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Abstract: This paper presents a model to predict Electrical Power Generator (EPG) 

faults. The fault tree (FT) model is developed and used to help maintenance engineers in 

fault analysis procedure of this rotating machine. By identifying the main, intermediate 

and basic events it’s possible to construct the FT with logical reasoning. The top dreaded 

event is defined. By using a Bayesian network (BN) as a complementary tool, fault 

prediction of the EPG becomes possible and easy. By using the developed BN, the 

probability of occurrence of the top event (EPG failure) is calculated. Also, by this 

approach, we can process complex information that causes system faults in an easy and 

simple way. The essential elements to do this analysis are the reliable and good 

exploitation of the information previously stored in the system. The use of the BN in 

combination with the FT gives the possibility of qualitative and quantitative analysis, 

diagnosis, and prediction of faults from the same Bayesian model. The flexibility of the 

proposed BN model in this paper allows better and precise decision making. Also, 

priorities regarding maintenance job are defined and resources are a priori prepared. 

 

Keywords: Bayesian network, fault tree, electrical generator, fault prediction, 

information, maintenance priorities. 

1. Introduction 

Electric Power Generator (EPG) is used in many industrial and energy sectors. 

However, it can be prone to breakdowns. Faults of these rotating machines can 

cause serious damage to the economic sector, and in some cases hinder the 

development of society. Therefore, it is necessary to understand the root causes 

of EPG faults and providing an effective reference to prevent them. To do this, 
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this article presents a solution for identifying faults and taking preventive actions 

with the objective to prevent and minimize the risks of faults by using the fault 

tree (FT) and the Bayesian Network (BN). The second objective of the proposed 

solution is to pre-evaluate generator faults in an accurate and efficient manner. 

The fault prediction plays an important role in the safety systems of power plants 

and reduces maintenance costs, electricity production losses and increases the life 

cycle of EPGs. 

Previous studies have conducted and proposed various solutions to improve 

the efficiency of EPGs, identify risks, and assess their impacts on this equipment.  

Firstly, traditional analysis methods are used by researchers, such as Failure 

Mode and Effect Criticality Analysis (FMECA) [1,2], FT analysis [3], and 

Ishikawa diagram method [4]. However, these methods remain of limited use 

because they can be costly, not flexible to accommodate unforeseen changes in 

systems, also provide a false sense of security by overlooking human errors that 

can contribute to EPG faults. Other studies proposed artificial intelligence 

methods for industrial systems faults analysis, such as: artificial neural networks 

for fault diagnosis [5], fuzzy logic [6], and support vector machine [7]. Other 

authors have used artificial techniques for optimizing EPG operation and improve 

its availability such as: particle swarm optimization [8] and genetic algorithms 

[9]. These artificial intelligence techniques are given a strong contribution in the 

mastering of the EPG function, and they have improved the fault diagnosis and 

prediction when combined with traditional methods. 

Several previous works in the literature show that hybrid fault diagnosis 

techniques based on traditional techniques and artificial intelligence methods 

allow better decision making and high performance when they are used together. 

Akhtar and Kirmani combine the operational failures with fuzzy logic in a Fuzzy 

Fault Tree model [10]. The contribution shows that the proposed model allows a 

good assessment of reliability and provides excellent fault analysis. Two 

traditional methods: FT and FMECA are combined to another traditional method 

to determine critical component in a diesel generator [11], they have also been 

utilized for conducting quantitative analyses of biogas plants by integrating them 

with recursive operability analysis, with a focus on elucidating the roles of 

procedural errors and component failures [12]. In other contributions, such as a 

maintenance plan for a turbine of hydroelectric power plant, Reliability-Centered 

Maintenance (RCM) was combined with FMECA [13] to better understand all 

potential failure scenarios that can affect industrial machines, while ensuring their 

reliability. Also, two artificial intelligence methods: genetic algorithm and fuzzy 

logic are combined to provide an expert system with the capability of anomaly 

detection and to allow the system to expose network problems autonomously [14]. 
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In addition, some studies have integrated classical analysis methods and BNs 

such as: FT analysis and BN [15], Fuzzy Fault Tree with BN [16] and FMECA 

with BN [17]. In the application side there are few research works that discuss 

the fault diagnosis of EPG systems with BN. In this article FT is combined with 

a BN to resolve the problematic of fault prediction of these power systems. A 

mapping of the FT will be shown and a qualitative analysis will be made by the 

development of the BN structure and finally we try to give a quantitative analysis 

by inference in the developed BN. 

