and the sequence
∫ T

 Xn(t) dw(t) converges in probability to some limit ξ , which is called
the Itô stochastic integral of X(t) denoted by

∫ T
 X(t) dw(t).

Some properties of the Itô stochastic integral (see []):
(i) Itô integral is linear;

(ii) if
∫ T

 E(|f (t)|) dt < ∞, then

E

(∫ T


f (t) dw(t)

)
= , (.)

and

E

(
sup

≤s≤μ

∣∣∣∣
∫ s


f (t) dw(t)

∣∣∣∣
)

≤ 
∫ μ


E

(∣∣f (t)
∣∣)dt ( ≤ μ ≤ T). (.)

In the sequel, we assume that in (.), the initial data which is the random variable X is
F-measurable.

Definition . The process X(t) is called a strong solution of (.) if the following three
conditions are satisfied:

(i) X(t) is Ft-measurable;
(ii) the integrals in (.) exist;

(iii) P(	) =  where 	 is the set of ω ∈ � such that (.) holds for all t ∈ [, T].

2 Main results
We denote by XT the vector space of measurable random functions ξ (t,ω) with respect
to the σ -algebra Ft for any t ∈ [, T] such that P({ω ∈ � | t −→ ξ (t,ω) is continuous}) = .
We put ‖ξ‖XT =

√
E(sup≤s≤T |ξ (s,ω)|). It is easy to show that ‖·‖XT defines a norm on XT .

Theorem . (XT ,‖ · ‖XT ) is a Banach space.
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Proof It suffices to prove that XT is complete with respect to the norm ‖ · ‖XT . Let ξn be
a Cauchy sequence in XT , then we can extract a subsequence ξnk which converges almost
surely for all t ∈ [, T]. From the set of indices {nk} (k ≥ ), we choose a subset of integers
{mk} (k ≥ ) such that

E

(
sup

≤s≤t

∣∣ξn(s) – ξn′ (s)
∣∣

)
< –k for t ∈ [, T] and n, n′ ≥ mk .

By multiplying by k , we obtain

E(sup≤s≤t
∣∣ξn(s) – ξn′ (s)

∣∣)
( 


k


)
< –k .

Using Chebyshev’s inequality, it follows that

P

({
w ∈ �

∣∣∣ sup
≤s≤t

∣∣ξn(s) – ξn′ (s)
∣∣ >



 k


})
< –k .

Since the series
∑+∞

k= –k converges, the Borel-Cantelli lemma gives

P

(
lim

{
w ∈ �

∣∣∣ sup
≤s≤t

∣∣ξn(s) – ξn′ (s)
∣∣ >



 k


})
= .

Thus, for almost surely ω ∈ �, there exists r ≥  such that

sup
≤s≤t

(∣∣ξnr (s) – ξnr′ (s)
∣∣) ≤ 

 k


if r, r′ ≥ r.

It follows that the partial sums

ξm (t) +
k–∑
j=

(
ξmj+ (t) – ξmj (t)

)
= ξmk (t)

converge uniformly in [, T] and let ξ (t) its limit (for this topology). This gives

sup
≤t≤T

(∣∣ξmk (t) – ξ (t)
∣∣) −→  (k −→ +∞)

and consequently

√
E

(
sup

≤t≤T

(∣∣ξmk (t) – ξ (t)
∣∣)) −→  (k −→ +∞),

which shows that ξmk converges to ξ (t) in XT .
Since ξn is a Cauchy sequence in XT and contains a subsequence ξmk which converges

to ξ , ξn converges to ξ in XT , and by this we achieve the proof. �

Hereafter, the principal goal is to transform equation (.) to a fixed point problem. To
this aim, we associate it to the following mapping C given by

(CX)(s) = X +
∫ s


a

(
θ , X

(
f (θ )

))
dθ +

∫ s


a

(
θ , X

(
f (θ )

))
dw(θ ). (.)
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It is easy to observe that C is defined on XT , but so that it takes its values in XT , we need
to add the following additional conditions on the functions a and a, which is the goal of
the following proposition.

Proposition . Assume that the following assumptions (called growth polynomial as-
sumptions) are satisfied.

