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Abstract. Background subtraction is an essential step in the process of
monitoring videos. Several works have proposed models to di�erentiate
the background pixels from the foreground pixels. Mixtures of Gaussian
(GMM) are among the most popular models for a such problem. However,
they su�er from certain inconveniences related to the light variations
and complex scene due to the use of a �xed number of Gaussians. In
this paper, we will propose an improvement of the GMM based on the
use of the bio-inspired algorithm AIRS (Arti�cial Immune Recognition
System) to generate and introduce new Gaussian instead of using a
�xed number of Gaussians. Our approach is to exploit the robustness
of the mutation function in the generation phase of the new ARBs
to create new Gaussians. These Gaussians are then �ltered into the
resource competition phase in order to keep only ones that best represent
the background. The system implemented and tested on the Wall�ower
database has proven its e�ectiveness against other state-of-art methods.
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1 Introduction

Various applications of video surveillance such as the detection and tracking of
moving objects begin with background subtraction phase. Background subtraction
is a binary classi�cation operation that gives each pixel of a video sequence a
label [8], for example: the pixels of the moving objects (foreground) take the value
1 and the pixels of the static objects are labeled by 0.In the real environment,
the variations of pixels are very fast, which requires a robust and adaptable
method to these variations. GMM is one of the most popular methods that
has achieved considerable success in detecting changes in videos. However, this
method has failed in problems related to: lighting changes and hidden areas.
Several studies showed that the number of Gaussians in GMM in�uence on
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the results quality. The contribution of our work is to manage dynamically the
number of Gaussians based on the AIRS algorithm instead of �xing them a priori
by the user. The proposed system stars with a learning phase using the GMM
algorithm and creates several background models for each pixel. These models
are �ltered according to resource competition and memory cell development
process of the AIRS algorithm to select only the best models.

2 Related work

Subtracting the background from video sequences captured from �xed or non-
�xed cameras remains a crucial problem due to the diversity of scenes that
represent the background.

In recent years, various approaches, methods and systems have been proposed
and developed to inspect dynamic regions and static regions. One of the most
intuitive approaches is to compute the absolute di�erence (∆t) either between
two successive frames [8], or between a reference image IR, without any moving
object, and the current image. In order to determine the objects in motion, a bit
mask is applied according to a prede�ned threshold on the pixels of the resulting
image.

Another way to subtract the background is to describe the history of the last
n pixel values by a Gaussian probability distribution [39]. However, modeling by
a single Gaussian is sensitive to fast pixel variations. Indeed, a single Gaussian
can not memorize the old states of the pixel. This requires migration to more
robust and multi-modal approach. The authors in [16] propose the �rst model
which describes the variance of the recent values of each pixel by a mixture of
the Gaussians. In this model, the Expectation Maximization (EM) algorithm is
used to initialize and estimate the parameters of each Gaussian. In [13] authors
estimate the probability density function of the recent N values of each pixel by
a kernel estimator (KDE).

[17] Provides a nonparametric estimation of the background pattern. He uses
the concept of a visual dictionary words to model the pixels of the background.
Indeed, each pixel of the image is represented by a set of three values (visual
word) which describes its current state. these values are initially estimated
during the learning phase and are updated regularly over time to build a robust
modeling.

Several works have taken spatial information into consideration. [25] Proposes
a sub-spatial learning based on PCA (SL-PCA). The idea in [25] is to make a
learning of the N background images by the PCA. Moving objects are identi�ed
according to the input image and the reconstructed image from its projection
in the reduced dimension space. Authors in [34] provide a quick schema (SL-
ICA) for background subtraction with Independent Component Analysis (ICA).
Another work [5] presents a decomposition of video content by an incremental
non-negative matrix factorization (NMF). Other methods [1] [20] [19] [22] [41]
focalised on the selection and combination of good characteristics (the colors ,
texture, outlines) to improve the result quality.
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Recently, some research works have introduced the fuzzy concept to develop
more e�cient and robust methods for modeling the background [10] [32] [4] [11]
[12] [42].

Works done in [40] showed that the GMM o�ers a good compromise between
quality and execution time compared to other methods. The �rst GMM model
was proposed by [16], however Stau�er and Grimson [33] o�ers a GMM standard
with e�cient update equations. Several works and contributions have been proposed
to improve the quality of GMM. Among these methods are those that are focused
on improving the model adaptation speed [27] [18] [21]. Others are interested
in hybrid models such as GMM and K-means [7], GMM and fuzzy logic [12],
GMM and adaptive background [9],GMM and Block matching [15], boosted
Gaussian Mixture Model [24], Markov Random Fields [28], GMM with PSO [38]
to overcome GMM problems. There are also several works that are invested in
the type of characteristics [6] [30] or in the acquisition material [29]. In addition
to spatio-temporal methods [31], some researchers have used local contextual
information around a pixel, such as the region [14] [26], the block [36] and the
cluster [3] [35].

