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Abstract
The current abundance of the collected biomedical data provides an important tool for the development of medical data 
classification systems. However, processing big data requires powerful algorithms. In this perspective, we propose a hybrid 
classifier that combines radial basis function (RBF) and extreme learning machine (ELM) neural networks. This combination 
is motivated by the high performances and the complementary of these two types of neural networks. The basic idea relies on 
complementing a compact RBF network by an ELM network that contains a diversity of hidden neurons. The optimization 
of the number, forms, and types of the ELM hidden neurons is performed using a genetic algorithm (GA). The objectives of 
the proposed classifier can be summarized as follows. First, it benefits from the complementary properties of RBF and ELM, 
like local response of RBFs and global response of ELM. Second, it makes use of the advantages of ELM, like fast training 
and the possibility of using a variety of activation functions. Third, it alleviates the ill conditioning problem of ELM by join-
ing the systematic initialization of RBF to the random initialization of ELM. Fourth, the optimization process, performed 
using GA, is simplified because it concerns only the added neurons, which their role is complementing the RBF network. To 
assess the performance of the proposed classifier, we carry out tests on six medical datasets from the UCI machine learning 
repository and compare the obtained results with those of other state-of-the-art works. The obtained average performance 
measurement, i.e., accuracy, sensitivity, and specificity for Wisconsin breast cancer are 97.38%, 98.38%, 96.85%, for Pima 
Indians diabetes are 77.61%, 57.35%, 88.22%, for heart Statlog are 83.71%, 77.92%, 88.34%, for hepatitis are 87.10%, 95.89%, 
40.10%, for Parkinson are 92.62%, 96.50%, 80.76%, and for liver-disorders are 72.48%, 82.68%, 58.39% respectively

Keywords RBF neural network · Extreme learning machine · Genetic algorithm · K-means · Classification · Medical 
diagnosis

1 Introduction

In the past few years, medical informatics research and pro-
duction have been growing in an increasing rate. With the 
modern technological progressions, the collected biomedi-
cal data has also been growing in an increasing rate. They 
include a large variety of types, like blood tests, imaging 
data, biomedical signals, patients’ records ... etc. On one 

hand, these big data provide useful information to design 
more powerful analyzing and aid-decision systems. On the 
other hand, handling such amount of data generally presents 
enormous challenges as regards to their size, complexity, 
multidimensionality, heterogeneity and incompleteness. 
Consequently, this requires the development of advanced 
pattern recognition methods that can face these challenges. 
Neural networks have gained popularity as efficient com-
putational approaches in this field because of their learning 
and approximation abilities. In this work, we consider two 
important types of neural networks: RBF and ELM mod-
els, which have been successfully applied to many medical 
systems.

Radial basis function neural networks (RBFNNs) were 
introduced in 1988 by by Broomhead and Lowe [1]. They are 
motivated by the local reaction observed in some biologic 
neurons, so they include special hidden neurons with local 
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response (RBFs). The implementation of RBFNN consists in 
designing three important components: (i) the structure, i.e. 
the number of RBFs; (ii) the parameters of RBFs, i.e. their 
centers and widths; and (iii) the output weights. Choosing 
the accurate structure of the network is generally the main 
difficulty facing the developers of neural networks. This 
problem is more important in the case of RBFNN where 
the hidden neurons must provide good coverage of the input 
space. To deal with this issue, two main strategies have been 
adopted in the literature. In the first strategy, the structure is 
determined in an independent phase, and then the remaining 
parameters are accordingly adjusted. In the second strategy, 
the structure of the network and the other parameters are 
all adjusted during the training process. The recent works, 
whatever based on the first or second strategy, are largely 
based on bioinspired metaheuristic algorithms. For exam-
ple, in [2], the authors proposed a hybrid RBFNN based on 
Fuzzy C-Means (FCM) and polynomial neural networks in 
order to enhance the discriminant capabilities. In this sys-
tem, genetic algorithm (GA) is used to optimize the main 
parameters of the model, such as the fuzzification coefficient 
and the number of input polynomial fuzzy neurons. In [3], 
the authors proposed to design RBFNN using a cooperative 
particle swarm optimization (CPSO). It consists of two dis-
tinct swarms. The first swarm calculates the network struc-
ture and the centers using a non-symmetric fuzzy means 
algorithm, while the second calculates the widths. In this 
system, the two swarms cooperate by exchanging informa-
tion. In [4], the authors proposed an RBFNN based on bee-
inspired algorithm (cOptBees). In this system, a bee-inspired 
clustering algorithm is used to determine the number and the 
centers of RBFs. Next, the widths are determined using the 
distribution of the clustered data and the output weights are 
calculated using pseudo-inverse method. In [5], the authors 
proposed an RBFNN based on K-means and BAT-inspired 
optimization algorithm. In this system, the K-means is used 
with cluster validity index to define the centers of the RBFs 
and the BAT algorithm is used to define the output weights. 
In [6], the authors proposed an eigenvector-based clustering 
method to calculate the RBF centers. This method is based 
on calculating the principal components of the data matrix 
instead of the iterative calculation process of K-means clus-
tering. Subsequently, the output weights can be calculated 
via either pseudo-inverse solution or the gradient descent 
algorithm. In [7], the authors proposed to use the Biogeog-
raphy-based optimization (BBO) algorithm for training an 
RBFNN. In this system, the number of RBFs is fixed at the 
beginning and the remaining parameters, i.e. centers, widths 
and output weights are optimized simultaneously. In [8], the 
authors aimed at designing a robust RBFNN based on self-
organizing map (SOM) networks. In this model, the SOM-
based clustering algorithm determines the centers of RBFs 
while P-nearest neighbors heuristic method determines their 

widths. In order to enhance the robustness of the proposed 
system, the authors proposed adding independent random 
Gaussian noise to the training samples. In [9], the authors 
proposed to design an RBFNN classifier in three stages. In 
this model, K-means clustering method first defines the cent-
ers of RBFs, then PSO optimizes the widths of RBFs and, 
finally, the back-propagation algorithm is used for fine-tun-
ing all parameters, i.e. centers, widths and output weights. 
In [10], the authors proposed a deep RBF neural system for 
medical classification based on the deep autoencoder. In this 
system, the autoencoder is used to decrease the number of 
features of the presented samples. The obtained new features 
are then presented to the RBF neural network.