∣∣a(s, u)
∣∣ ≤ M

(|u| + 
)

and
∣∣a(s, u)

∣∣ ≤ M
(|u| + 

)
(M > ). (.)

Then C is a selfmapping on Xη for all η ∈ [, T].

Proof Without loss of generality, we assume that X = . Now, let x, x ∈ R, from the
inequality (x + x) ≤ x

 + x
, we infer that

∣∣(CX)(s)
∣∣ ≤ 

∣∣∣∣
∫ s


a

(
θ , X

(
f (θ )

))
dθ

∣∣∣∣


+ 
∣∣∣∣
∫ s


a

(
θ , X

(
f (θ )

))
dw(θ )

∣∣∣∣


. (.)

Using the Cauchy-Schwarz inequality, it follows that

∣∣(CX)(s)
∣∣ ≤ s

∫ s



∣∣a
(
θ , X

(
f (θ )

))∣∣ dθ + 
∣∣∣∣
∫ s


a

(
θ , X

(
f (θ )

))
dw(θ )

∣∣∣∣


. (.)

By passing to the sup and using the monotonicity of the expectation, we obtain

E

(
sup

≤s≤η

∣∣(CX)(s)
∣∣

)
≤ ηE

(∫ η



∣∣a
(
θ , X

(
f (θ )

))∣∣ dθ

)

+ E sup
≤s≤η

∣∣∣∣
∫ s


a

(
θ , X

(
f (θ )

))
dω(θ )

∣∣∣∣


. (.)

Using (.) and the commutativity between the expectation and the integral, it follows that

E

(
sup

≤s≤η

∣∣(CX)(s)
∣∣

)
≤ η

(∫ η


E

(∣∣a
(
θ , X

(
f (θ )

))∣∣)dθ

)

+ 
∫ η


E

(∣∣a
(
θ , X

(
f (θ )

))∣∣)dθ . (.)

By the assumptions given above, we get

E

(
sup

≤s≤η

∣∣(CX)(s)
∣∣

)
≤ M

[
η

(∫ η


E

(∣∣X(
f (θ )

)∣∣ + 
)

dθ

)

+ 
∫ η


E

(∣∣X(
f (θ )

)∣∣ + 
)

dθ

]
. (.)

Hence

E

(
sup

≤s≤η

∣∣(CX)(s)
∣∣

)
≤ M

[
η

(∫ η


‖X‖

Xf (θ )
dθ

)
+ η + 

∫ η


‖X‖

Xf (θ )
dθ + η

]
. (.)
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The fact that  ≤ f (θ ) ≤ θ (θ ∈ [, T]) and the last inequality give

∥∥(CX)
∥∥

Xη
≤ M

(
η + η

)(‖X‖
Xη

+ 
)
. (.)

Thus ‖(CX)‖Xη is finite if ‖X‖Xη is finite, which completes the proof. �

If X(t) is a solution of the equation (.) on the interval [, s],  ≤ s ≤ T , we denote
ϕ(s) = ‖X‖

Xs .

Lemma . The function ϕ is bounded on the interval [, T].

Proof From the inequality (.), by changing η by s, we infer that

E

(
sup

≤r≤s

∣∣(CX)(r)
∣∣

)
≤ M

[
s
(∫ s


‖X‖

Xf (θ )
dθ

)
+ s + 

∫ s


‖X‖

Xf (θ )
dθ + s

]

≤ M
[

T
(∫ s


‖X‖

Xf (θ )
dθ

)
+ T + 

∫ s


‖X‖

Xf (θ )
dθ + T

]
.

Using the fact that X(t) is a solution of the equation (.) on the interval [, s] and  ≤
f (s) ≤ s, it follows that

ϕ(s) ≤ K + K ′
∫ s


ϕ(r) dr,

where K = M(T + T) and K ′ = M(T + ).
Now, Gronwall’s lemma implies that

ϕ(s) ≤ KeK ′T ,

which gives the result. �

We introduce here the concept of measure of noncompactness of Hausdorff which is a
real positive function measuring the degree of noncompactness of sets.

Let X be a complex Banach space and let P(X) be the set of all subsets of X, we denote
by B(x, r) and B(x, r), respectively, the open and closed ball of center x and radius r > .