There are also many methods that used deep learning for subtracting the
background FgSegNet_S (FPM) [23], Cascade CNN [37], DeepBS [2]However,
deep leaning methods require a large number of simples and needs more time
for training.

3 Proposition

The in-depth study made on Gaussian mixtures shows the important role of the
number of Gaussians in describing the pixel variations. Following this principle,
we propose a novel mechanism to produce new Gaussians based on the AIRS
algorithm in order to be as faithful as possible to the background model. Indeed,
the idea is to pass from a static model where the number of Gaussians is �xed
empirically for all pixels towards a model dynamic and adaptive according to
the environment and the background complexity.

First, we create a set of Gaussian (gi) representing the background for the
pixel Pt (at time t) that vitri�es:

Setbackground = {gi,
Pt − ui
σi

< 2.5} (1)

Each gaussian gi is represented by: the pixel value Pi, the average ui, the variance
σi and the weight wi .

After creating the background model, we choose the Gaussian(mcmatch) that
has the closest distance to the value of the current pixel.

mcmatch = min_Gaussian(Setbackground) (2)

mcmatch is mutated in the ARBs generation phase. At the end of this phase,
new Gaussian (clones) is created. the number of clones is calculated by the
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following equation:

Num_Clones = clonalRate× hyperClonalRate× distance(Pt,mcmatch) (3)

Set_Clones = {gclone1 , gclone2 , .., gcloneNum_Clones
} (4)

Such that :

gclonei =Mutation(mcmatch) (5)

The clonalRate and the hyperClonalRate are two integer values chosen by
the user.

New clones must be �ltered through the Resource Competition (AIRS) process,
keeping only the best and the correct Gaussians. The �ltering operation uses the
condition (6) to remove the least representative Gaussians.

Pi − ui
σi

< 2.5 (6)

The last step of the AIRS algorithm is to introduce the memory cells mc
from the previous set (Set_Clones). This operation consists of choosing the
most representative Gaussians among the new Gaussians and adding them to
the background model according to the following equation:

distance(Pt, gclonei) < distance(Pt,mcmatch) (7)

If the previous condition is veri�ed, we compare the average distance of mcmatch

and gclonei with the a�nity threshold ATmultiplied by the scalar a�nity threshold
ATS:

meandistance(mcmatch, gclonei) < AT ×ATS (8)

With : AT : the average distance of all background models generated in the
learning phase.
If the equation (8) is satis�ed the mcmatch will be deleted from the set of MC.
After these steps and to determine whether the pixel belongs to the background
or foreground, the Gaussians are ordered according to the value of wk,t/σk,t. The
Gaussians that represent the state of Pt is the �rst distribution that satis�es
the following equation:

β = argmin(

b∑
k=1

wk,t > B) (9)

Where B determines the minimum part of the data corresponding to the
background. wk,t is the weight of the K distribution. Regarding the learning
phase, we applied the same principle of classical GMM.
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Fig. 1. The global architecture of the proposed system.

4 Tests and results

Our approach is implemented and tested on some videos from the Wall�ower
database. After several empirical tests, the learning rate α, the minimum part
of the data corresponding to the background β, clonalRate, hyperClonalRate,
mutationRate, ATS) are respectively �xed to 0.01, 0.3, 10, 2, 0.1, 0.2.
The results obtained are compared with the most referenced state of art methods
in the modeling of the background (see Figure 2).

Our system achieved good results in Foreground Aperture, Camo�age, Bootstarp,
Waving trees videos, it ranks in the 1st position compared to the other state of
the art methods, but they have some false detection. However, our system failed
to detect objetcs in scenes that have a large change in illumination.

The obtained results clearly show that our system exceeds other sate of the
art methods in videos with small variations in the background. However, our
system is sensitive when the scene contains high illumination. This is due to the
nature of the method that uses a pixel-based approach to detect moving objects.
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5 Conclusion

In this paper, we have proposed a new approach which allows to reduce the
inconvenience of GMM for background subtraction. The idea is to introduce new
Gaussians using Arti�cial Immune Recognition System. This allows to move from
a static to dynamic approach that can easily adapt the model to nature of the
environment. Results obtained on several videos from a public benchmark showed
the e�ectiveness of this new process with small variations in the background.
However, our system is sensitive when the scene contains high illumination. This
is due to the nature of the method that uses a pixel-based approach to detect
moving objects.

Fig. 2. Results obtained on Wall�ower dataset.
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