On the other hand, an interesting learning algorithm for 
single hidden feed-forward neural networks (SHFFNNs) 
called extreme learning machine (ELM) has been recently 
emerged [11]. It is based on random initialization of the 
input weights and biases and analytic calculation of the out-
put weights. Compared to the traditional gradient descent 
algorithms, ELM is much faster and has better generalization 
ability. Furthermore, it can be performed with less human 
intervention, like setting the stopping criteria, learning rate 
and number of epochs. However, ELM suffers from two 
main drawbacks: it is sensitive to the initial input weights 
and it requires a large number of hidden neurons. A variety 
of methods have been proposed to tackle these problems. 
Among these methods, metaheuristic-based approaches have 
had great interest because of their efficiency in solving com-
plex problems. These approaches include PSO [12, 13], GA 
[14, 15], cuckoo search [16] and deferential evolution [17].

RBF and ELM neural networks have been combined in 
order to introduce more powerful models. The combination 
of RBF and ELM has been performed according to two main 
approaches. The first approach was introduced in [18]. The 
resultant model is a single layer network with hidden RBF 
neurons. In this model, the centers and width of RBFs are 
randomly initialized and the output weights are analytically 
calculated using pseudo inverse method. Several methods 
have been used to improve this model, for example, micro-
genetic algorithm [19]; affinity propagation clustering and 
Laplacian ELM [20]; simulated annealing algorithm [21]. 
The second approach assembles RBF and ELM in a cascade. 
The resultant model has two hidden layers. In this model, the 
outputs of the RBF constitute the input of the ELM [22, 23].

Considering the above discussion, we can note that the 
developers of RBF, ELM and even RBF-ELM are mostly 
facing the same problem: defining the proper structure. 
Metaheuristic-based approaches have been successfully used 
to optimize the structure of these two types of neural net-
works. Nevertheless, optimizing the structure and the param-
eters at the same time is very hard and time-consuming. 
This may result in using small populations and consequently 
can lead to lower diversity and poor performance. In this 
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work, we deal with this problem in a completely different 
way. We propose a hybrid model that consists of an RBFNN 
with minimal structure complemented by an ELMNN with 
a diversity of activation functions. The number, types and 
forms of the added neurons are optimized using GA. There-
fore, we combine the advantages and the complementary of 
RBFNNs and ELMNNs to overcome their problems, namely 
defining the appropriate structure. Furthermore, the optimi-
zation process in the proposed classifier is considerably sim-
plified because it concerns only the added neurons, which 
their role is just to complement the RBFNN.

The rest of this paper is organized as follows. Section 2 
recalls some background concerning the RBFNNs and ELM. 
Section 3 describes the principles of the proposed model and 
discusses its implementation. Section 4 presents and analy-
ses the experimental results conducted on six biomedical 
datasets. Finally, Sect. 5 concludes this paper.

2  Theoretical background

This section introduces some theoretical principles of the 
RBF and ELM neural networks, which are used in this work.

2.1  Radial Basis Function Neuronal Networks 
(RBFNNs)

An RBF neural network is a feed-forward network with a 
single hidden layer [24]. In these networks, the activation 
functions used in the hidden neurons are radial basis func-
tions (RBFs) rather than sigmoid functions. This kind of 
activation function is inspired by the local response observed 
in some biologic neurons. Therefore, the RBFs have local 
response and their values depend only on the distance from 
their centers. Figure 1 illustrates an example of RBFNNs. 
In this example, the network has N input neurons, M hidden 
neurons and J output neurons.

In the classification problems, the number of input neu-
rons is equal to the input dimension and the number of out-
put neurons is equal to the number of classes.

In this work, we use the Gaussian functions, which are 
the most commonly used. The outputs of the hidden layer 
are then given by:

whe re  X = (x1, x2 … xN)  i s  t he  i npu t  vec to r , 
Vm = (v1m, v2m … vNm) and �m are, respectively, the center 
vector and width corresponding to the mth hidden neuron.

The network outputs are a linear weighted combination of 
the hidden output. The jth output Zj is given by:

where M is the number of hidden neurons, Ym is the output 
of the mth hidden neuron and Umj is the weight connecting 
the mth hidden neuron and the jth output.

2.2  Extreme learning machine (ELM) algorithm

Extreme learning machine is a learning algorithm for single 
hidden layer feed-forward neural networks [11]. In this algo-
rithm, the input weights and biases are randomly initialized 
while the output weights are analytically determined in one-
step stage using pseudo-inverse solution. This makes this 
algorithm extremely fast compared to the traditional gradient 
descent algorithms.

Figure 2 illustrates the structure of an ELM based-neural 
network.

(1)Ym(X) = exp

(
−
∥ X − Vm ∥2

2�2
m

)

(2)Zj =

M∑
m=1

Umj.Ym(X)

Fig. 1  An example of RBF neural network with N–M–J architecture
Fig. 2  An example of ELM based-neural network with N inputs, M 
hidden neurons and J output neurons
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For Q distinct samples {(xq, tq), q = 1 ∶ Q} where 
xq = [xq1, xq2,… , xqN]

T ∈ ℝ
N and tq = [tq1, tq2,… , tqJ]

T ∈ ℝ
J.

An ELMNN with M hidden neurons and activation func-
tion g(x) is represented by [11] :

where wm = [wm1,wm2,… ,wmN]
T is the input weight con-

necting the input layer to the mth hidden neuron and bm is 
the bias of the mth hidden neuron.

The output equation can be written as:

where

Here, �m = [�m1, �m2,… , �mJ]
T is the optimal weight con-

necting the mth hidden neuron to the output layer. These out-
put weights can be analytically determined by the minimum 
norm of the least square solution:

where H‡ is the Moore–Penrose generalized inverse of the 
matrix H.

To enhance the generalization performances of ELM and 
its robustness with respect to outliers, a regularized version 
was introduced [25]. The output weight � is then estimated 
by the following equation:

where C is the regularization factor (C > 0) and I is the unit 
matrix.

3  The proposed classifier

In this work, we introduce a hybrid neural classifier that 
combines RBF and ELM neural networks. In the following 
subsections, we describe in detail the main idea and motiva-
tions behind the proposed system and its architecture and 
training process.