This article is organized as follows: section 2 presents the EPG protection 

systems to allow a better understanding of the relationship between the system 

components. In section 3, a brief review of various methods and tools used for 

diagnosis and prediction of EPG faults, is presented. An application of our 

approach on EPG is presented in section 4. Finally, some recommendations and 

conclusions are provided at the end of this paper. 

2. Generator protection systems description  

Power generation stations play a vital role in human life due to the importance 

of energy in industry and daily life. To mitigate recurrent system failures and 

power supply interruptions that result in significant economic losses, many 

industrial companies in this sector have resorted to innovation and development 

of control and protection systems for electrical generators. 

These systems are specifically designed to prevent various faults that may 

occur during operation, utilizing a control program equipped with advanced 

sensors that facilitate the detection of faults and enable the immediate 

implementation of appropriate decisions. 

Most EPGs are rotating machines created and developed with different 

technologies over time, used to produce electric energy on the one hand and to 

operate systems (industrial machines) on the other hand, which may be necessary 

for their proper functioning. In addition, they have several protection systems 

(Fig.1), including the lubricating oil system, cooling and ventilation system, 

control system, and it is also equipped with sensors that record various parameters 

such as temperature, vibration, etc. Due to their working conditions, EPGs are 

subject to unexpected failures that affect their components such as the rotor, 

bearings, etc. 
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Figure 1: Schematic diagram of a generator protection system. 

To ensure providing a reliable supply of clean and fresh lubrication oil to the 

generator bearings and removing heat generated by friction, a reliable lubrication 

oil system is essential for the generator operation. Also, during the generation of 

electrical energy, heat is produced by eddy currents and Joule losses and by 

aerodynamic and mechanical friction. This heat must be dispersed to maintain the 

efficiency of the generator. The cooling and ventilation systems of the generator 

dissipate heat by cooling the generator and ventilating. Ventilation system is 

intended to pressurize the generator enclosure to prevent the infiltration of any 

combustible leakage gas, and to provide cooling airflow through the enclosure. 

In addition to these systems, a control system includes everything related to the 

control of voltage, temperature, synchronization, protection relays, and vibrations 

monitoring. 
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3. Research tools and methodology 

There are several commonly used methods for fault and risk analysis, 

including the following examples: FT analysis, Failure Mode and Effects 

Analysis (FMEA), Functional Safety Analysis, Quantitative Risk Analysis using 

BN, etc. The methods used and presented in the rest of this paper are FT and BN. 

A. FT Analysis 

FT analysis is one of the methods developed for systematic fault assessment. 

FT is used to represent graphically the events that can lead to a system failure, as 

it is the main reference in the study of industrial machines faults. The FT is based 

mainly on defining the set of primary events and basic events sequentially, which 

in turn lead to the occurrence of the undesirable event specified in this study as 

the fault of the EPG. The connection between the various specified events is 

carried out by logical gates of type "AND" and "OR", which are used to represent 

the dependency relationships between the events. 

B. BN analysis  

BN is a probabilistic analysis tool or graphical probabilistic model that allows 

the representation of cause-and-effect relationships between events that lead to a 

fault of the system. BN is a powerful tool for modeling complex systems that 

involve multiple random variables and conditional dependencies between them, 

allowing for the calculation of the posterior probability of an event based on the 

prior probability of its causes.  

In a BN, each node represents an event, and each link represents a cause-and-

effect relationship between events. The probabilities of each event are updated 

based on the available information (previously stored information). The 

components of a BN include nodes, arcs, conditional probabilities, conditional 

probability tables. 

The Bayes theorem is expressed as a formula in probability theory, utilized 

for the calculation of conditional probabilities. This method systematically 

adjusts the probabilities in order to obtain more information that may help us 

avoid total failure of the systems. The Bayesian approach has been widely applied 

in all fields. From the Bayesian formula, we have (Fig. 2): 

 𝑃(𝐴/𝐵) =
𝑃(𝐴∩𝐵)

𝑃(𝐵)
, (1) 

where P(A∩B) represents the probability of the intersection of events A and B, 

i.e., the probability that events A and B occur simultaneously, then 

 

 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) ∙ 𝑃(𝐵/𝐴). (2) 



50 T. Touil, and A. Lakehal 

 

 

 

 

Figure 2: Simple Bayesian network 

Substituting (2) into (1), we get: 

 𝑃(𝐴/𝐵) =
𝑃(𝐵/𝐴)∙𝑃(𝐴) 

𝑃(𝐵)
 (3)

  

𝑃(𝐴/𝐵) is the probability of event A given event B has occurred. 