Definition . The Hausdorff measure of noncompactness α(A) of A ∈ P(X) is defined
as the infimum of the numbers ε >  such that A has a finite ε-net in X. Recall that a set
S ⊆ X is called an ε-net of A if A ⊆ S + εB(, ) = {s + εb : s ∈ S, b ∈ B(, )}.

The Hausdorff measure of noncompactness α enjoys the following properties:
(a) regularity: α(A) =  if and only if A is totally bounded;
(b) nonsingularity: α is equal to zero on every one-element set;
(c) monotonicity: A ⊆ A implies α(A) ≤ α(A);
(d) semi-additivity: α(A ∪ A) = max{α(A),α(A)};
(e) Lipschitzianity: |α(A) – α(A)| ≤ ρ(A, A); here ρ denotes the Hausdorff

semimetric: ρ(A, A) = inf{ε >  : A + εB(, ) ⊃ A, A + εB(, ) ⊃ A};



Dehici and Redjel Advances in Difference Equations  (2016) 2016:28 Page 8 of 17

(f ) continuity: for any A ∈P(X) and any ε, there exists δ >  such that
|α(A) – α(A)| < ε for all A satisfying ρ(A, A) < δ;

(g) semi-homogeneity: α(tA) = |t|α(A) for any number t;
(h) algebraic semi-additivity: α(A + A) ≤ α(A) + α(A);
(i) invariance under translations: α(A + x) = α(A) for any x ∈ X .

The goal of the following theorem is to address other properties in view of their impor-
tance.

Theorem . ([], Theorem ..) The Hausdorff measure of noncompactness is invariant
under passage to the closure and to the convex hull: α(A) = α(A) = α(coA).

We note that the measure of noncompactness has many applications in mathematics.
On this topic, we refer to [, –].

Definition . Let X be a Banach space. A function ψ defined on P(X) with values in
some partially ordered set (�,≤) is called a measure of noncompactness in the general
sense if ψ(A) = ψ(coA) for all A ∈P(X).

Definition . Let (X,‖ · ‖) be a normed space and ϑ one of measure of noncompactness
given above. A continuous mapping G : X −→ X is said to be densifying or condensing, if,
for every bounded subset of X such that ϑ(A) > , we have ϑ(G(A)) < ϑ(A).

Let M([, T]) be the vector space of scalar functions defined on [, T]; it is partially
ordered by the usual order ≤. Let γ : P(XT ) −→M([, T]) defined by

{
γ : P(XT ) −→M([, T]);

� −→ γ (�).

Here
{

γ (�) : [, T] −→ R;
t −→ γt(�t),

where �t = {Xt = X|[,t] : X ∈ �} ⊂ Xt and γt is the measure of noncompactness of Haus-
dorff on the space Xt .

Lemma . The function γ defines a measure of noncompactnesss in the general sense on
XT which is additively nonsingular (i.e., γ (A ∪ {X}) = γ (A) for all A ⊂ XT and X ∈ XT ).

Proof Let A ⊂ XT , we have A ⊂ co(A), this gives At ⊂ (co(A))t for all t ∈ [, T], the property
of the monotonicity of the Hausdorff measure of noncompactness implies that γt(At) ≤
γt(co(A))t for all t ∈ [, T], this gives γ (A) ≤ γ (co(A)). On the other hand

(
co(A)

)
t =

{
X|[,t] : X ∈ co(A)

} ⊂ co(At).

Again, the monotonicity and the invariance by closure of the Hausdorff measure of non-
compactness leads to

γt
((

co(A)
)

t

) ≤ γt
(
co(At)

)
= γt(At).
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Hence

γ
(
co(A)

)
(t) ≤ γ (A)(t),  ≤ t ≤ T .

It follows that γ (co(A)) ≤ γ (A), by which we achieve the proof for the first assertion. The
fact that γ is additively nonsingular is trivial. �

Definition . Let (X,‖ · ‖) be a normed space and K a nonempty bounded subset of X.
A selfmapping T on K is called a nonexpansive mapping if ‖T(x) – T(y)‖ ≤ ‖x – y‖ for all
x, y ∈ K .

Now, let us introduce the following conditions:

(H) |a(s, u) – a(s, u)| ≤ h(s)g(‖u – u‖),

where h : [, T] −→ [, +∞[ integrable and
∫ T

 h(s) ds ≤ 
T+ and

g : [, +∞[−→ [ , +∞[ is nondecreasing and concave function with g(s) ≤ s

for all s ∈ [, +∞[.