(3)
M∑

m=1

�m.Gm(xq) =

M∑
m=1

�m.G(wm.xq + bm) = tq

(4)H� = T

H =

⎡⎢⎢⎣

g(w1.x1 + b1) ⋯ g(wM .x1 + bM)

∶ ⋯ ∶

g(w1.xQ + b1) ⋯ g(wM .xQ + bM)

⎤⎥⎥⎦Q×M
,

(5)� =

⎡⎢⎢⎢⎣

�T
1

∶

∶

�T
M

⎤⎥⎥⎥⎦
M×J

and T =

⎡⎢⎢⎢⎣

tT
1

∶

∶

tT
Q

⎤⎥⎥⎥⎦
Q×J

(6)� = H‡T

(7)� = HT
(
I

C
+ HHT

)−1

T

3.1  Main idea and motivations

The key idea of the proposed classifier relies on mak-
ing use of the complementary properties of RBFNN and 
ELMNN in order to provide better performances with 
an accurate structure. The proposed model is based on 
an RBFNN with minimal architecture complemented by 
an ELMNN with a diversity of activation functions. The 
number of the added neurons and the types and forms of 
their activation functions are optimized using GA. We 
opted to use GA as they can easily model a hierarchical 
structure and combine binary and real encoding [26, 27]. 
The binary encoding represents the model structure while 
the real encoding represents the model parameters. In our 
model, the binary encoding is used to define the number 
of added neurons and the integer and real encoding are 
used to define the types and forms of the added neurons.

The motivations behind the proposed approach are as 
follows:

First, the hidden neurons in RBFNNs are based on local 
responses while in ELMNNs they are based on global 
responses. Therefore, by their combination, we can have 
better decisions boundaries with a smaller number of hid-
den neurons.

Second, the initial weights in ELMNNs are randomly 
initialized which may lead to ill-conditioned problem, 
especially in the case of a large number of hidden neurons 
[28, 29]. Contrary, RBFNN can be initialized using prior 
knowledge by applying clustering methods on the training 
data. Therefore, by combining both types, we can prevent 
ill-conditioning problems. Furthermore, this combination 
reduces the dependency of ELMNN to the random initial 
weights.

Third, it was reported in several works [30–32] that a 
network with different types of activation functions has 
better generalization capacities. Even for deep neural net-
works, several approaches have been proposed for replac-
ing the common ReLU activation functions [33, 34]. It 
was also reported that an ELMNN with large variety of 
activation functions can distinguish between disconnected 
regions of any form [35, 36]. Therefore, we propose add-
ing neurons with different types of activation functions and 
using GA to optimize their types and forms. Furthermore, 
the GA is used to define the optimum number of the added 
neurons. This way, we aim at overcoming the problem of 
defining the proper structure, which constitutes a consider-
able problem for both types of neural networks.

Fourth, evolving neural networks using meta-heuristic 
approaches is generally complex and time-consuming 
especially in the case of optimizing both the structure and 
the parameters. In this work, we propose to optimize the 
additional neurons only. Since the role of these neurons is 
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just to complement the RBFs, the optimizing process can 
be effectively alleviated.

Fifth, in the proposed model, the outputs of the RBFs and 
those of the added neurons are concatenated and considered 
as the output of the hidden layer of an ordinary ELM. The 
output weights are then calculated in one-step phase using 
the pseudo-inverse method. In general, updating the output 
weights is simpler than updating the hidden and inputs ones 
[37]. Therefore, we make use of the fast training of ELM to 
simplify the calculation of the GA cost function.

3.2  Architecture

The proposed model is a single hidden layer feed-forward 
neural network that consists of two parts. The architecture 
of the proposed classifier is depicted in Fig. 3.

The first part, RBFNN, consists of the RBFs and their 
corresponding input weights. The role of these hidden neu-
rons is to measure the distance between the presented sample 
and their centers. The weights connecting the inputs to these 
neurons are equal to ’1’.

The second part, ELMNN, consists of the added neu-
rons and their corresponding input weights. In this part, the 

weights are randomly initialized and the hidden neurons 
have general activation functions.

In this work, we use four types of the most commonly 
used activation functions, given as follows [35, 36]: 

1. Sigmoid: 

2. Gaussian: 

3. Hard-limit: 

4. Multi-quadratic: 

where x is the input features, a is the slope coefficient and b 
is the bias coefficient.

(8)Hs(x) =
1

1 + exp (−(a.x + b))

(9)Hg(x) = exp
(
−b ∥ x − a ∥2

)

(10)Hl(x) =

{
1, if (a.x − b) ≥ 0

0, otherwise

(11)Hq(x) =
(
∥ x − a ∥2 +b2

) 1

2

Fig. 3  The structure of the proposed neural classifier RBF-ELM-GA. It has one hidden layer that contains two set of neurons: initial RBFs and 
added neurons. The latter have different types and forms optimized using GA
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In order to obtain more variety in the added neurons, we 
propose using different forms of the above functions. More 
specifically, we use different values of the parameters a and 
b in each activation function. The outputs of the RBFs and 
the added hidden neurons are concatenated to form a single 
vector. This vector is considered as the output of the hidden 
layer in a conventional ELMNN.

3.3  Training process

The development of the proposed classifier is performed in 
two stages: defining RBFs and adding neurons Fig. 4.

3.3.1  Defining RBFs

In this stage, K-means clustering method is first used to 
define the centers of RBFs. In general, the clustering meth-
ods are unsupervised algorithms applied to unlabeled sam-
ples. In this work, we apply the clustering to each class 
separately in order to have more accurate RBFs. Next, the 
P-nearest neighbors’ method [38] is used to calculate the 
widths of RBFs. The width of the mth hidden neuron is given 
by:

where Vn(n = 1…P) are the P-nearest neighbours’ of the 
centre Vm.

3.3.2  Optimizing the added neurons using GA

In the second stage, the number, the types and the forms of 
the added neurons are optimized using GA. This process is 
given as follows:

3.3.2.1 Coding The chromosome coding is the most impor-
tant step in GA algorithm as it defines how to represent the 
solutions in a set of genes. In this work, each chromosome 
consists of two parts: control and parameters genes Fig. 5.

In the first part, each bit corresponds to one of the hid-
den neurons. This part is then formed by a sequence of bits 
where the values ‘1’ indicate that the corresponding hidden 
neurons are activated and those corresponding to ‘0’ are 
inactivated. The sum of the values ‘1’ represents the number 
of the added neurons.

