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Abstract
In this article, we prove new discrete Picone inequalities, associated to non local elliptic
operators as the fractional p−Laplace operator, denoted by (−�)sp u and defined as:

(−�)sp u(x) := 2P.V.
∫
RN

|u(x) − u(y)|p−2 (u(x) − u(y))

|x − y|N+ps
dy

where p > 1, 0 < s < 1 and P.V. denotes the Cauchy principal value. These results lead to
new applications as existence, non-existence and uniqueness of weak positive solutions to
problems involving fractional and non homogeneous operators as (−�)

s1
p + (−�)

s2
q , where

s1, s2 ∈ (0, 1) and 1 < q, p < ∞. For this class of operators, we further obtain comparison
principles, a Sturmian comparison principle and aHardy-type inequalitywithweight. Finally,
we also establish some qualitative results for nonlinear and non local elliptic systems with
sub-homogeneous growth.
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1 Introduction

In 1910, Mauro Picone presented in the original paper [28] the following equality:

∇u∇
(

v2

u

)
− |∇v|2 = −

∣∣∣∇v − ∇u
(v

u

)∣∣∣2 (1.1)

whereu, v ≥ 0 are differentiable functions,withu > 0.This versionwas used to prove a com-
parison principle for ordinary differential equations of Sturm-Liouville type. In [2], authors
extend the result to the nonlinear p−Laplace operator, defined as �pu = div(|∇u|p−2 ∇u),

with p > 1 as:

|∇u|p−2 ∇u∇
(

v p

u p−1

)
≤ |∇v|p . (1.2)

More recently, non-homogeneous Picone inequalities of (1.2), were established. The first
contribution is obtained in [11,Proposition 2.9] and states as:

|∇u|p−2 ∇u∇
(

vq

uq−1

)
≤ |∇v|q |∇u|p−q

and a second form of identity is given in [24,Lemma 1] as follows:

|∇u|q−2 ∇u∇
(

v p

u p−1

)
≤ |∇v|q−2 ∇v∇

(
v p−q+1

u p−q

)
(1.3)

where u, v are nonnegative differentiable functions, with u > 0 and 1 < q ≤ p. We also
quote [8]where the inequality (1.3) is establishedwhen p < q, leading to several applications
for problems involving (p, q)−Laplace operators.

Tyagi [31] proved a more involved nonlinear Picone inequality analogue of (1.1), in
connection to the Laplace operator, as follows:

∇u∇
(

v2

f (u)

)
≤ α |∇v|2

for differentiable functions u and v, with u �= 0 and where f (y) �= 0 when y �= 0 together
with f ′(y) ≥ 1

α
for some α > 0. In [7], the author provides an extension of Tyagi’s result to

the p−Laplace operator (with α = 1): For u and v differentiable functions such that u > 0
and v ≥ 0, one has

|∇u|p−2 ∇u∇
(

v p

f (u)

)
≤ |∇v|p

where 0 < y, f (y) > 0 and f ′(y) ≥ (p − 1) f (y)
p−2
p−1 with p > 1. Furthermore, Feng and

Yu in [17] obtained analogue results to the pseudo p−Laplace operator, defined as:

N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u

∂xi

∣∣∣∣
p−2

∂u

∂xi

)
, with p > 1.

Picone’s inequalities are often used to prove several qualitative properties of differential
equations. For instance, these inequalities arise to obtain the uniqueness and non-existence
of positive solutions of partial differential equations and systems of both linear and nonlinear
nature, as well as Hardy type inequalities, bounds on eigenvalues, Morse index estimates,
Liouville’sTheoremandSturmian comparisonprinciple, see e.g. [9, 11, 30] and the references
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therein. In the context of problems with non standard growth, we refer to [1, 6] and [33] for
suitable forms of Picone identity. In case of high order elliptic operators, we further refer
the readers to [15] and [16]. More recently, the paper [32] investigates Picone’s identities
for p−Laplace operator and biharmonic operators on hyperbolic space. They use this result
to prove the existence of the principal eigenvalue, and obtain a Hardy-type inequality on
hyperbolic space. From Picone inequalities, onemay derive useful Díaz-Saa type inequalities
from which comparison principles, accretivity of nonlinear operators can be established. In
this direction, we refer the seminal works [12] and [13] (concerning case p = 2 and general
case 1 < p < ∞ respectively).

The study of nonlocal elliptic operators have found great interest in the recent time, in
connection with problems showing analomous diffusion and transport aspects.

This naturally rises to the following question:

Question: Can we extend in the nonlocal setting similar type Picone inequalities?

In this regard [5] proved the following Picone inequality:

|u(x) − u(y)|p−2 (u(x) − u(y))

[
v(x)p

u(x)p−1 − v(y)p

u(y)p−1

]
≤ |v(x) − v(y)|p . (1.4)

Brasco and Franzina [11,Proposition 4.2] extended this result, as follows:

|u(x) − u(y)|p−2 (u(x) − u(y))

[
v(x)q

u(x)q−1 − v(y)q

u(y)q−1

]
≤|v(x) − v(y)|q |u(x) − u(y)|p−q

where 1 < p < ∞, 1 < q ≤ p and u, v two Lebesgue measurable functions, where v ≥ 0,
u > 0. Among the others, these inequalities were applied to obtain a weak comparison prin-
ciple, barrier estimates and uniqueness of the stationary positive weak solution of parabolic
problems (see [19] for instance).

Nonhomogeneous (p, q)−Laplace problems have many physical interpretations. We can
refer for example the study of general reaction-diffusion equations, biophysics, plasma
physics and chemical reactions, with double phase features (see [20, 25] and the references
cited therein for further details). Consequently, this kind of nonhomogeneous operators have
attracted more and more attention and we can quote the contributions [8, 29] and the refer-
ences therein in connection with Picone identities. In particular, in [8], authors use Picone
inequalities (1.2) and (1.3) to obtain the non-existence of positive weak solutions to the
following problem:

{
−�pu − �qu = f (x, u) in �,

u = 0 on ∂�

where 1 < q < p with � ⊂ R
N is an open smooth bounded domain and f : � × R → R

satisfies suitable growth conditions. In case where

f (x, u) = λ1(p) |u|p−2 u + λ |u|q−2 u

with λ1(p) denoting the first eigenvalue of the Dirichlet p−Laplace in �, they also discuss
the existence and non-existence of positive weak solutions, for some range of λ > 0.

The nonlocal and non-homogeneous counterpart problems involving (−�)
s1
p +(−�)

s2
q , for

s1, s2 ∈ (0, 1) and 1 < q, p < ∞ have been recently investigated (see, for instance [3, 4] and
the references cited therein, when the domain is RN ). Concerning more specifically the case
of bounded domains, we refer to [22] and [27]. In [22], authors establish L∞ estimates and
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the interior Hölder regularity of the weak solutions to following nonlinear doubly nonlocal
equation:{

(−�)s1p u + β(−�)s2q u = λa(x) |u|δ−2 u + b(x) |u|r−2 u in �,

u = 0 on R
N \ �

where 1 < δ ≤ 2 ≤ q ≤ p < r ≤ p∗
s1 , 0 < s2 < s1 < 1, N > ps1 and λ, β are nonnegative

parameters, a ∈ L
r

r−δ (�) and b ∈ L∞(�) are sign changing functions. Following Brasco et
al. [10] approach and using barrier estimates, [20] established interior and boundary regularity
results in the superquadratic case (i.e. q ≥ 2) complementing those in [22]. They also proved
a Hopf type maximum principle and a strong comparison principle. Recently, [21] expands
the global regularity results to the subquadratic case (i.e. q < 2).