(H) For all A > , the inequality

h̃(s) ≤ A
∫ s


h(θ )g

(̃
h
(
f (θ )

))
dθ ,  ≤ s ≤ T

cannot admit nontrivial solutions.
(H) λ(f –(B)) −→  when λ(B) −→ ; here λ is the Lebesgue measure and B ⊂ [, t] ( ≤

t ≤ T ).

Remark . We note that if we take h(t) = α (α > ), g(u) = u, f (x) = x, and T = – +√
 + 

α
, then the assumptions given in (H), (H), and (H) are satisfied.

Proposition . Under the assumption (H), the mapping C defined by (.) is nonexpan-
sive on every Xt ( ≤ t ≤ T ).

Proof We have

∣∣CX(s) – CY (s)
∣∣ =

∣∣∣∣
∫ s



[
a

(
θ , X

(
f (θ )

))
– a

(
θ , Y

(
f (θ )

))]
dθ

+
∫ s



[
a

(
θ , X

(
f (θ )

))
– a

(
θ , Y

(
f (θ )

))]
dω(θ )

∣∣∣∣.

By using the inequality (x + x) ≤ x
 + x

, we obtain

∣∣CX(s) – CY (s)
∣∣ ≤ 

∣∣∣∣
∫ s



[
a

(
θ , X

(
f (θ )

))
– a

(
θ , Y

(
f (θ )

))]
dθ

∣∣∣∣


+ 
∣∣∣∣
∫ s



[
a

(
θ , X

(
f (θ )

))
– a

(
θ , Y

(
f (θ )

))]
dω(θ )

∣∣∣∣


.
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The Cauchy-Schwarz inequality enables us to write

∣∣CX(s) – CY (s)
∣∣ ≤ s

∫ s



∣∣[a
(
θ , X

(
f (θ )

))
– a

(
θ , Y

(
f (θ )

))]∣∣ dθ

+ 
∣∣∣∣
∫ s



[
a

(
θ , X

(
f (θ )

))
– a

(
θ , Y

(
f (θ )

))]
dω(θ )

∣∣∣∣


.

Passing to the sup on [, T] and using the monotonicity of the expectation, it follows that

E

(
sup

≤s≤t

∣∣CX(s) – CY (s)
∣∣

)

≤ tE
(∫ t



∣∣[a
(
θ , X

(
f (θ )

))
– a

(
θ , y

(
f (θ )

))]∣∣ dθ

)

+ E
(

sup
≤s≤t

∣∣∣∣
∫ s



[
a

(
θ , X

(
f (θ )

))
– a

(
θ , Y

(
f (θ )

))]
dω(θ )

∣∣∣∣
)

.

The stochastic inequality (.) gives

E

(
sup

≤s≤t

∣∣CX(s) – CY (s)
∣∣

)
≤ tE

(∫ t



∣∣[a
(
θ , X

(
f (θ )

))
– a

(
θ , Y

(
f (θ )

))]∣∣ dθ

)

+ 
∫ t


E

(∣∣[a
(
θ , X

(
f (θ )

))
– a

(
θ , Y

(
f (θ )

))]∣∣)dθ .

Therefore

E

(
sup

≤s≤t

∣∣CX(s) – CY (s)
∣∣

)
≤ (t + )E

(∫ t


h(θ )g

(∣∣X(
f (θ )

)
– Y

(
f (θ )

)∣∣)dθ

)
.

The commutativity between the expectation and the integral together with the fact that g
is concave gives

E

(
sup

≤s≤t

∣∣CX(s)–CY (s)
∣∣

)
≤ (t +)

(∫ t


h(θ )g

(
E

(
sup

≤θ≤t

(∣∣X(
f (θ )

)
–Y

(
f (θ )

)∣∣)))
dθ

)
.

Hence

E

(
sup

≤s≤t

∣∣CX(s) – CY (s)
∣∣

)
≤ (t + )

(∫ t


h(θ )E

(
sup

≤θ≤t

(∣∣X(
f (θ )

)
– Y

(
f (θ )

)∣∣))dθ

)
.