The second part of chromosome represents the parameter 
genes. In this part, each hidden neuron is represented by three 

(12)�m =
1

2

(
P∑

n=1

∥ Vn − Vm ∥2

) 1

2

Fig. 4  The general scheme of the proposed classifier: it is composed 
of two main stages: defining RBFs and adding neurons using GA
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bits. The first bit is an integer with values {2, 3, 4, and5} that 
defines the type of the activation function. The two other bits 
are real numbers that represent the parameters of the activa-
tion function. The proposed GA includes three types: binary, 
integer and real values.

Figure 5 illustrates the general representation of chromo-
some coding. Ti represents the type of the activation function 
(Sigmoid, Gaussian, Hard-limit and Multi-quadratic) corre-
sponding to the ith hidden neuron. ai and bi are the first and 
second parameters of the activation function corresponding 
to the ith hidden neuron.

Figure 6 gives an example of chromosome coding. In this 
example, the maximum number of added neurons is four. 
Among them, only the second and the fourth are activated. 
The types of the four neurons are respectively: Sigmoid, Hard-
limit, Gaussian and Multi-quadratic.

3.3.2.2 Fitness function The role of GA in this work is to 
define a set of neurons with different types and forms provid-
ing, not only, a minimum Root Mean Square Error, but also 
with the minimum number. Therefore, we use a multi-objec-
tive fitness function that considers both specifications. It is 
given by:

where C is a constant that balances the effect of RMSE and 
ComNetwork.

RMSE is the mean of the squared differences between the 
actual and the predicted values for all samples. It is given by:

(13)Fitnessfunction = RMSE + (C ∗ ComNetwork)

where Q is the number of the training samples; Zq and Tq 
are the estimated and actual classes corresponding to the 
qth sample.

ComNetwork represents the complexity of the network. It 
is given by the proportion of the number of hidden neurons, 
M , to the maximum number of neurons, Nmax.

3.3.2.3 Genetic operators The genetic operators play a cru-
cial role in evolving the populations and, consequently, in 
the overall performance. There are three basic operators: 
selection, crossover and mutation. In this work, we use the 
most commonly used operators.

•  ◻ For the selection, we use the roulette wheel 
method.

•  ◻ For the crossover, we use the double-point 
method as our chromosomes include two parts (control 
and parameters). Therefore, two locations are randomly 
selected: The first one is applied to the control genes and 
the second to the parameter genes. This way, the new 
individuals can inherit both information from the parents.

•  ◻ For the mutation, we use binary and real-valued 
operations as our chromosomes include both types of 

(14)RMSE =

√
1

Q

∑Q

q=1

(
Zq − Tq

)2

(15)ComNetwork =
M

Nmax

Fig. 5  General representation of 
chromosome coding

Fig. 6  An example of chromosome coding
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numbers. Thus, the proposed algorithm can maintain 
more diversity in the population.

 The training process can be summarized as follows:

 (i) Stage 1: Defining RBFs The aim of this stage is to set 
the centers and the widths of RBFs.

– Step 0 (Input) : set the number of RBFs
– Step 1: Defining the centers of RBFs using K-means 

clustering
– Step 2: Calculating the widths of RBFs using the 

P-nearest neighbors’ method

 (ii) Stage 2: Adding neurons using GA The aim of this 
stage is to set the number, types, and parameters of 
the added neurons.

– Step 0 (Input): set the number of populations, GA 
parameters, Stopping criteria

– Step 1: Random initialisation of the input weights 
(W) and bias (b) Random Initialization of the genetic 
population

– Step 2: GA operations: selection; crossover; mutation
– Step 3: Evaluation Decoding: Set the number, 

types, and parameters of the added neurons Cal-
culation of the output weights ( � ) using the pseud 
inverse method Calculation of the objective function 
(Eq. 13)

– Step 4: if Stopping criteria is satisfied (max iteration 
or objective function) then stop, if not return to step 
2 (of stage 2).

3.4  Synthetic classification problem

To analyze the effect of the number and types of the added 
neurons, we performed some experiments on the synthetic 
example of Fig. 7. In these experiments, we first fixed the 
number of the initial RBFs then we applied the process of 
adding neurons using GA. For each number of RBFs, i.e. 10, 
20 and 30, we performed four tests. The obtained results are 
reported in Table 1. We note that the numbers and types of 
the added neurons are different for each test, but they gave 
the same results in some cases. This shows that the process 
of adding neurons permits obtaining a set of complementary 
neurons despite their number and types.

On the other hand, we performed experiments with an 
RBFNN and ELMNN with different numbers of hidden neu-
rons Table 2. We note that the proposed system gave better 
results than these two neural networks and it achieved these 
results with a smaller number of neurons. For example, with 
27 and 30 neurons, the proposed classifier gave 99,5% and 

Fig. 7  A 2-D synthetic classification problem with two classes. a The 
decision boundary obtained using the proposed classifier with 27 neurons. 
b The decision boundary obtained using an RBFNN with 35 neurons. c 
The decision boundary obtained using an ELMNN with 35 neurons
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98,55% respectively while the maximum accuracies given 
by RBFNN and ELMNN are, respectively, 97.5 % and 96.8 
% even with 45 neurons.

Therefore, we conclude that it is possible to define a set of 
neurons with different types of the activation functions that 
can give better results than larger number of neurons with 
the same activation functions.

Table 1. The results obtained over the synthetic example 
of Fig. 7 using the proposed classifier with different numbers 
and types of the activation functions.

Table 2. The results obtained over the synthetic example 
of Fig. 7 using the RBFNN and ELMNN with different num-
bers of the hidden neurons.

4  Tests and experiments

To assess the performance of the proposed classifier, we car-
ried out tests on six medical datasets obtained from the UCI 
machine learning repository [39] and MIT-BIH arrhythmia 
dataset. These datasets are Wisconsin Breast Cancer, Pima 
Indians Diabetes, Heart-Statlog, Hepatitis, Parkinson and 
liver-disorders. In order to evaluate the generalization capa-
bilities, we utilized a 10-fold cross validation. We opted for 
this method as it is the most commonly used in medical tests. 
Indeed, the higher value of K leads to a less biased model 
where significant variance might lead to over-fit, whereas 
the lower value of K is like the train-test split approach [40]. 
According to this strategy, each dataset is randomly divided 
into ten subsets: nine of them are used as training data, and 
the remaining subset is used as a test set. This procedure is 
repeated ten times and consequently, each sample appears 
once in a test set. Moreover, given the random initialization 
of the input weights and the initial population of the GA, we 
performed twenty runs for each test to make a fair evaluation 
of the proposed classifier.