The aim of this paper is first to establish new versions of Picone identities to include
a large class of fractional and nonhomogeneous operators. Then, we give formal applica-
tions as existence, non-existence and uniqueness of a weak positive solutions to fractional
(p, q)−Laplacian problems. Also using these inequalities, we obtain comparison principles
for some nonlocal and nonhomogeneous equations involving (−�)

s1
p + (−�)

s2
q operators,

a Sturmian Comparison principle to fractional p−Laplace equations, as well as a Hardy
type inequality with weight and some qualitative results to nonlinear elliptic systems with
sub-homogeneous growth.

2 Preliminaries andmain results

2.1 Notation and function spaces

We recall some notations which will be used throughout the paper. Let us take 0 < s < 1,
p > 1 and � ⊂ R

N , with N ≥ sp an open bounded domain with boundary of class C1,1.

First, for the reader’s convenience, we denote [a − b]p−1 := |a − b|p−2 (a − b).
The Banach norm in the space Lp(�) is denoted by:

‖u‖Lp(�) :=
(∫

�

|u|pdx
) 1

p

.

We recall that the fractional Sobolev space Ws,p(RN ) is defined as follows:

Ws,p(RN ) :=
{
u ∈ Lp(RN ),

∫
RN

∫
RN

|u(x) − u(y)|p
|x − y|N+sp

dxdy < ∞
}

endowed with the Banach norm:

‖u‖Ws,p(RN ) :=
(

‖u‖p
Lp(RN )

+
∫
RN

∫
RN

|u(x) − u(y)|p
|x − y|N+sp

dxdy

) 1
p

.

The space Ws,p
0 (�) is set of the functions defined as:

Ws,p
0 (�) :=

{
u ∈ Ws,p

(
R

N
) ∣∣∣ u = 0 a.e. in R

N \ �
}

and the Banach norm in the space Ws,p
0 (�) is the Gagliardo semi-norm:

‖u‖Ws,p
0 (�) :=

(∫
RN

∫
RN

|u(x) − u(y)|p
|x − y|N+sp

dxdy

) 1
p

.
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We recall that by the fractional Poincaré inequality (e.g., in [14,Theorem 6.5]), there exists
a positive constant c > 0, such that

c−1‖u‖Ws,p(RN ) ≤ ‖u‖Ws,p
0 (�) ≤ c‖u‖Ws,p(RN )

for all u ∈ Ws,p
0 (�). We recall that Ws,p

0 (�) is continuously embedded in Lr (�) when

1 ≤ r ≤ p∗
s and compactly for 1 ≤ r < p∗

s , where p∗
s := Np

N−sp (see [14,Theorem 6.5] for
further details).

Moreover, we denote by d(x) the distance from a point x ∈ �̄ to the boundary ∂�,where
�̄ = � ∪ ∂� is the closure of �, i.e.

d(x) := dist(x, ∂�) = inf
y∈∂�

|x − y|.

Setting α ∈ (0, 1] , we consider the Hölder space:

C0,α(�) :=
{
u ∈ C(�), sup

x,y∈�, x �=y

|u(x) − u(y)|
|x − y|α < ∞

}

endowed with the Banach norm

‖u‖C0,α(�) = ‖u‖L∞(�) + sup
x,y∈�,x �=y

|u(x) − u(y)|
|x − y|α .

For 1 < r < ∞ and agiven functionmr ∈ L1(�),φ1,s,r (mr )denotes the positive normalized
eigenfunction (

∥∥φ1,s,r (mr )
∥∥
L∞(�)

= 1) of (−�)sr with weight mr in Ws,r
0 (�) associated to

the first eigenvalue λ1,s,r (mr ). We recall that φ1,s,r (mr ) ∈ C0,α(�), for some α ∈ (0, s]
(see [23,Theorem 1.1]).

We define for 1 < q ≤ p:

β∗
mp

:=
||φ1,s,q ||pWs,p

0 (�)

‖m
1
p
p φ1,s,q‖p

L p(�)

.

By definition of λ1,s,p(mp), we have that β∗
mp

≥ λ1,s,p(mp).

We recall the embedding of Ws1,p
0 (�) in Ws2,q

0 (�) for suitable powers and orders, in the
following Lemma (see [22,Lemma 2.1] for the proof):

Lemma 2.1 Let 1 < q ≤ p < ∞ and 0 < s2 < s1 < 1, then there exists a constant
C = C(|�| , N , p, q, s1, s2) > 0 such that

‖u‖Ws2,q
0 (�)

≤ C ‖u‖Ws1,p
0 (�)

for all u ∈ Ws1,p
0 (�).

Remark 2.2 The embedding in Lemma 2.1 when s1 = s2, with p �= q does not hold, see
[26,Theorem 1.1] for the counterexample. We then use the framework W := Ws1,p

0 (�), in
the case 0 < s2 < s1 < 1, and if s = s1 = s2, we setW := Ws,p

0 (�) ∩ Ws,q
0 (�), equipped

with the Cartesian norm ‖·‖W := ‖·‖Ws,p
0 (�) + ‖·‖Ws,q

0 (�) .
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2.2 Statements of main results

We first extend the Picone inequality (1.3) to the discrete case:

Theorem 2.3 Let 1 < p < ∞ and 1 < q ≤ p. Let u, v be two Lebesgue-measurable
functions in �, with v ≥ 0 and u > 0, then

[u(x) − u(y)]q−1
[

v(x)p

u(x)p−1 − v(y)p

u(y)p−1

]
≤ [v(x) − v(y)]q−1

[
v(x)p−q+1

u(x)p−q − v(y)p−q+1

u(y)p−q

]
.

(2.1)

Moreover, the equality in (2.1) holds in � if and only if u = kv, for some constant k > 0.

The next main result in the present paper is the following nonlinear discrete version of Picone
inequality:

Theorem 2.4 Let 1 < p < ∞ and 1 < q ≤ p. Let u, v be two nonnegative Lebesgue-
measurable functions such that u > 0 in � and non-constant. Also assume that f satisfies
the following hypothesis:

(f0) f : R+ → R
+ is a continuous function and positive on R+\ {0} .

(f1) f (s) ≥ sq−1, for all s ∈ R
+.

(f2) The function s �−→ f (s)

sq−1 is non-decreasing in R
+\ {0} .

Then

[u(x) − u(y)]p−1
[

v(x)q

f (u(x))
− v(y)q

f (u(y))

]
≤ |v(x) − v(y)|q |u(x) − u(y)|p−q . (2.2)

Moreover, the equality in (2.2) holds if and only if vq = k u f (u), for some constant k > 0.

Example 2.5 An example of function f satisfying (f0)-(f2) is: f (s) = αs p−1 + βsq−1, with
α ≥ 0 and β ≥ 1.