It follows that

∥∥C(X) – C(Y )
∥∥

Xt
≤ (t + )

(∫ t


h(θ ) dθ

)
‖X – Y‖

Xt .

Consequently,

∥∥C(X) – C(Y )
∥∥

Xt
≤ ‖X – Y‖Xt .

This shows that C is a nonexpansive selfmapping on Xt , which gives the result. �
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Remark . We note that nonexpansive selfmappings on bounded subsets of Banach
spaces do not necessarily have fixed points, we can refer for example to the famous work
of Alspach [] who gave an example of a weakly compact convex subset M of the space
L([, ]) and a fixed point free isometry on M.

In the sequel, we will need the following two lemmas; the first lemma is one of the clas-
sical results in measure theory.

Lemma . Let ε >  and let φ : [, T] −→ R a monotone function, then the set of discon-
tinuity points of φ having a magnitude ≥ ε is a finite set in [, T].

Lemma . For any � ⊂ XT , the function

{
γ (�) : [, T] −→ [, +∞[;

t −→ γt(�t),

is a nondecreasing bounded function on [, T].

Proof Let t, t ∈ [, T] such that t ≤ t; then �t ⊂ �t . The monotonicity of the mea-
sure of noncompactness of Hausdorff gives γt (�t ) ≤ γt (�t ) and implies that γ (�)(t) ≤
γ (�)(t), which proves the first assertion. The second assertion follows directly from
the first one, indeed by the monotonicity, we deduce that γ (�)(t) ≤ γ (�)(T) for all
t ∈ [, T]. �

Theorem . Under the assumptions (H), (H), (H) together with the growth polyno-
mial conditions given in (.), C is a condensing mapping with respect to the measure of
noncompactness γ on Xt for all t ∈ [, T].

Proof We show that if there exists A ⊂ Xt such that γ (A) ≤ γ (C(A)), then we obtain
necessarily γ (A) = . Let t >  and ε > , by using Lemmas . and ., we denote by
{tj}m

j= the set of points in [, t] for which γ (A)(tj + ) – γ (A)(tj – ) ≥ ε. It is easy to de-
duce that there exists δ sufficiently small such that inft,t′∈]tj–δ,tj+δ[ |γ (A)(t) – γ (A)(t′)| ≥ ε

for all j = , . . . , m. Letting � = [, t]\⋃m
j= ]tj – δ, tj + δ[, we observe that � =

⋃m+
k= Ik

where each Ik is a closed bounded interval with Ik ∩ Ij = ∅ for k �= j. On Ik , the func-
tion t −→ γ (A)(t) is uniformly continuous, this implies that the existence of δ >  suf-
ficiently small such that for all s, s′ ∈ Ik : |s – s′| < δ, then |γ (A)(s) – γ (A)(s′)| < ε. On
the other hand, in Ik , we choose a finite set {bks}rk

s= for which δ < bks – bks– < 
δ.

Now, for all  ≤ s ≤ rk (k = , . . . , m + ), let {Mi , Mi , Mi , . . . , Mis} a (γ (A)(bks ) + ε)-
net of the set Abks . Thus, we can construct a family of paths {Gl : l = , . . . , h} such that
P{ω ∈ � | t −→ Gl(t)(ω) is continuous (l = , . . . , h)} =  as follows: Gl ≡ Mif on the inter-
vals Jks = [bks– + δ

 , bks – δ
 ] for all  ≤ f ≤ s (k = , . . . , m + ) (l = , . . . , h) and linear on the

complementary intervals. On the other hand, since γ (A) ≤ γ (C(A)), γ (A)(θ ) ≤ γ (C(A))(θ )
for all θ ∈ [, t]. Let Z ∈ (C(A))θ = {Y|[,θ ]/Y ∈ C(A)}, this shows the existence of V ∈ A such
that Y = C(V ). Moreover, we have V|[,bks ] ∈ Abks ( ≤ s ≤ rk) (k = , . . . , m + ), it follows
that there exists  ≤ f ≤ s for which

‖V|[,bks ] – Mif
‖Xks ≤ γ (A)(bks ) + ε.
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Since Gl ≡ Mif
on Jks , it follows that for θ ∈ Jks , we have

E
(∣∣V (θ ) – Gl(θ )

∣∣) ≤ E

(
sup
Jks

(∣∣(V (θ ) – Gl(θ )
∣∣)))

≤ ‖V|[,bks ] – Mif
‖

Xks
. (.)