For each dataset, we first performed tests with differ-
ent numbers of RBFs to assess the effect of the different 
structures, and then we compared the proposed classifier 
with other work. The performance was measured with three 
evaluation methods, which are Accuracy, Specificity, and 
Sensitivity. The formulas for these parameters are given by:

(16)Accuracy =
TP + TN

TP + FP + FN + TN
× 100%

(17)Specificity =
TN

TN + FP
× 100%

Table 1  Results obtained using 
the proposed classifier with 
different numbers of RBFs 
and added neurons over the 
synthetic example

Bold values indicate the best results

Model #RBFs Added neurons (Sigmoid, Gauss-
ian, Hard-limit, Multi-quadratic)

#Total hidden 
neurons

Test accuracy (%)

10 (1/2/3/2) = 8 18 97.5
(1/1/6/3) = 11 21 97.0
(0/4/6/2) = 12 22 97.0
(2/6/2/3) = 13 23 96.0

Proposed classifier 20 (0/0/3/2) = 5 25 97.5
(2/3/1/1) = 7 27 99.55
(2/4/2/2) = 10 30 98.55
(1/2/4/4) = 11 31 98.0

30 (3/1/2/1) = 7 37 97.5
(0/2/3/3) = 8 38 98.0
(3/2/2/2) = 9 39 97.5
(3/7/1/0) = 11 41 97.0

Table 2  Results obtained using ELMNN and RBF with different 
numbers of hidden neurons over the synthetic example

Bold values indicate the best results

Models Type of activation 
functions

#Hidden 
neurons

Test accuracy (%)

15 96.40 ± 0.49
ELMNN Sigmoid 25 96.80 ± 1.13

35 96.00 ± 1.02
45 95.60 ± 0.80
15 97.25 ± 0.58

RBFNN Gaussian 25 96.80 ± 0.53
35 97.20 ± 0.88
45 97.50 ± 0.57
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where TP (True Positive) indicates the number of correct 
disease samples, FN (False Negative) indicates number of 
false healthy samples, TN (True Negative) indicates the 
number of correct healthy samples and FP (False Positive) 
indicates the number of false disease samples.

4.1  Wisconsin breast cancer (WBC) classification

This dataset was gathered by scientists from the Univer-
sity of Wisconsin Hospitals, Madison, USA. It contains 
699 records, among them 16 are with missing data. To be 
coherent with the literature, we removed these records. The 
retained dataset consists then of 683 records, in which 239 
examples are malignant and 444 are benign. Nine integer 
features characterize each record.

(18)Sensitivity =
TP

TP + FN
× 100%

Figure 8 represents the convergence of the proposed clas-
sifier (accuracy and loss function graph) on the wisconsin 
breast cancer classification dataset.

The graph of the accuracy is shown in Fig. 8a, where 
the blue line corresponds to training data, obtaining a final 
accuracy of 1, and the pink line corresponds to the testing 
data, obtaining a final accuracy of 0.97.

The graph of the loss function is shown in Fig. 8b, where 
the blue line corresponds to the training data, obtaining a 
final value of 0.01, and the pink line corresponds to the test-
ing data, obtaining a final value of 0.27.

Table 3 presents the confusion matrix obtained for the 
test data. This matrix represents the benign and malignant 
records in the WBC dataset. Each row represents the actual 
class, and each column represents the predicted class.

Table 4 displays the obtained results corresponding to 
different numbers of RBFs. The best results were obtained 
with 10 RBFs.

Table 5 compares the obtained results with those of some 
state-of-the-art works. These works include: neural net-
works, ELM, PSO, GA, Bee inspired, Naïve Bayesian, deci-
sion trees, clustering. PSO-RBFNN [43] and RBFNN-BBO 
[7] gave the best accuracy. Our system provided slightly 
lower accuracy, but with much fewer hidden neurons com-
pared to PSO-RBFNN. Our classifier includes only 22 hid-
den neurons, while PSO-RBFNN includes 87. Moreover, in 
our work, we used cross validation while these two works 
used the hold-out method. Indeed, the cross validation gives 

Fig. 8  Graphs of the performance of the proposed classifier on WBC dataset

Table 3  The confusion matrix 
obtained using the proposed 
method over the wisconsin 
breast cancer dataset

Bold values indicate the best 
results

Classes 0 1 Total

0 42 2 44
1 0 24 24
Total 42 26 68

Table 4  Results obtained using 
the proposed classifier with 
different numbers of RBFs over 
WBC dataset

Bold values indicate the best results

# RBFs Accuracy (%) Maximum Minimum Sensitivity (%) Specificity (%) # Added neurons

6 97.12 ± 0.33 97.80 96.65 97.99 ± 0.70 96.63 ± 0.31 13.16 ± 0.81
8 96.90 ± 0.29 97.36 96.48 97.94 ± 0.70 96.33 ± 0.40 12.90 ± 0.68
10 97.38 ± 0.26 97.80 96.93 98.38 ± 0.45 96.85 ± 0.30 12.7 ± 0.73
20 97.25 ± 0.24 97.66 96.92 98.28 ± 0.36 96.69 ± 0.30 12.29 ± 1.35
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better evaluation as the model is tested on multiple train-test 
splits and, consequently, on all data. On the other hand, the 
hold-out method depends on just one train-test split.

4.2  Pima Indians Diabetes (PID) classification

This dataset is originally from the National Institute of Dia-
betes and Digestive and Kidney Diseases. It contains 768 
samples, in which 268 examples are diabetic and 500 are 

Table 5  Comparison of the obtained results with previous works on WBC dataset

Bold values indicate the best results
DFW deep feature weighting, NB Naive Bayes, SVM support vector machine, PLMVO hybrid particle swarm optimization with Multi-verse opti-
mization based on Lévy fight