Remark 2.6 Taking f (s) = αs p−1 + βsq−1, with α ≥ 1 and β ≥ 1 in Theorem 2.4 and

observing v p = (v
p
q )q , we obtain:

[u(x) − u(y)]p−1
[

v(x)p

αu(x)p−1 + βu(x)q−1 − v(y)p

αu(y)p−1 + βu(y)q−1

]
≤ |v(x) − v(y)|p

and

[u(x) − u(y)]q−1
[

v(x)p

αu(x)p−1 + βu(x)q−1 − v(y)p

αu(y)p−1 + βu(y)q−1

]
≤

∣∣∣v p
q (x) − v

p
q (y)

∣∣∣q .

Then, we get the following discrete Picone’s inequality which can be used for problems
involving fractional (p, q)−Laplace with nonhomogeneous nonlinearities:

(
[u(x) − u(y)]p−1 + [u(x) − u(y)]q−1) [ v(x)p

αu(x)p−1 + βu(x)q−1 − v(y)p

αu(y)p−1 + βu(y)q−1

]

≤ |v(x) − v(y)|p +
∣∣∣v p

q (x) − v
p
q (y)

∣∣∣q .

The following corollary is a consequence of Theorem 2.4:
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Corollary 2.7 Let 0 < s < 1, 1 < p < ∞ and 1 < q ≤ p. Assume that f satisfies (f0)-(f2).
Then for any u, v two non-constant measurable and positive functions in �, the following
inequality:

[u(x) − u(y)]p−1
(
u(x) f (u(x)) − v(x)q

f (u(x))
− u(y) f (u(y)) − v(y)q

f (u(y))

)

+ [v(x) − v(y)]p−1
(

v(x) f (v(x)) − u(x)q

f (v(x))
− v(y) f (v(y)) − u(y)q

f (v(y))

)
≥ 0 (2.3)

holds for a.e. x, y ∈ �. Furthermore, if the equality occurs in (2.3), then there exist positive

constants k1, k2 such that vq = k1u f (u), uq = k2v f (v) and q
√
k2v ≤ u ≤ 1

q
√
k1

v a.e. in �.

Now, we give a series of applications of above discrete Picone’s identities:
Application 1. We consider the following nonlinear problem involving fractional (p, q)−

Laplace operator:

(−�)s1p u + (−�)s2q u = g(x, u), u > 0 in�; u = 0, inRN \ �; (P1)

where 0 < s2 ≤ s1 < 1 and 1 < q ≤ p < ∞.

• First, we assume the following hypothesis on the function g:

(H1) g : � × R
+ → R

+ is a nonnegative continuous function, such that g(x, 0) ≡ 0 and
g is positive on � × R

+\{0}.
(H2) For a.e. x ∈ �, s �→ g(x,s)

sq−1 is non increasing in R+\{0}.
(H3) lims→0+ g(x,s)

sq−1 = ∞ uniformly in x ∈ �.

Example 2.8 A prototype example of the function g satisfying (H1)-(H3) is g(x, s) =
h(x) sr−1, with r < q and h ∈ C(�) a positive function.

We define the notion of weak solution to problem (P1) as follows:

Definition 2.9 A nonnegative function u ∈ W ∩ L∞(�) is called a weak solution to (P1) if,
for any ϕ ∈ W we have:

∫
RN

∫
RN

[u(x) − u(y)]p−1 (ϕ(x) − ϕ(y))

|x − y|N+s1 p
dxdy

+
∫
RN

∫
RN

[u(x) − u(y)]q−1 (ϕ(x) − ϕ(y))

|x − y|N+s2q
dxdy

=
∫

�

g(x, u)ϕdx . (2.4)

In addition if u satisfies u > 0 in �, we call u positive weak solution.

The result regarding the existence and uniqueness of the weak solution to (P1) states as
follows:

Theorem 2.10 Assume that g satisfies (H1)-(H3). Then, there exists a unique nontrivial
weak solution u to (P1). In addition, u ∈ C0,α(�), for some α ∈ (0, s1) and for any
σ ∈ (0, s1) and σ ′ > s1, there exists a positive constant c = c(σ, σ ′) > 0, such that
c−1dσ ′ ≤ u ≤ c dσ in�.

123
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• Next, we investigate (P1) in case of asymptotically homogeneous growth, i.e.

g(x, u) = λ a(x)u p−1 + λ1,s2,q(b)b(x)u
q−1

witha, b ∈ (L∞(�))+\{0} andλ is a positive real number. For this class of nonlinearities,
the following theorem states both nonexistence and existence results to (P1).

Theorem 2.11 Let 0 < s2 ≤ s1 < 1 and 1 < q ≤ p < ∞. Then, we have:

(1) If λ < λ1,s1,p(a), then (P1) has no nontrivial weak solution. Furthermore, if

φ1,s1,p(a) �= c φ1,s2,q(b) (2.5)

for every c > 0, then (P1), withλ = λ1,s1,p(a) has no nontrivial weak solution. Assuming
that s1(p − q) < s2 p + 1 and λ > β∗

a , then (P1) has no positive weak solution.
(2) If λ1,s1,p(a) < λ ≤ β∗

a holds, then there exists a positive weak solution u ∈ L∞(�)

to (P1). Moreover, any non trivial weak solution u to (P1) belong to C0,α(�), for some
α ∈ (0, s1) and for all σ ∈ (0, s1) and σ ′ > s1, there exists a positive constant c =
c(σ, σ ′) > 0, such that c−1dσ ′ ≤ u ≤ c dσ in�.

In frame of (P1), we finally give a weak comparison principle for positive weak solutions to
(P1) with the auxiliary function:

g(x, u) = h(x)uq−1

with 1 < q < p and h ∈ L∞(�) a nonnegative function. Precisely, we have

Theorem 2.12 Let u1, u2 ∈ W be positive weak solutions of (P1), with h1, h2 in L∞(�),

respectively, verifying 0 ≤ h1 ≤ h2 a.e. in �. Then, u1 ≤ u2 a.e. in �.

Application 2. In the following result, we give an extension of the Sturmian comparison
principle in the context of fractional p−Laplacian operators:

Proposition 2.13 Let a1, a2 be two continuous functions with a1 < a2. Let f , a Lipschitz
function, satisfies (f0)-(f2). Suppose in addition that u ∈ Ws,p

0 (�) verifies

(−�)spu = a1(x)u
p−1, u > 0 in�; u = 0, inRN \ �;

where 0 < s < 1 and 1 < p < ∞. Then any nontrivial weak solution of the problem:

(−�)spv = a2(x) f (v), in �; v = 0, inRN \ �; (2.6)

must vanish in �.

Application 3. The following result establishes a nonlocal and weighted Hardy inequality,
expanding in the nonlocal setting results in [11] and [18].

Lemma 2.14 Let f , a Lipschitz function, satisfying (f0)-(f2). Assume that v ∈ C0,s(�) veri-
fies

(−�)spv ≥ λg f (v) in �, v > 0 in �

where 0 < s < 1, 1 < p < ∞, λ > 0 and g is nonnegative and continuous. Then for any
u ∈ (

Ws,p
0 (�)

)+
, we have

λ

∫
�

g |u|p dx ≤
∫
RN

∫
RN

|u(x) − u(y)|p
|x − y|N+sp

dxdy. (2.7)

123
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Application 4. Finally, we deal with nonlinear fractional elliptic systems:

Theorem 2.15 Assume that f a Lipschitz function, satisfies (f0)-(f2). Let (u, v) be a weak
solution to the following nonlinear system:⎧⎪⎨

⎪⎩
(−�)sp u = f (v), u > 0 in�; u = 0, in R

N \ �;

(−�)sp v = ( f (v))2

u p−1 , v > 0 in�; v = 0, in R
N \ �,

(2.8)

with 0 < s < 1 and 1 < p < ∞. Then, there exists a constant k > 0 such that v p = k u f (u).