𝑃(𝐵/𝐴) is the probability of event B given event A has occurred. 

𝑃(𝐴) is the prior probability of event A. 

𝑃(𝐵) is the marginal probability of event B. 

Let 𝐴1, 𝐴2, … , 𝐴𝑛 be the possible causes of B (Fig.3). 

 

Figure 3: Simple Bayesian network for multiple events and a single effect 

Then: 

 𝑃(𝐵) = 𝑃(𝐴1) ∙ 𝑃(𝐵/𝐴1) + 𝑃(𝐴2) ∙ 𝑃(𝐵/𝐴2) + ⋯ + 𝑃(𝐴𝑛) ∙ 𝑃(𝐵/𝐴𝑛) (4) 

or equivalently, 

 𝑃(𝐵) = ∑ 𝑃(𝐴𝑖) ∙ 𝑃(𝐵/𝐴𝑖)
𝑛
𝑖=1   

C. Mapping of the FT into a BN 

The mapping of the FT into the BN is based on their identical graphical 

representation. The second reason is that the two tools are given a strong 

contribution in fault analysis. The common element is the modeling of the 

relationships between faults that are represented by variables. The FT constructs 

by nodes, arcs, and logical gates (AND and OR) to display the interdependent 

relationships between events and their causal effects, while the BN are used to 

model the probabilistic relationships between system variables by using nodes 

and arcs to define the top event.  

A B 
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Also, a BN is based on a conditional probability table to calculate posterior 

probability of each variable during the quantitative phase. One conditional 

probability table defines quantitatively the relationship between events, but FT 

analysis requires two formulas to calculate each logic gates. In the case of new 

information, updating a BN is easier than a fault tree which requires redoing the 

all calculation throughout the tree. The combination of these methods makes it 

possible to obtain a more precise and complete probabilistic analysis of the faults 

to improve the system reliability. 

4. Practical application on an electrical power generator 

This section proposes a practical application of the proposed fault analysis 

approach; the main objective is to determine the degradation indicators of an EPG 

installed on the power plant production of Boufarik unit in northern Algeria. This 

plant is made up of three gas turbines totaling an installed capacity of 704.129 

MW, and it was commissioned in 2016. It has been connected to the monitoring 

center of Algerian Electricity Production Company (AEPC) since April 2018.  

In the maintenance activities, inspections are made and several repair works 

are carried out to address issues such as: visual inspection and NDT inspection of 

all components and replacing destroyed components with new ones. To interpret 

these found results, this paper presents a concrete example of probabilistic 

analysis using a combined approach based on FT and BN. It explains how to 

apply this approach to find out the causes that lead to the EPG faults, and enables 

us to predict the probability of occurrence of the top event, helps us in simplifying 

and understanding the results obtained easily, knowing the weaknesses areas in 

the system, and help taking actions to improve the reliability of the EPG. 
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Table 1: Basic faults and events of electric generators 

Machine Faults (D) Causes (C) 

E
L

E
C

T
R

IC
A

L
 G

E
N

E
R

A
T

O
R

  

 

 

Vibration (D1) 

Bearing assembly fault (C1) 

Vibration monitoring system 

(C2) 

Faulty vibration 

probe (C21) 

The monitor (C22) 

Imbalance fault (C3) 

Coupling problem (C4) 

 

Generator 

overheating 

(D2) 

Fire (C5) 

Filters clogged (C6) 

Cooling fan failure (C7) 

Dirty air inlet screens (C8) 

Internal air passage clogged (C9) 

 

 

 

 

 

 

High 

temperature 

accompanied 

by vibrations 

(D3) 

 

 

 

Electrical 

protection 

relays (C10) 

Synchronization check (C101) 

Generator differential (C102) 

Power return (C103) 

Loss of excitement (C104) 

Time over current relay (C105) 

Over- / underfrequency relay (C106) 