Authors Methods Comparison criterion

Accuracy(%) Sensitivity (%) Specificity (%) # Hidden neurons Cross validation

Carlos J. Mantas [41] Credal C4.5 95.12 – – – [10-CV]
Alisson S.C.A [15] GAP-ELM 96.6 ± 1.7 – – 13.7 ± 4.9 [10-CV]
Liangxiao Jiang [42] DFW-NB 97.34 ± 1.02 – – – [10-CV]
Dávila Patríciaz [4] BeeRBF 96.87 ± 0.03 – – 70.61 ± 1.48 [10-CV]
Cheruku Ramalingaswamy [43] PSO-RBFNN 97.86 97.34 98.15 87 70–30%
Ibrahim Aljarah [7] RBFNN-BBO 97.86 ± 0.37 98.09 97.41 10 67–33%
Md. Milon Islam [44] SVM 97.14 100 92.3 – [10–CV]
Rabab Bousmaha [45] PLMVO-MLP 96.3 ± 0.001 – – – 66–34%
Proposed RBFNN-ELM-GA 97.38 ± 0.26 98.38 ± 0.45 96.85 ± 0.3 10 +(12.7 ± 0.73) [10-CV]

Table 6  Results obtained using 
the proposed classifier with 
different numbers of RBFs over 
PID dataset

Bold values indicate the best results

# RBFs Accuracy (%) Maximum Minimum Sensitivity (%) Specificity (%) # Added neurons

6 77.03 ± 0.58 77.90 76.20 58.43 ± 1.27 87.00 ± 0.74 7.48 ± 0.50
8 77.05 ± 0.46 77.99 76.68 57.67 ± 0.65 87.46 ± 0.49 7.13 ± 0.49
10 76.83 ± 0.58 77.89 76.34 56.95 ± 1.42 87.50 ± 0.58 7.21 ± 0.34
20 77.61 ± 0.69 78.62 77.09 57.35 ± 1.24 88.22 ± 0.63 7.26 ± 0.45
25 77.56 ± 0.49 78.23 77 57.25 ± 0.87 88.42 ± 0.52 7.06 ± 0.50

Table 7  Comparison of the obtained results with previous works on PID dataset

Bold values indicate the best results

Authors Methods Comparison criterion

Accuracy (%) Sensitivity (%) Specificity (%) # Hidden neurons Cross validation

Carlos J. Mantas [41] Credal C4.5 74.15 – – – [10-CV]
Zahra Beheshti [46] CAPSO-MLP 72.99 85.14 69.27 – 80%-20%
Jenni Raitoharju [47] RBF-CS-MDPSO 75.6 ± 0.9 – – – [5-CV]
Alisson S.C.A [15] GAP-ELM 74.4 ± 2.9 – – 19.7 ± 4.0 [10-CV]
Dávila Patrícia [4] BeeRBF 76.91 ± 0.57 – – 35.54 ± 1.22 [10-CV]
Damodar Reddy Edla [48] RBFNN-Bat-Opt 73.91 81.33 60.00 47 –
Cheruku Ramalingaswamy 

[43]
PSO-RBFNN 72.60 77.34 63.75 66 70%-30%

Cheruku R [5] RBFNN-Ratio Index-Bat 70.00 77.34 56.25 43 70%-30%
Ömer Faruk. E [31] RWNAFt 73.38 – – – [5-CV]
Ibrahim Aljarah [7] RBFNN-BBO 71.60 ± 1.9 46.25 86.27 10 67%-33%
Proposed RBFNN-ELM-GA 77.61 ± 0.69 57.35 ± 1.24 88.22 ± 0.63 20+(7.26 ± 0.45) [10-CV]
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not. In this dataset, there are no missing data points. Nine 
features characterize each sample.

Table 6 displays the obtained results corresponding to 
different numbers of RBFs. The best results were obtained 
with 20 RBFs.

Table 7 compares the obtained results with those of some 
state-of-the-art works. These works include a lot of tech-
niques, such as MLP, ELM, PSO, GA, Bee inspired, Bat 
inspired, decision trees, clustering. In this database, our 
classifier gave the best accuracy. Concerning the number of 
hidden neurons, our classifier includes the minimum number 
compared to the other works except RBFNN-BBO [7].This 
classifier included only 10 hidden neurons but it was highly 
outperformed by the proposed classifier in term of accuracy.

4.3  Heart‑Statlog classification

The data was obtained from the Cleveland Clinic Founda-
tion. This dataset contains 270 observations and 2 classes: 
presence and absence of heart disease. In this dataset, 
there are no missing data. Each observation is character-
ized by thirteen features.

Table 8 displays the obtained results corresponding to 
different numbers of RBFs. With up of 25 hidden neurons, 
the proposed classifier gave good results.

Table 9 compares the obtained results with those of some 
state-of-the-art works. These works include MLP, PSO, GA, 
Bee inspired, Naïve Bayesian, decision trees, clustering. We 
note that the GAFL-System [49] gave the best accuracy. 
Among the compared works, only two mentioned the num-
ber of hidden neurons. Our classifier included much fewer 
than them.

Table 8  Results obtained using 
the proposed classifier with 
different numbers of RBFs over 
Heart-Statlog dataset

Bold values indicate the best results

# RBFs Accuracy (%) Maximum Minimum Sensitivity (%) Specificity (%) # Added neurons

6 82.70 ± 0.99 83.70 80.74 77.67 ± 1.56 86.73 ± 1.42 4.60 ± 0.51
10 83.04 ± 1.21 85.13 80.92 79.17 ± 1.67 86.13 ± 1.36 4.63 ± 0.35
20 83.15 ± 0.55 84.98 81.11 77.85 ± 1.54 87.35 ± 0.96 4.28 ± 0.30
25 83.71 ± 0.99 85.56 82.60 77.92 ± 1.64 88.34 ± 1.23 3.97 ± 0.31
30 83.22 ± 0.74 84.44 81.85 77.75 ± .47 87.60 ± 1.0 3.93 ± 0.69

Table 9  Comparison of the obtained results with previous works on Heart-Statlog dataset

Bold values indicate the best results

Authors Methods Comparison criterion

Accuracy(%) Sensitivity (%) Specificity (%) # Hidden neurons Cross validation

Carlos J. Mantas [41] Credal C4.5 80.33 – – – [10-CV]
Zahra Beheshti [46] CAPSO-MLP 81.85 74.63 90.21 – 80%-20%
T. Santhanam [49] GAFL-System 86 80 90 – [10-CV]
Liangxiao Jiang [42] DFW-NB 83.63 ± 3.24 – – – [10-CV]
Dávila Patrícia[4] BeeRBF 59.12 ± 1.6 – – 40.02 ± 1.076 [10-CV]
Cheruku Ramalingaswamy [43] PSO-RBFNN 85.76 84.28 88.12 56 70%-30%
Rabab Bousmaha [45] PLMVO-MLP 75.7 ± 0.063 – – – 66%-34%
Proposed RBFNN-ELM-GA 83.71 ± 0.99 77.92 ± 1.64 88.34 ± 1.23 25+(3.97 ± 0.31) [10-CV]