This paper is organized as follows. In Sect. 3, we give the proofs of new Picone inequalities
stated in Theorems 2.3, 2.4 and Corollary 2.7. Finally, Sect. 4 is devoted to the proof of
results stated above as applications of the Picone identities.

3 Proof of main results

We begin this section with the proof of Theorem 2.3. To this aim, we need the following
technical Lemma:

Lemma 3.1 Let 1 < p < ∞ and 1 < q ≤ p. Then for all 0 ≤ t ≤ 1 and A ∈ R
+, we have:

(1 − t)q−1(Ap − t) ≤ |A − t |q−2 (A − t)(Ap−q+1 − t). (3.1)

Moreover, (3.1) is always strict unless A = 1 or t = 0.

Proof Since the case p = q is covered by [18,Lemma 2.6], we assume that 1 < q < p.
First, for t = 0, 3.1 is obviously satisfied. Let us assume t > 0.

• Let us start with the case Ap < t, this implies that A < 1. We distinguish three cases:

(1) Suppose that Ap−q+1 ≥ t, we obtain A > Ap−q+1 ≥ t > Ap, then (3.1) follows
from

Ap − t < 0 and (A − t)(Ap−q+1 − t) ≥ 0.

(2) If t ≥ A > Ap−q+1, then t ≥ A > Ap−q+1 > Ap. Hence, (3.1) again follows.

(3) Finally, if A > t > Ap−q+1,we observe that (1− t)q−1 ≥ (A− t)q−1 and Ap − t <

Ap−q+1− t < 0. Then, bymultiplying the previous two inequalities, we obtain (3.1).

• We now assume Ap > t (note that if Ap = t, (3.1) is obvious). Since t ≤ 1, this implies
that A > t . We then define g as below:

g(A) = (A − t)q−1(Ap−q+1 − t)

Ap − t
.

After straightforward computations, the derivative of g with respect to A, denoted by
g′(A), verifies

g′(A) = (q − 1)(A − t)q−2
[
(Ap−q+1 − t)(Ap − t) − (A − t)(A2p−q − t Ap−q )

] + pt(A − t)q−1(Ap−1 − Ap−q )

(Ap − t)2

= t (q − 1)(A − t)q−2
[
Ap−q (Ap − Aq − t) + t

] + p t(A − t)q−1(Ap−1 − Ap−q )

(Ap − t)2

=
t (A − t)q−2

[
(q − 1)

(
Ap − t

Aq

)
(Ap − Aq ) + p (A − t)

(
Ap−1 − Ap−q

)]

(Ap − t)2
.
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Now, we note that g′(A) is positive if A > 1 whereas it is negative if 0 < A < 1. Noting
g′(1) = 0, we get that A = 1 is a global minimum point of the function g. Then

g(A) ≥ g(1)

for all A > t
1
p . The proof is now complete. ��

From Lemma 3.1, we deduce the proof of Theorem 2.3:

Proof of Theorem 2.3 First, note that if p = q, then (2.1) is obviously satisfied from (1.4).
Therefore, since the inequality (2.1) is invariant under the permutation (x, y) → (y, x), we
can suppose in the sequel that u(x) ≥ u(y) together with p > q.

Now, the left-hand side expression of (2.1) can be rephrased as:

|u(x) − u(y)|q−2 (u(x) − u(y))

[
v(x)p

u(x)p−1 − v(y)p

u(y)p−1

]

= u(x)q
(

v(y)

u(y)

)p
[(

1 − u(y)

u(x)

)q−1 ((
v(x)u(y)

v(y)u(x)

)p

− u(y)

u(x)

)]

and the right-hand side

|v(x) − v(y)|q−2 (v(x) − v(y))

[
v(x)p−q+1

u(x)p−q
− v(y)p−q+1

u(y)p−q

]

= u(x)q
(

v(y)

u(y)

)p ∣∣∣∣
(

v(x)u(y)

v(y)u(x)

)
− u(y)

u(x)

∣∣∣∣
q−2 ((

v(x)u(y)

v(y)u(x)

)
− u(y)

u(x)

)

((
v(x)u(y)

v(y)u(x)

)p−q+1

− u(y)

u(x)

)
.

Setting A = v(x) u(y)

v(y) u(x)
, t = u(y)

u(x)
, and applying Lemma 3.1, we obtain the desired conclu-

sion.
On the other hand, since t �= 0, we remark that the equality in (2.1) holds if and only

A = 1, i.e.

u(x)

v(x)
= u(y)

v(y)

from which we get u = kv a.e. in � for some k > 0. ��

Proof of Theorem 2.4 First, observe that if u(x) = u(y), then (2.2) is obviously satisfied. So,
since u is non-constant, we may consider u(x) �= u(y). In this case, we note that (2.2) is
equivalent to the following inequality:

|u(x) − u(y)|q−2 (u(x) − u(y))

[
v(x)q

f (u(x))
− v(y)q

f (u(y))

]
≤ |v(x) − v(y)|q . (3.2)

Since the inequality (3.2) is invariant under the permutation (x, y) → (y, x), without loss of
generality we can assume that u(x) > u(y). Now, the left-hand side expression of (3.2) can
be rephrased as:
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|u(x) − u(y)|q−2 (u(x) − u(y))

[
v(x)q

f (u(x))
− v(y)q

f (u(y))

]

= u(x)q−1
(
1 − u(y)

u(x)

)q−1 [
v(x)q

f (u(x))
− v(y)q

f (u(y))

]

= v(x)qu(x)q−1

f (u(x))

(
1 − u(y)

u(x)

)q−1

− v(y)qu(y)q−1

f (u(y))

(
u(x)

u(y)
− 1

)q−1

.

Setting t = u(y)
u(x) , the previous statement shows that (3.2) holds if the following inequality is

proved:

v(x)qu(x)q−1

f (u(x))
≤ (1 − t)

( |v(x) − v(y)|q
(1 − t)q

)
+ t

(
v(y)qu(y)q−1

tq f (u(y))

)
. (3.3)

From (f1) and (f2), we obtain

(
u(x)q−1

f (u(x))

) 1
q

v(x) −
(
u(y)q−1

f (u(y))

) 1
q

v(y) ≤
(
u(y)q−1

f (u(y))

) 1
q

(v(x) − v(y)) ≤ |v(x) − v(y)| .

Then, thanks to the convexity of τ �−→ τ q on R+, we get (3.3) and then (2.2).
If u(x) = u(y) then the equality holds. Since u is non-constant, we may assume u(x) >

u(y). Now, if the equality holds, again since the function τ �−→ τ q is strictly convex on R+
and arguing as above, we infer that

|v(x) − v(y)|
1 − t

=
(
u(y)q−1

f (u(y))

) 1
q v(y)

t
.

Plugging this relation in (3.3), we deduce that

v(y)qu(y)q−1

f (u(y))
= tq

v(x)qu(x)q−1

f (u(x))
.