The uniform continuity of the function t −→ γ (A)(t) implies that for θ ∈ Jks , we have

∣∣γ (A)(bks ) – γ (A)(θ )
∣∣ < ε.

This gives

(
γ (A)(bks ) + ε

) ≤ (
γ (A)(θ ) + ε

).

We denote χτ
ks

= Jks ∩ [, sup≤θ≤τ f (θ )].
By using the same techniques as Proposition ., we get

E sup
≤θ≤τ

(∣∣(CV )(θ ) – (CGl)(θ )
∣∣) ≤ (τ + )E

∫ τ


h(θ )g

(∣∣V (
f (θ )

)
– Gl

(
f (θ )

)∣∣)dθ .

Since g is concave, it follows that

∥∥(CV ) – (CGl)
∥∥

Xτ
≤ (τ + )

∫ τ


h(θ )g

(
E

(∣∣V (
f (θ )

)
– Gl

(
f (θ )

)∣∣))dθ .

We put κ = τ +  and �t = [, t]\⋃
≤s≤rk ,k=,...,m+ f –(χτ

ks
).

Since f –({χτ
ks
}) ∩ f –({χτ

rm}) = ∅ (k �= r, s = , . . . , rm, m = , . . . , m + ), we infer that

∥∥(CV ) – (CGl)
∥∥

Xτ
≤ κ

∑
ks ,≤s≤rk ,k=,...,m+

∫
f –({χτ

ks })
h(θ )g

(
E

(∣∣V (
f (θ )

)
– Gl

(
f (θ )

)∣∣))dθ

+ κ

∫
�t

h(θ )g
(
E

(∣∣V (
f (θ )

)
– Gl

(
f (θ )

)∣∣))dθ .

Let

I = κ
∑

ks ,≤s≤rk ,k=,...,m+

∫
f –({χτ

ks })
h(θ )g

(
E

(∣∣V (
f (θ )

)
– Gl

(
f (θ )

)∣∣))dθ

and

I = κ

∫
�t

h(θ )g
(
E

(∣∣V (
f (θ )

)
– Gl

(
f (θ )

)∣∣))dθ .

The fact that g is nondecreasing and (.) lead to

I ≤ κ

∫ τ


h(θ )g

(
γ (A)

(
f (θ )

)
+ ε

) dθ .
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The continuity of the integral shows that there exists η >  such that, for all measurable
set B ⊂ [, τ ] with λ(B) < η, we have

∫
B

h(θ )g
(
E

(∣∣V (
f (θ )

)
– Gl

(
f (θ )

)∣∣))dθ <
ε

κ
.

Moreover, the condition (H) implies that it is always possible to choose δ given above
sufficiently small such that

I < ε.

Consequently, we can write

∥∥(CV ) – (CGl)
∥∥

Xτ
≤ ε + κ

∫ t


h(θ )g

(
γ (A)

(
f (θ )

)
+ ε

) dθ . (.)

The definition of the measure of noncompactness of Hausdorff together with (.) leads
to

(
γ (A)(t)

) ≤ (
γ
(
C(A)(t)

)) ≤ ∥∥(CV ) – (CGl)
∥∥

Xτ

≤ ε + κ

∫ t


h(θ )g

(
γ (A)

(
f (θ )

)
+ ε

) dθ .

By using the assumption (H), we obtain γ (A) ≡ , which gives the result. �

Theorem . ([], p.) Let A : K −→ K be a mapping defined on a closed, bounded, con-
vex subset K of a Banach space X. Assume that A is condensing with respect to the additively
nonsingular measure of noncompactness in the general sense � . Then A has at least one
fixed point in K .

Theorem . The mapping C : XT −→ XT defined by (.) has a unique fixed point in XT .