Table 10  Results obtained using 
the proposed classifier with 
different numbers of RBFs over 
Hepatitis dataset

Bold values indicate the best results

# RBFs Accuracy (%) Maximum Minimum Sensitivity (%) Specificity (%) # Added neurons

4 86.50 ± 1.65 88.75 83.75 96.07 ± 1.36 39.50 ± 6.85 4.31 ± 0.36
6 87.10 ± 1.34 88.75 83.78 95.89 ± 1.35 40.10 ± 7.62 4.38 ± 0.51
8 86 ± 1.66 87.50 83.23 95.72 ± 1.60 38 ± 9.18 4.30 ± 0.30
10 85.77 ± 1.48 87.50 82.32 94.86 ± 0.96 38 ± 9.50 4.20 ± 0.25
20 86.25 ± 1.77 88.75 82.50 94.60 ± 1.08 42 ± 8.23 4.22 ± 0.30
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4.4  Hepatitis classification

The dataset is obtained from the Carnegie-Mellon Univer-
sity. It contains 155 instances belonging to two classes: live 
or die. Each instance is characterized by 19 features.

Table 10 displays the results obtained with different num-
bers of RBFs. We note that the proposed classifier gave good 
results with 6 RBFs.

Table 11 compares the obtained results with those of 
some state-of-the-art works. These works include neural 
networks, MLP, PSO, GA, Naïve Bayesian, decision trees, 

clustering. We note that our classifier gave the best accu-
racy. Concerning the number of hidden neurons, it was 
mentioned only in RBFNN-BBO [7]. In this work, only six 
hidden neurons were used, but our classifier provided much 
higher accuracy.

4.5  Parkinson disease classification

This dataset was created at the University of Oxford in col-
laboration with the National Centre for Voice and Speech, 
Denver, Colorado. This dataset contains 195 records and 

Table 11  Comparison of the obtained results with previous works on Hepatitis dataset

Bold values indicate the best results

Authors Methods Comparison criterion

Accuracy(%) Sensitivity (%) Specificity (%) # Hidden neurons Cross validation

Carlos J. Mantas [41] Credal C4.5 79.79 – – – [10-CV]
Zahra Beheshti [46] CAPSO-MLP 71.29 72.82 65.33 – 80%-20%
Liangxiao Jiang [42] DFW-NB 83.87 ± 5.89 – – – [10-CV]
Ibrahim Aljarah [7] RBFNN-BBO 84.72 ± 1.65 59.00 90.70 6 67%-33%
Proposed RBFNN-ELM-GA 87.10 ± 1.34 95.89 ± 1.35 40.10 ± 7.62 6+(4.38 ± 0.5) [10-CV]

Table 12  Results obtained using 
the proposed classifier with 
different numbers of RBFs over 
Parkinson disease dataset

Bold values indicate the best results

# RBFs Accuracy (%) Maximum Minimum Sensitivity (%) Specificity (%) # Added neurons

6 87.06 ± 1.45 88.68 84.13 95.82 ± 1.15 60.45 ± 4.72 7.68 ± 1.06
8 88.63 ± 1.74 91.26 86.18 95.61 ± 1.36 67.10 ± 5.62 6.22 ± 0.48
10 89.99 ± 1.50 92.80 88.25 96.76 ± 1.33 69.15 ± 3.77 5.79 ± 0.67
20 92.62 ± 1.20 93.98 90.88 96.50 ± 1.10 80.76 ± 5.45 4.96 ± 0.55
25 92.01 ± 1.08 94.38 90.28 96.38 ± 1.32 78.45 ± 5.19 4.78 ± 0.52

Table 13  Comparison of the obtained results with previous works on Parkinson disease dataset

Bold values indicate the best results

Authors Methods Comparison criterion

Accuracy(%) Sensitivity (%) Specificity (%) # Hidden neurons Cross validation

Zahra Beheshti [46] CAPSO-MLP 92.56 93.96 85.48 – 80%-20%
Jenni Raitoharju [47] RBF-CS-MDPSO 85.7 ± 1.20 – – – [5-CV]
Ibrahim Aljarah [7] RBFNN-BBO 86.42 ± 1.92 99.61 44.37 10 67%-33%
Proposed RBFNN-ELM-GA 92.62 ± 1.20 96.50 ± 1.10 80.76 ± 5.45 20+(4.96 ± 0.5) [10-CV]

Table 14  Results obtained using 
the proposed classifier with 
different numbers of RBFs over 
BUPA-Liver disorder dataset

Bold values indicate the best results

# RBFs Accuracy (%) Maximum Minimum Sensitivity (%) Specificity (%) # Added neurons

6 71.09 ± 1.22 73.35 70.10 81.10 ± 2.04 57.28 ± 1.98 7.58 ± 0.32
8 70.84 ± 1.96 72.88 68.92 80.50 ± 2.20 57.55 ± 2.42 7.39 ± 0.42
10 72.48 ± 1.02 73.98 70.20 82.68 ± 1.08 58.39 ± 2.15 7.01 ± 0.48
20 72.28 ± 1.05 73.98 71.26 81.70 ± 1.55 59.36 ± 1.92 7.46 ± 0.43
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2 classes: the presence or absence of Parkinson disease. 
Twenty-two features characterize each record.

Table 12 displays the obtained results with different num-
bers of RBFs. The best performances were obtained with 20 
RBFs and with up to 20 neurons, the accuracy decreased.

Table 13 compares the obtained results with those of 
other works. These works include neural networks, MLP, 
PSO, clustering. Our classifier gave the best results. Con-
cerning the number of hidden neurons, RBFNN-BBO [7] 
included less number, but with lower accuracy compared 
to our classifier.

4.6  BUPA liver disorders classification

This dataset was created at BUPA Medical Research Ltd. It 
consists of 345 samples and 2 classes. 200 samples belong 
to the first class and 145 samples to the second.

Table 14 displays the obtained results with different num-
bers of RBFs. The best results were obtained with 10 RBFs. 
With up to 20 neurons, the accuracy decreased slightly.