Then, after straightforward computations, the second statement of the Theorem holds. ��
Proof of Corollary 2.7 From Theorem 2.4, we have

[u(x) − u(y)]p−1
[

v(x)q

f (u(x))
− v(y)q

f (u(y))

]
≤ |v(x) − v(y)|q |u(x) − u(y)|p−q . (3.4)

By reversing the role of u and v, we get

[v(x) − v(y)]p−1
[

u(x)q

f (v(x))
− u(y)q

f (v(y))

]
≤ |u(x) − u(y)|q |v(x) − v(y)|p−q . (3.5)

Assume first q = p. From (3.4) and (3.5), we then obtain

[u(x) − u(y)]p−1
(
u(x) f (u(x)) − v(x)p

f (u(x))
− u(y) f (u(y)) − v(y)p

f (u(y))

)

≥ |u(x) − u(y)|p − |v(x) − v(y)|p (3.6)

and

[v(x) − v(y)]p−1
(

v(x) f (v(x)) − u(x)p

f (v(x))
− v(y) f (v(y)) − u(y)p

f (v(y))

)

≥ |v(x) − v(y)|p − |u(x) − u(y)|p . (3.7)
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Combining (3.6) and (3.7), we get

[u(x) − u(y)]p−1
(
u(x) f (u(x)) − v(x)p

f (u(x))
− u(y) f (u(y)) − v(y)p

f (u(y))

)

+ [v(x) − v(y)]p−1
(

v(x) f (v(x)) − u(x)p

f (v(x))
− v(y) f (v(y)) − u(y)p

f (v(y))

)
≥ 0.

We finally deal with the case 1 < q < p. By Young’s inequality, (3.4) and (3.5) imply

[u(x) − u(y)]p−1
[

v(x)q

f (u(x))
− v(y)q

f (u(y))

]
≤ q

p
|v(x) − v(y)|p + p − q

p
|u(x) − u(y)|p

(3.8)

and reversing the role of u and v

[v(x) − v(y)]p−1
[

u(x)q

f (v(x))
− u(y)q

f (v(y))

]
≤ q

p
|u(x) − u(y)|p + p − q

p
|v(x) − v(y)|p .

(3.9)

Adding (3.8) and (3.9), (2.3) follows. Now, let us assume that the equality in (2.3) holds. By
Theorem 2.4, we deduce that

vq = k1u f (u) and uq = k2v f (v)

for some constant k1, k2 > 0. From (f1), we finally get that k2vq ≤ uq ≤ k−1
1 vq a.e. in �. ��

4 Applications

In this section, we prove some applications to the Picone identities proved above. First, from
[20] and [21] we have the following important remark about regularity of weak solutions to
fractional non-homogeneous equations that we will use several times in the sequel:

Remark 4.1 Let u0 ∈ W be a nontrivial weak solution to (P1). Then, from [20,Theorem
3.5], we obtain u0 ∈ L∞(�). Moreover, Theorem 2.3 in [20], Corollary 2.5 and Remark 2.6
in [21] provide the C0,α(�)-regularity of u0, for some α ∈ (0, s1) . By [21,Theorem 2.3],
we infer that u0 > 0 in �. Finally, by the Hopf’s Lemma [20,Proposition 2.6] implies that
u0 ≥ k ds1+ε(x) for some k = k(ε) > 0 and for any ε > 0. Again by using [20,Proposition
3.11], we get that, for all σ ∈ (0, s1) there exists a constant K = K (σ ) > 0 such that
u0 ≤ K dσ (x) in �.

Proof of Theorem 2.10 Consider the energy functional J corresponding to (P1), defined on
W by:

J (u) = 1

p

∫
RN

∫
RN

|u(x) − u(y)|p
|x − y|N+s1 p

dxdy + 1

q

∫
RN

∫
RN

|u(x) − u(y)|q
|x − y|N+s2q

dxdy −
∫

�

G(x, u)dx

where

G(x, t) =
⎧⎨
⎩
∫ t

0
g(x, s)ds if 0 ≤ t < +∞,

0 if − ∞ < t < 0.

We extend accordingly g to whole � × R by setting:

g(x, t) = ∂G

∂t
(x, t) = 0 for (x, t) ∈ � × (−∞, 0).
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It is easy to see thatJ is well-defined onW.Furthermore,J is weakly lower semi-continuous
onW. Indeed, from (H1) and (H2), there existsC1,C2 > 0 such that for any (x, s) ∈ �×R

+:

0 ≤ G(x, s) ≤ C1 s + C2 s
q . (4.1)

Additionally,W is continuously embedded inWs1,p
0 (�),Ws2,q

0 (�) and compactly embedded
in Lq(�). J is also coercive on W. Indeed, for u ∈ W, using (4.1), the Hölder inequality
and the Sobolev embedding, we obtain

J (u) ≥ ‖u‖q
W

s1,p
0 (�)

[
1

p
‖u‖p−q

W
s1,p
0 (�)

− C1 ‖u‖1−q
Ws1,p(�)

− C2

]

where constants C1,C2 are independent of u. Thus, we conclude that J (u) → +∞ as
‖u‖W → +∞. Then, from above properties J admits a global minimizer, denoted by u0.

On the other hand, we have:

J (u0) =J (u+
0 ) + 1

p

∫
RN

∫
RN

∣∣(u−
0 )(x) − (u−

0 )(y)
∣∣p

|x − y|N+s1 p
dxdy

+ 1

q

∫
RN

∫
RN

∣∣(u−
0 )(x) − (u−

0 )(y)
∣∣q

|x − y|N+s2q
dxdy

+ 2

p

∫
RN

∫
RN

∣∣(u+
0 )(x) − (u−

0 )(y)
∣∣p

|x − y|N+s1 p
dxdy

+ 2

q

∫
RN

∫
RN

∣∣(u+
0 )(x) − (u−

0 )(y)
∣∣q

|x − y|N+s2q
dxdy ≥ J (u+

0 ).

Therefore, without loss of generality, we can assume u0 ≥ 0. Now, in order to verify that
u0 �≡ 0 in �, we look for a suitable function u ∈ W such that J (u) < 0 = J (0). To this
aim, (H3) implies for a given M > 0, there is a constant sM ∈ (0,∞) small enough, such
that

g(x, s) ≥ M sq−1 holds for all (x, s) ∈ � × (0, sM ) . (4.2)

Consider φ ∈ C1
c (�) an arbitrary nonnegative and nontrivial function. Then, by (4.2) and for

t ∈ (0, 1] small enough, we obtain:

J (tφ) ≤ tq
[
1

p
‖φ‖p

W
s1,p
0 (�)

+ 1

q
‖φ‖q

W
s2,q
0 (�)

− M ‖φ‖qLq (�)

]
.

Choosing M > 0 large enough, we obtain J (tφ) < 0. Thus, u0 �≡ 0. From the Gateaux
differentiability of J , we have that u0 satisfies (2.4) i.e. u0 is a weak solution to (P1).