Overvoltage relay(C107) 

Undervoltage relay (C108) 

Ground overvoltage relay (C109) 

Rotor cooling air holes clogged (C11) 

Shaft cooling fan broken (C12) 

Voltage regulator problem (C13) 

 

 

 

 

High 

temperature at 

the bearings 

(D4) 

 

Lubrication 

system (C14) 

Oil quality (C141) 

Motor (C142) 

 

Pumps (C143) 

Auxiliary 

pump (C1431) 

Mechanical 

pump (C1432) 

Emergency 

pump (C1433) 

Oil circuit (Piping) (C144) 

Oil pressure 

(C145) 

High pressure 

(C1451) 

Low pressure 

(C1452) 

Dirty oil inlet filters (C15) 

Faulty temperature sensor (C16) 
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In Fig. 4, the FT model is established where EPG fault is the top event. Four 

common faults are intermediate events (𝐷1, 𝐷2, 𝐷3 and 𝐷4). Also, 𝐶𝑖 (𝑖 = 1, … ,16) 

code is used to represent basic events. 

 

Figure 4: Fault tree diagram of an electrical generator 

 

To complete the transposition of the FT in the space of probabilities, the 

following parameters must also be provided: 

 If the cause 𝐷 has no direct cause, 𝑃(𝐷) will be defined. In the case where the 

cause 𝐷 takes two states: true and false, we have to define the probabilities of 

the two logical values 𝑃(𝐷 = 𝑇𝑟𝑢𝑒) and 𝑃(𝐷 = 𝐹𝑎𝑙𝑠𝑒). 

 Also, If the effect EPG has a single direct cause D, we have to define 𝑃(𝐺/𝐷), 

i.e., the four values 𝑃(𝐸𝑃𝐺 = 𝑇/𝐷 = 𝑇), 𝑃(𝐸𝑃𝐺 = 𝑇/𝐷 = 𝐹), 𝑃(𝐸𝑃𝐺 = 𝐹/𝐷 =
𝑇), 𝑃(𝐸𝑃𝐺 = 𝐹/𝐷 = 𝐹). 

 If the effect EPG has two direct causes 𝐷1 and 𝐷2 we have to define 

𝑃(𝐸𝑃𝐺/𝐷1, 𝐷2), that is to say the eight values:  
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 𝑃(𝐸𝑃𝐺 = 𝑇/𝐷1 = 𝑇, 𝐷2 = 𝑇), 𝑃(𝐸𝑃𝐺 = 𝑇/𝐷1 = 𝑇, 𝐷2 = 𝐹), 𝑃(𝐸𝑃𝐺 = 𝑇/ 𝐷1 =

𝐹, 𝐷2 = 𝑇), 𝑃(𝐸𝑃𝐺 = 𝑇/𝐷1 = 𝐹, 𝐷2 = 𝐹), 𝑃(𝐸𝑃𝐺 = 𝐹/𝐷1 = 𝑇, 𝐷2 = 𝑇), 𝑃(𝐸𝑃𝐺 =

𝐹/𝐷1 = 𝑇, 𝐷2 = 𝐹), 𝑃(𝐸𝑃𝐺 = 𝐹/𝐷1 = 𝐹, 𝐷2 = 𝑇), 𝑃(𝐸𝑃𝐺 = 𝐹/𝐷1 = 𝐹, 𝐷2 = 𝐹). 

How to compute the probability of the main event 𝐷1, which has the secondary 

causes 𝐶1, 𝐶2, 𝐶3 and 𝐶4? First, we compute the probabilities of all events 

produced by secondary causes for example 𝐶2 which in turn contains two 

secondary causes 𝐶21 and 𝐶22, whose values are given in the Table 2. 