Table 15 compares the obtained results with those of 
other works. These works include neural networks, MLP, 
PSO, Naïve Bayesian, decision trees, clustering. Our classi-
fier gave the best results. Concerning the number of hidden 

neurons, RBFNN-BBO [7] included less number, but our 
classifier outperformed it. Indeed, this classifier included 
10 hidden neurons and gave an average accuracy of 69.15%, 
while our classifier included 10 RBFs plus 7 added neurons 
and gave an average accuracy of 72.48%. We note that our 
accuracy is remarkably higher.

4.7  MIT‑BIH arrhythmia dataset (inter‑patient 
paradigm)

To evaluate the performance of the proposed classifier, we 
performed tests on the PhysioNet MIT-BIH Arrhythmia 
dataset [50]. This dataset involves ECG signals collected at 
a sampling rate of 360 Hz for 48 distinct patients.

In this study, the inter-patient paradigm was considered. 
The training and test sets are constructed from different 
patients in this paradigm. In this work, we adopt the pro-
tocol proposed by de Chazal et al. [51], which is widely 
adopted in the literature. The heartbeats from the MIT-BIH 
dataset (44 records according to AAMI) are divided into two 
sets of records according to this protocol: Dataset1 = 101, 
106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201, 
203, 205, 207, 208, 219, 212, 214, 219, 221, 222, 228, 231, 

Table 15  Comparison of the obtained results with previous works on BUPA-Liver disorder dataset

Bold values indicate the best results
CAPSO centripetal accelerated particle swarm optimization, RWNAFt random weight artificial neural network with trained activation function

Authors Methods Comparison criterion

Accuracy(%) Sensitivity (%) Specificity (%) # Hidden neurons Cross validation

Carlos J. Mantas [41] Credal C4.5 64.53 – – – [10-CV]
Zahra Beheshti [46] CAPSO-MLP 72.32 76.57 65.49 – 80%-20%
Ömer Faruk. E [31] RWNAFt 70.43 – – – [5-CV]
Ibrahim Aljarah [7] RBFNN-BBO 69.15 ± 4.3 43.20 88.24 10 67%-33%
Proposed RBFNN-ELM-GA 72.48 ± 1.02 82.68 ± 1.08 58.39 ± 2.15 10+(7.01 ± 0.48) [10-CV]

Table 16  Comparison of the obtained results with previous works on MIT-BIH arrhythmia dataset (inter-patient paradigm)

CNN convolutional neural network, SSAE stacked sparse autoencoders, SNN spiking neural network, LBP local binary pattern, HOS higher-order 
statistical, RVFLN random vector functional link network

Authors Methods Comparison criterion

Accuracy(%) Sensitivity (%) Specificity (%)

WANG Tao [52] CNN + RR-intervals + MLP 92.53 – –
WANG Haoren [53] CNN 93.4 – –
Siouda Roguia [54] SSAEs + MLPs 94.69 71 89.53
YAN Zhanglu [55] Raw heartbeat data + CNN + SNN 90 – –
Houssein Essam [56] RR, Wavelet, LBP, HOS, morphological features 

+ SVM
98.26 97.43 –

Siouda Roguia [57] SAE +RR-intervals + RBFNN + RVFLN 93.11 55.66 80.55
This study RBFNN+ELM+GA 93.86 68.15 99.21
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232, Dataset1 is used to train the classification systems and 
Dataset2 is used for testing. In this separation, there is no 
concern about including the heartbeats of the same patient 
in the training and test sets.

Table 16 compares the obtained results with other works 
applied to the same dataset, i.e., MIT-BIH arrhythmia. These 
works include a large variety of classification methods and 
feature extracting techniques.

From Table 16 , we notice that the performance of our 
classifier outperformed all these works, except two works. 
Although these works provided better results, our system is 
much simpler. The first work, Siouda et al. [54], uses deep-
stacked autoencoders and a system of multiple MLPs. The 
second work, Houssein et al. [56], uses a lot of features, i.e. 
RR intervals, wavelets, local binary patterns, higher-order 
statistics, and other morphological features.

5  Conclusion and future work

This paper introduced a neural classifier for medical diagno-
sis based on combining RBF and ELM neural networks. The 
aim is to make use of the advantages and the complementary 
properties of these two types of neural networks. The basic 
idea relies on using an RBFNN with minimal structure com-
plemented by an ELMNN that contains a diversity of hidden 
neurons. The optimization of the activation functions in the 
ELM is performed using a genetic algorithm.

The proposed system was first tested over a synthetic clas-
sification problem. We noted that the process of adding neurons, 
in the proposed classifier, permitted obtaining a set of comple-
mentary neurons despite their number and types. We also noted 
that it gave better results than RBFNN and ELMNN and that it 
required a smaller number of neurons. The proposed classifier 
was then tested on six medical datasets from the UCI machine-
learning repository and also MIT-BIH arrhythmia dataset. 
These datasets include a large variety of features. The proposed 
classifier was compared with some state-of-the-art methods in 
terms of accuracy and number of hidden neurons. The obtained 
results are promising as the proposed classifier provided either 
better results and/or a smaller number of hidden neurons in most 
comparisons.

The approach presented in this paper constitutes a gen-
eral methodology that consists in complementing a com-
pact RBFNN with an ELMNN that contains a diversity of 
activation functions. In this work, we used K-means and 
P-nearest neighbors’ methods for defining RBFs and used 
GA for optimizing the added neurons. Besides, we employed 
four types of activation functions. Therefore, to have better 
performances, other variants can be considered. This can be 
done by: (i) using other methods for defining the RBFs; (ii) 
considering other metaheuristics for optimizing the added 
neurons; (iii) using other types of activation functions.

As future work, we plan to further explore the idea of 
combining/complementing prior knowledge-based classifi-
ers, like RBF, with diverse activation functions based-neural 
networks. This would considerably reduce the execution 
time of the optimization process because it concerns only 
the added neurons. This could also permit an automatic set-
ting of compact models. In fact, deep neural networks are 
time-consuming, and our aim is to set shallow, or at least 
less deep, neural models. This way, the proposed models 
can be easily integrated in applications requiring fast, simple 
systems like remote health supervision, wireless body area 
networks, and medical wearable devices.

In addition, we think that interpretability can be 
enhanced by the proposed approach because the obtained 
model is essentially based on the prior knowledge based-
classifier. This way, we plan to introduce fully interpreta-
ble networks, like the model presented in [58], or networks 
that permit extracting knowledge in the form of fuzzy if 
then rules, like the models presented in [59, 60].
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