From Remark 4.1, we infer that u0 ∈ C0,α(�), for some α ∈ (0, s1) and for any ε0 > 0
there exists a constant K = K (ε0) > 0 such that K−1ds1+ε0 ≤ u0 ≤ Kds1−ε0 in �. Let us
show the uniqueness of the positive weak solution. Let v ∈ W be a weak positive solution
of (P1). Now, let ε > 0, uε = u0 + ε, vε = v + ε and set

� = uqε − v
q
ε

uq−1
ε

and � = v
q
ε − uqε

v
q−1
ε

.
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It is easy to see that � and � belong to W. Then, we have:
∫
RN

∫
RN

[u0(x) − u0(y)]p−1 (�(x) − �(y))

|x − y|N+s1 p
dxdy

+
∫
RN

∫
RN

[u0(x) − u0(y)]q−1 (�(x) − �(y))

|x − y|N+s2q
dxdy

=
∫

�

g(x, u0)�dx

and ∫
RN

∫
RN

[v(x) − v(y)]p−1 (�(x) − �(y))

|x − y|N+s1 p
dxdy

+
∫
RN

∫
RN

[v(x) − v(y)]q−1 (�(x) − �(y))

|x − y|N+s2q
dxdy

=
∫

�

g(x, v)�dx .

Then adding the above expressions and from Corollary 2.7, we deduce

0 ≤
∫
RN

∫
RN

[uε(x) − uε(y)]p−1 (�(x) − �(y))

|x − y|N+s1 p
dxdy

+
∫
RN

∫
RN

[uε(x) − uε(y)]q−1 (�(x) − �(y))

|x − y|N+s2q
dxdy

+
∫
RN

∫
RN

[vε(x) − vε(y)]p−1 (�(x) − �(y))

|x − y|N+s1 p
dxdy

+
∫
RN

∫
RN

[vε(x) − vε(y)]q−1 (�(x) − �(y))

|x − y|N+s2q
dxdy

=
∫

�

(
g(x, v)

v
q−1
ε

− g(x, u0)

uq−1
ε

)
(vqε − uqε )dx . (4.3)

In order to pass to the limit in the right-hand side of (4.3), we use u0, v ∈ L∞(�) and
g(x, u0), g(x, v) ∈ L∞(�). Therefore, according to boundary behaviour of u0 and v (given
by Remark 4.1), we have(

uε

vε

)q

≤ 2q−1
[(u0

v

)q + 1
]

∈ L1(�).

Indeed, from the Hölder inequality and the fractional Hardy inequality [11,Theorem 6.3], we
obtain:

∫
�

(u0
v

)q
dx ≤ C

∫
�

(
u0

ds1+ε0(x)

)q

dx ≤ C

(∫
�

1

d
pq
p−q ε0(x)

) p−q
p

(∫
�

u p
0

ds1 p(x)
dx

) q
p

≤ C

(∫
�

1

d
pq
p−q ε0(x)

) p−q
p (∫

RN

∫
RN

|u0(x) − u0(y)|p
|x − y|N+s1 p

dxdy

) q
p

< ∞

for ε0 small enough and C = C(ε0) > 0. Similarly, we have for ε0 small enough(
vε

uε

)q

≤ 2q−1
[(

v

u0

)q

+ 1

]
∈ L1(�).
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Finally, passing to the limit as ε → 0 in (4.3), using Fatou’s lemma, the dominated conver-
gence theorem and (H2), we obtain

0 ≤
∫
RN

∫
RN

[u0(x) − u0(y)]p−1

|x − y|N+s1 p

(
uq0(x) − vq(x)

uq−1
0 (x)

− uq0(y) − vq(y)

uq−1
0 (u)

)
dxdy

+
∫
RN

∫
RN

[u0(x) − u0(y)]q−1

|x − y|N+s2q

(
uq0(x) − vq(x)

uq−1
0 (x)

− uq0(y) − vq(y)

uq−1
0 (y)

)
dxdy

+
∫
RN

∫
RN

[v(x) − v(y)]p−1

|x − y|N+s1 p

(
vq(x) − uq0(x)

vq−1(x)
− vq(y) − uq0(y)

vq−1(y)

)
dxdy

+
∫
RN

∫
RN

[v(x) − v(y)]q−1

|x − y|N+s2q

(
vq(x) − uq0(x)

vq−1(y)
− vq(y) − uq0(y)

vq−1(y)

)
dxdy

=
∫

�

(
g(x, v)

vq−1 − g(x, u0)

uq−1
0

)
(vq − uq0)dx ≤ 0.

From Corollary 2.7, we infer that u0 = k v, for some k > 0. Without loss of generality, we
can assume that k < 1. Since 1 < q ≤ p and by using (H2), we obtain

∫
RN

∫
RN

|u0(x) − u0(y)|p
|x − y|N+s1 p

dxdy +
∫
RN

∫
RN

|u0(x) − u0(y)|q
|x − y|N+s2q

dxdy

≤ kq
[∫

RN

∫
RN

|v(x) − v(y)|p
|x − y|N+s1 p

dxdy +
∫
RN

∫
RN

|v(x) − v(y)|q
|x − y|N+s2q

dxdy

]

= kq
∫

�

g(x, v) vdx =
∫

�

kq−1g(x, v) kvdx

<

∫
�

g(x, u0) u0dx =
∫
RN

∫
RN

|u0(x) − u0(y)|p
|x − y|N+s1 p

dxdy +
∫
RN

∫
RN

|u0(x) − u0(y)|q
|x − y|N+s2q

dxdy

which yields a contradiction. Hence k = 1 and u0 ≡ v. ��

Proof of Theorem 2.11 We first deal with the nonexistence of nontrivial solutions to (P1).
Assume that u ∈ W is a nontrivial solution to (P1) and suppose that λ < λ1,s1,p(a). Taking
u as a test function in (2.4) and by the definition of λ1,s1,p(a) and λ1,s2,q(b), we have that

0 ≤ ‖u‖p

W
s1,p
0 (�)

− λ1,s1,p(a)

∥∥∥a 1
p u

∥∥∥p

L p(�)
< ‖u‖p

W
s1,p
0 (�)

− λ

∥∥∥a 1
p u

∥∥∥p

L p(�)

= λ1,s2,q(b)
∥∥∥b 1

q u
∥∥∥q
Lq (�)

− ‖u‖q
W

s2,q
0 (�)

≤ 0

which yields a contradiction. If λ = λ1,s1,p(a), then from above u is an eigenfunction
associated to λ1,s1,p(a) and λ1,s2,q(b). Hence φ1,s1,p(a) = c φ1,s2,q(b), for some constant
c > 0, which contradicts assumption (2.5).

Consider again u, a weak positive solution to (P1). Set ε > 0 and uε = u + ε. Then
φ1,s2,q (b)

uε
∈ L∞(�). Choosing

φ1,s2,q (b)p

u p−1
ε

∈ W as a test function in (2.4), we obtain
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∫
RN

∫
RN

[uε(x) − uε(y)]p−1

|x − y|N+s1 p

[
φ1,s2,q(b)

p(x)

uε(x)p−1 − φ1,s2,q(b)
p(y)

uε(y)p−1

]
dxdy

+
∫
RN

∫
RN

[uε(x) − uε(y)]q−1

|x − y|N+s2q

[
φ1,s2,q(b)

p(x)

uε(x)p−1 − φ1,s2,q(b)
p(y)

uε(y)p−1

]
dxdy

= λ

∫
�

a(x)

(
u

uε

)p−1

φ1,s2,q(b)
pdx + λ1,s2,q(b)

∫
�

b(x)
uq−1

u p−1
ε

φ1,s2,q(b)
pdx . (4.4)

Next, we choose
φ1,s2,q (b)p−q+1

u p−q
ε

∈ W as a test function for the eigenvalue problem associated

to (−�)
s2
q in Ws2,q

0 (�) :
∫
RN

∫
RN

[
φ1,s2,q (b)(x) − φ1,s2,q (b)(y)

]q−1

|x − y|N+s2q

[
φ1,s2,q (b)

p−q+1(x)

u p−q
ε (x)

− φ1,s2,q (b)
p−q+1(y)

u p−q
ε (y)

]
dxdy

= λ1,s2,q (b)
∫

�

b(x)
φ1,s2,q (b)

p

u p−q
ε

dx .