Proof The existence follows from Theorem ., more precisely, for τ belonging to the
interval [, – +

√
 + 

M
H

H+ ], the inequality (.) shows that the random mapping C :
Xτ −→ Xτ leaves BXT (,

√
H) (the ball of center  and radius

√
H) invariant, which implies

the existence of the solution X(t) in Xτ (τ ∈ [, – +
√

 + 
M

H
H+ ]), the result in XT follows

from an extension to the whole interval [, T].
For the uniqueness, we proceed as follows: Assume that X = X(t)t∈[,T] and Y = Y (t)t∈[,T]

are two strong solutions of equation (.) such that X() = Y () = . In other words

X(s) =
∫ s


a

(
θ , X

(
f (θ )

))
dθ +

∫ s


a

(
θ , X

(
f (θ )

))
dw(θ ) (.)

and

Y (s) =
∫ s


a

(
θ , Y

(
f (θ )

))
dθ +

∫ s


a

(
θ , Y

(
f (θ )

))
dw(θ ). (.)
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It follows that

X(s) – Y (s) =
∫ s



(
a

(
θ , X

(
f (θ )

))
– a

(
θ , Y

(
f (θ )

)))
dθ

+
∫ s



(
a

(
θ , X

(
f (θ )

))
– a

(
θ , Y

(
f (θ )

)))
dw(θ ). (.)

Using the inequality (x + x) ≤ x
 + x

 for x, x ∈R, we get

∣∣X(s) – Y (s)
∣∣ ≤ 

∣∣∣∣
∫ s



(
a

(
θ , X

(
f (θ )

))
– a

(
θ , Y

(
f (θ )

)))
dθ

∣∣∣∣


+ 
∣∣∣∣
∫ s



(
a

(
θ , X

(
f (θ )

))
– a

(
θ , Y

(
f (θ )

)))
dw(θ )

∣∣∣∣


. (.)

The Cauchy-Schwarz inequality gives

∣∣X(s) – Y (s)
∣∣ ≤ s

∫ s



∣∣(a
(
θ , X

(
f (θ )

))
– a

(
θ , Y

(
f (θ )

)))∣∣ dθ

+ 
∣∣∣∣
∫ s



(
a

(
θ , X

(
f (θ )

))
– a

(
θ , Y

(
f (θ )

)))
dw(θ )

∣∣∣∣


. (.)

Passing to the sup and expectation and using the assumption (H) together with the
stochastic inequality (.), we obtain

E

(
sup

≤s≤u

∣∣X(s) – Y (s)
∣∣

)
≤ uE

(∫ u


h(θ )g

(∣∣X(
f (θ )

)
– Y

(
f (θ )

)∣∣)dθ

)

+ 
(∫ u


E

(
h(θ )g

(∣∣X(
f (θ )

)
– Y

(
f (θ )

)∣∣))dθ

)
. (.)

Hence

E

(
sup

≤s≤u

(∣∣X(s) – Y (s)
∣∣)) ≤ (T + )

(∫ u


h(θ )g

(
E

(∣∣X(
f (θ )

)
– Y

(
f (θ )

)∣∣))dθ

)
. (.)

By the monotonicity of the expectation and the function g , we infer that

E

(
sup

≤s≤u

(∣∣X(s) – Y (s)
∣∣))

≤ (T + )
(∫ u


h(θ )g

(
E sup

≤s≤θ

(∣∣X(
f (s)

)
– Y

(
f (s)

)∣∣))dθ

)
. (.)

By assumption (H), it follows that

E

(
sup

≤s≤u

∣∣X(s) – Y (s)
∣∣

)
= 

for an arbitrary element u ∈ [, T], consequently X(t) = Y (t), which implies the uniqueness
of the strong solution. �
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3 Application to the convergence of Kirk’s iterative process
Let us recall the following theorem due to Diaz and Metcalf [].

Theorem . Let B be a continuous selfmapping on a metric space (X, d) such that
(i) Fix(B) �= ∅ (Fix(B) is the set of fixed point of B);

(ii) for each y ∈ X such that y /∈ Fix(B), and for each z ∈ Fix(B) we have

d
(
B(y), z

)
< d(y, z).

Then one, and only one, of the following properties holds:
(a) for each x ∈ X the Picard sequence {Bn(x)} contains no convergent subsequences;
(b) for each x ∈ X the sequence {Bn(x)} converges to a point belonging to F(B).