By Theorem 2.3 and (2.2) (in case p = q), we obtain

λ1,s2,q (b)
∫

�

b(x)
φ1,s2,q (b)

p

u p−q
ε

dx + β∗
a

∫
�

a(x) φ1,s2,q (b)
p(x)dx

=
∫
RN

∫
RN

[
φ1,s2,q (b)(x) − φ1,s2,q (b)(y)

]q−1

|x − y|N+s2q

[
φ1,s2,p(b)

p−q+1(x)

u p−q
ε (x)

− φ1,s2,q (b)
p−q+1(y)

u p−q
ε (y)

]
dxdy

+
∫
RN

∫
RN

∣∣φ1,s2,q (b)(x) − φ1,s2,q (b)(y)
∣∣p

|x − y|N+s1 p
dxdy

≥
∫
RN

∫
RN

[uε(x) − uε(y)]q−1

|x − y|N+s2q

[
φ1,s2,q (b)

p(x)

uε(x)p−1 − φ1,s2,q (b)
p(y)

uε(y)p−1

]
dxdy

+
∫
RN

∫
RN

[uε(x) − uε(y)]p−1

|x − y|N+s1 p

[
φ1,s2,q (b)

p(x)

uε(x)p−1 − φ1,s2,q (b)
p(y)

uε(y)p−1

]
dxdy. (4.5)

By (4.4) and (4.5), we infer:

λ1,s2,q(b)
∫

�

b(x)
φ1,s2,q(b)

p

u p−q
ε

dx + β∗
a

∫
�

a(x) φ1,s2,q(b)
p(x)dx

≥ λ

∫
�

a(x)

(
u

uε

)p−1

φ1,s2,q(b)
pdx + λ1,s2,q(b)

∫
�

b(x)
uq−1

u p−1
ε

φ1,s2,q(b)
pdx .

Applying Remark 4.1, we have that u ≥ kds1+ε0(x) for some k = k(ε0) > 0, and for any
ε0 > 0. Finally, since s1(q − p) + s2 p+ 1 > 0, for ε0 small enough and passing to the limit
as ε → 0+ thanks to the dominated convergence theorem and Fatou’s lemma, we conclude
the proof of assertion (1) of Theorem 2.11.

We now prove assertion (2). Suppose that λ1,s1,p(a) < λ ≤ β∗
a .Hence, from [27,Theorem

1.1] the following problem:

(−�)s1p w + (−�)s2q w = β
[
a(x)w p−1 + b(x)wq−1] , w > 0 in�; w = 0, in R

N \ �;
with β > max

{
λ, λ1,s2,q(b)

}
, has at least one solution. From Remark 4.1 again, we obtain

w ∈ C0,α(�), for someα ∈ (0, s1) and for any ε0 > 0 there exists a constant K = K (ε0) > 0
such that K−1ds1+ε0 ≤ w ≤ Kds1−ε0 in �. Then, we infer that

(−�)s1p w + (−�)s2q w = β
[
a(x)w p−1 + b(x)wq−1] ≥ λa(x)w p−1 + λ1,s2,q(b)b(x)w

q−1.
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Hence, w is a supersolution to (P1). Next we introduce the truncated function g̃ defined as:

g̃(x, s) =

⎧⎪⎨
⎪⎩

λa(x)w p−1 + λ1,q,s2(b)b(x)w
q−1 if s > w(x),

λa(x)s p−1 + λ1,q,s2(b)b(x)s
q−1 if 0 ≤ s ≤ w(x),

0 if s < 0.

Let G, the associated energy functional defined on W as:

G(u) = 1

p

∫
RN

∫
RN

|u(x) − u(y)|p
|x − y|N+s1 p

dxdy + 1

q

∫
RN

∫
RN

|u(x) − u(y)|q
|x − y|N+s2q

dxdy

−
∫

�

∫ u(x)

0
g̃(x, s)dxds.

G is well-defined, coercive and bounded from below on W. Moreover, it is easy to see
that G is weakly lower semi-continuous. Then, G admits a global minimizer u0 ∈ W. By
the classical weak comparison principle (noting that w is a supersolution), we conclude that
u0 ∈ [0, w] . Finally, with similar arguments as in Theorem 2.10, we deduce u0 �≡ 0.Remark
4.1 implies that u0 ∈ C0,α(�), for some α ∈ (0, s1) and for any ε0 > 0 there exists a constant
K = K (ε0) > 0 such that K−1ds1+ε0 ≤ u0 ≤ Kds1−ε0 in �. ��

Proof of Theorem 2.12 Let u1, u2 be positive weak solutions to (P1) associated to h1, h2 in
L∞(�), respectively, i.e.

∫
RN

∫
RN

[u1(x) − u1(y)]p−1 (�(x) − �(y))

|x − y|N+s1 p
dxdy

+
∫
RN

∫
RN

[u1(x) − u1(y)]q−1 (�(x) − �(y))

|x − y|N+s2q
dxdy

=
∫

�

h1(x)u
q−1
1 �dx (4.6)

and

∫
RN

∫
RN

[u2(x) − u2(y)]p−1 (�(x) − �(y))

|x − y|N+s1 p
dxdy

+
∫
RN

∫
RN

[u2(x) − u2(y)]q−1 (�(x) − �(y))

|x − y|N+s2q
dxdy

=
∫

�

h2(x)u
q−1
2 �dx (4.7)

for any �,� ∈ W. Now, let ε > 0, u1,ε = u1 + ε, u2,ε = u2 + ε and choose

� = uq1,ε − uq2,ε

uq−1
1,ε

, � = uq2,ε − uq1,ε

uq−1
2,ε

∈ W
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as test functions in (4.6) and (4.7), respectively. Then, summing the above equations, we get

∫
RN

∫
RN

[
u1,ε(x) − u1,ε(y)

]p−1
(�(x) − �(y))

|x − y|N+s1 p
dxdy

+
∫
RN

∫
RN

[
u1,ε(x) − u1,ε(y)

]q−1
(�(x) − �(y))

|x − y|N+s2q
dxdy

+
∫
RN

∫
RN

[
u2,ε(x) − u2,ε(y)

]p−1
(�(x) − �(y))

|x − y|N+s1 p
dxdy

+
∫
RN

∫
RN

[
u2,ε(x) − u2,ε(y)

]q−1
(�(x) − �(y))

|x − y|N+s2q
dxdy

≤
∫

�

(
h1(x)

uq−1
1

uq−1
1,ε

− h2(x)
uq−1
2

uq−1
2,ε

)
(uq1,ε − uq2,ε)dx .

Passing to the limit as ε → 0+ with the dominated convergence theorem and Fatou’s lemma,
we obtain

0 ≤
∫
RN

∫
RN

[u1(x) − u2(y)]p−1

|x − y|N+s1 p

[
uq1(x) − uq2(x)

uq−1
1 (x)

− uq1(y) − uq2(y)

uq−1
1 (y)

]
dxdy

+
∫
RN

∫
RN

[u1(x) − u1(y)]q−1

|x − y|N+s2q

[
uq1(x) − uq2(x)

uq−1
1 (x)

− uq1(y) − uq2(y)

uq−1
1 (y)

]
dxdy

+
∫
RN

∫
RN

[u2(x) − u2(y)]p−1

|x − y|N+s1 p

[
uq2(x) − uq1(x)

uq−1
2 (x)

− uq2(y) − uq1(y)

uq−1
2 (y)

]
dxdy

+
∫
RN

∫
RN

[u2(x) − u2(y)]q−1

|x − y|N+s2q

[
uq2(x) − uq1(x)

uq−1
2 (x)

− uq2(y) − uq1(y)

uq−1
1 (y)

]
dxdy ≤ 0.

From (2.2), we then get u2 = ku1, for some constant k > 0. If k ≥ 1, then we are done
while for k < 1, since 1 < q < p, we obtain

∫
RN

∫
RN

|u2(x) − u2(y)|p
|x − y|N+s1 p

dxdy +
∫
RN

∫
RN

|u2(x) − u2(y)|q
|x − y|N+s2q

dxdy

< kq
[∫

RN

∫
RN

|u1(x) − u1(y)|p
|x − y|N+s1 p

dxdy +
∫
RN

∫
RN

|u1(x) − u1(y)|q
|x − y|N+s2q

dxdy

]

≤ kq
∫

�

h1(x) u
q
1dx ≤

∫
�

h2(x) u
q
2dx

which contradicts that u2 is a solution (with potential h2). Hence k ≥ 1 and u1 ≤ u2. ��

Finally, we prove applications to Theorem 2.4 extending [2] and [7] in the non local setting:

Proof of Proposition 2.13 Assume that the weak solution v in the problem (2.6) does not
vanish. From regularity theory v ∈ C0,α(�), for some α ∈ (0, s) and v > 0 in �. Using
u p

f (vε)
with vε = v + ε, for ε > 0, as test function in (2.6)and thanks to regularity theory,

u ∈ L∞(�). Therefore, since f is Lipschitz, we have for any x, y ∈ R
N and for some

suitable L > 0 :
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∣∣∣∣ u p(x)

f (vε)(x)
− u p(y)

f (vε)(y)

∣∣∣∣
≤

∣∣∣∣ u p(x)

f (vε)(x)
− u p(y)

f (vε)(x)

∣∣∣∣ +
∣∣∣∣ u p(y)

f (vε)(x)
− u p(y)

f (vε)(y)

∣∣∣∣
=

∣∣∣∣u
p(x) − u p(y)

f (vε)(x)

∣∣∣∣ + u p(y)

∣∣∣∣ 1

f (vε)(x)
− 1

f (vε)(y)

∣∣∣∣ ≤ 1

f (ε)

∣∣u p(x) − u p(y)
∣∣

+ u p(y)

∣∣∣∣ f (vε)(y) − f (vε)(x)

f (vε)(x) f (vε)(y)

∣∣∣∣
≤ p

f (ε)
‖u‖p−1

L∞(�)
|u(x) − u(y)| + L ‖u‖p

L∞(�)

f (ε)2
|v(x) − v(y)|

≤ C(L, ε, p, ‖u‖L∞(�))(|u(x) − u(y)| + |v(x) − v(y)|).

Hence, u p

f (vε)
∈ Ws,p

0 (�). Then, from (2.2), we obtain

0 ≤
∫
RN

∫
RN

|u(x) − u(y)|p
|x − y|N+sp

dxdy −
∫
RN

∫
RN

|vε(x) − vε(y)|p−2 (vε(x) − vε(y))

|x − y|N+sp[
u(x)p

f (vε(x))
− u(y)p

f (vε(y))

]
dxdy

=
∫

�

a1(x)u
pdx −

∫
�

a2(x)
f (v)

f (vε)
u pdx .

Passing to the limit as ε → 0+ and using Fatou’s lemma, we obtain:

0 ≤
∫

�

(a1(x) − a2(x))u
pdx < 0

which is a contradiction. Hence, v must vanish in �. ��

Proof of Lemma 2.14 Let (ϕn)n∈N a sequence such that ϕn ∈ C∞
0 (�), ϕn > 0, with ϕn → u

in Ws,p
0 (�), set ε > 0 and vε = v + ε. Then, by (2.2) (with q = p), one has

0 ≤
∫
RN

∫
RN

|ϕn(x) − ϕn(y)|p
|x − y|N+sp

dxdy −
∫
RN

∫
RN

|vε(x) − vε(y)|p−2 (vε(x) − vε(y))

|x − y|N+sp

[
ϕn(x)p

f (vε(x))
− ϕn(y)p

f (vε(y))

]
dxdy

≤
∫
RN

∫
RN

|ϕn(x) − ϕn(y)|p
|x − y|N+sp

dxdy − λ

∫
�

g
f (v)

f (vε)
ϕ
p
n dx .

Passing to the limit as ε → 0+ and using Fatou’s lemma, we obtain:

0 ≤
∫
RN

∫
RN

|ϕn(x) − ϕn(y)|p
|x − y|N+sp

dxdy − λ

∫
�

g ϕ
p
n dx .

By taking the limit as n → ∞, we finally get (2.7). ��
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Proof of Theorem 2.15 Let (u, v) be a weak positive solution of (2.8). Namely, for all
�1,�2 ∈ Ws,p

0 (�), we have

∫
RN

∫
RN

|u(x) − u(y)|p−2 (u(x) − u(y))(�1(x) − �1(y))

|x − y|N+sp
dx dy =

∫
�

f (v)�1dx, (4.8)

∫
RN

∫
RN

|v(x) − v(y)|p−2 (v(x) − v(y))(�2(x) − �2(y))

|x − y|N+sp
dx dy =

∫
�

( f (v))2

u p−1 �2dx .

(4.9)

Choosing �1 = u and �2 = u p

f (vε)
with vε = v + ε, for all ε > 0, in (4.8) and (4.9)

respectively, we obtain
∫
RN

∫
RN

|u(x) − u(y)|p
|x − y|N+sp

dxdy −
∫
RN

∫
RN

|vε(x) − vε(y)|p−2 (vε(x) − vε(y))

|x − y|N+sp

[
u p(x)

f (vε(x))
− u p(y)

f (vε(y))

]
dx dy =

∫
�

(
u f (v) − u

( f (v))2

f (vε)

)
dx .

By passing to the limit as ε → 0+ and using Fatou’s lemma and (2.2), we get:

∫
RN

∫
RN

(
|u(x) − u(y)|p
|x − y|N+sp

dxdy − |v(x) − v(y)|p−2 (v(x) − v(y))

|x − y|N+s2 p2

[
u p(x)

f (v(x))
− u p(y)

f (v(y))

])
dx dy = 0.

From Theorem 2.4, we get v p = k u f (u) in �, for some constant k > 0. ��
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