Kirk iteration ([]): Let (X,‖·‖) be a normed space and K a closed, convex, and bounded
subset of X. Let A be a selfmapping on K . For each x ∈ K , the sequence {Sn(x)} defined by
S : K −→ K , where

S = λI + λA + · · · + λnAn, λi ≥ ,λ > ,
n∑

i=

λi = ,

is said to be Kirk’s iterative process.

Theorem . [] Let K be a convex subset of a Banach space and A : K −→ K be a non-
expansive mapping. Then S(x) = x if and only if A(x) = x.

Let T > , and H = KeK ′T a real positive which is an upper bound of the function ϕ(t) =
‖X‖

Xt ( ≤ t ≤ T ). We denote by BXt (,
√

H) the closed ball of center  and radius
√

H
in Xt .

Theorem . If there exists τ ∈ [, – +
√

 + 
M

H
H+ ] such that C : BXτ

(,
√

H) −→
BXτ

(,
√

H) satisfies Diaz-Metcalf ’s condition, then, for each X ∈ BXτ
(,

√
H), Kirk’s pro-

cess {Sn(X)} (associated to the mapping C) converges to the unique fixed point of T .

Proof Following Theorem ., it follows that the mapping C has a unique fixed point X�.
Moreover, S is a densifying mapping. Indeed, if K is a bounded subset of BXτ (,

√
H) such

that γ (K) > , then

S(K) ⊆ λK + λC(K) + · · · + λnCn(K).

Hence, by the monotonicity, semi-additivity, and homogeneity properties, we get

α
(
S(K)

) ≤ λα(K) + λα
(
C(K)

)
+ · · · + λnα

(
Cn(K)

)
.

The fact that C is densifying shows that

α
(
C(K)

)
< α(K), (.)

...
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γ
(
Cn(K)

) ≤ γ
(
Cn–(K)

) ≤ · · · ≤ γ
(
C(K)

)
< γ (K) (.)

and therefore

γ
(
S(K)

)
< (λ + · · · + λn)γ (K) = γ (K). (.)

Also, by use of Theorem . together with Theorem ., Fix(S) = Fix(C) = {X�}.
For X ∈ K , let

K̃ =
+∞⋃
n=

Sn{X}.

We have S(K̃) =
⋃+∞

n= Sn{X} ⊂ K̃ and since K̃ = {X} ∪ S(K̃), this gives

γ (K̃) = max
{
γ
({X}),α

(
S(K̃)

)}
= max

{
,γ

(
S(K̃)

)}
= γ

(
S(K̃)

)
.

Since S is densifying, we establish that γ (K̃) = , by the property of regularity, we establish
that K̃ is totally bounded, and consequently K̃ is compact (since Xτ is a Banach space),
therefore the sequence {Sn(X)} contains a convergent subsequence.

On the other hand, the fact that C satisfies the Diaz-Metcalf condition shows that, for
all X ∈ BXτ

(,
√

H)\{X�}, we have

∥∥C(X) – X�
∥∥ <

∥∥X – X�
∥∥.

This implies that

∥∥Ck(X) – X�
∥∥ ≤ ∥∥X – X�

∥∥. (.)

Thus,

∥∥S(X) – X�
∥∥ =

∥∥∥∥∥
n∑

k=

λkCk(X) – X�

∥∥∥∥∥

=

∥∥∥∥∥
n∑

k=

λkCk(X) –
n∑

k=

λkX�

∥∥∥∥∥

≤
n∑

k=

λk
∥∥Ck(X) – X�

∥∥

<
n∑

k=

λk
∥∥X – X�

∥∥ =
∥∥X – X�

∥∥.

Then S satisfies also the assumptions of Theorem ., this implies that limn−→+∞ Sn(X)
exists and is equal to X�. �

Remark . Let K be a closed, bounded, and convex subset of a Banach space X and
let A : K −→ K be a mapping. For each x ∈ K , some sufficient conditions on A are given
to ensure the convergence or the weak convergence of Kirk’s process {Sn(x)} to the fixed
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point of A (see for example [–]) with the additional condition that the space X is
uniformly convex or strictly convex. Unfortunately, in our case the Banach space XT is not
strictly convex or uniformly convex, indeed, it suffices to take its subspace of functions
ζ (t) independent of ω equipped with its norm sup, to see that this does not have these
properties.
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