 𝑃(𝐶2 = 𝑇)  =  𝑃(𝐶2/𝐶21, 𝐶22) (5) 
 = 𝑃(𝐶2 = 𝑇/𝐶21 = 𝑇, 𝐶22 = 𝑇). 𝑃(𝐶21 = 𝑇). 𝑃(𝐶22 = 𝑇) 
 +𝑃(𝐶2 = 𝑇/𝐶21 = 𝑇, 𝐶22 = 𝐹). 𝑃(𝐶21 = 𝑇). 𝑃(𝐶22 = 𝐹) 
 +𝑃(𝐶2 = 𝑇/𝐶21 = 𝐹, 𝐶22 = 𝑇). 𝑃(𝐶21 = 𝐹). 𝑃(𝐶22 = 𝑇) 
 +𝑃(𝐶2 = 𝑇/𝐶21 = 𝐹, 𝐶22 = 𝐹). 𝑃(𝐶21 = 𝐹). 𝑃(𝐶22 = 𝐹) 
 =  (1 × 0.0003 ×  0.0002) +  (1 × 0.0003 × 0.9998)  +  (1 × 0.9997 × 0.0002)  

+ (0 × 0.9997 × 0.9998)  =  0.00000006 +  0.00029994 +  0.00019994 +
0 ≈  0.0005. 

Therefore, the value of 𝑃(𝐶2) is 0.0005.  

Having 𝐶1, 𝐶2, 𝐶3 and 𝐶4, we can easily compute the value of 𝐷1, that is, 

 𝑃(𝐷1 = 𝑇) = 𝑃(𝐷1/𝐶1, 𝐶2, 𝐶3, 𝐶4) = (6) 

 = P(D1=T/C1=T, C2=T, C3=T, C4=T)∙P(C1=T)∙P(C2=T)∙P(C3=T)∙P(C4=T) 

 + P(D1=T/C1=T, C2=T, C3=T, C4=F)∙P(C1=T)∙P(C2=T)∙P(C3=T)∙P(C4=F) 

 + P(D1=T/C1=T, C2=T, C3=F, C4=T)∙P(C1=T)∙P(C2=T)∙P(C3=F)∙P(C4=T) 

 + P(D1=T/C1=T, C2=T, C3=F, C4=F)∙P(C1=T)∙P(C2=T)∙P(C3=F)∙P(C4=F) 

 + P(D1=T/C1=T, C2=F, C3=T, C4=T)∙P(C1=T)∙P(C2=F)∙P(C3=T)∙P(C4=T) 

 + P(D1=T/C1=T, C2=F, C3=T, C4=F)∙P(C1=T)∙P(C2=F)∙P(C3=T)∙P(C4=F) 

 + P(D1=T/C1=T, C2=F, C3=F, C4=T)∙P(C1=T)∙P(C2=F)∙P(C3=F)∙P(C4=T) 

 + P(D1=T/C1=T, C2=F, C3=F, C4=F)∙P(C1=T)∙P(C2=F)∙P(C3=F)∙P(C4=F) 

 + P(D1=T/C1=F, C2=T, C3=T, C4=T)∙P(C1=F)∙P(C2=T)∙P(C3=T)∙P(C4=T) 

 + P(D1=T/C1=F, C2=T, C3=T, C4=F)∙P(C1=F)∙P(C2=T)∙P(C3=T)∙P(C4=F) 

 + P(D1=T/C1=F, C2=T, C3=F, C4=T)∙P(C1=F)∙P(C2=T)∙P(C3=F)∙P(C4=T) 

 + P(D1=T/C1=F, C2=T, C3=F, C4=F)∙P(C1=F)∙P(C2=T)∙P(C3=F)∙P(C4=F) 

 + P(D1=T/C1=F, C2=F, C3=T, C4=T)∙P(C1=F)∙P(C2=F)∙P(C3=T)∙P(C4=T) 

 + P(D1=T/C1=F, C2=F, C3=T, C4=F)∙P(C1=F)∙P(C2=F)∙P(C3=T)∙P(C4=F) 

 + P(D1=T/C1=F, C2=F, C3=F, C4=T)∙P(C1=F)∙P(C2=F)∙P(C3=F)∙P(C4=T) 

 + P(D1=T/C1=F, C2=F, C3=F, C4=F)∙P(C1=F)∙P(C2=F)∙P(C3=F)∙P(C4=F) 

 ≈0.0019 

In the same way, we calculate the remaining causes (𝐷2, 𝐷3 and 𝐷4). The 

difficulty arises from the expanding number of combinations for which the 

probabilities need to be defined. 
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Table 2: A priori and a posteriori probabilities of the basic events (𝐶1– 𝐶16) 

Basic Events A priori 

probabilities 

A posteriori 

Probabilities 

Probability of 

failure 

C1 0.0009 0.0009  

 

D1= 0.0019 
C2 C21 0.0003 0.0005 

 C22 0.0002 

C3 0.0002 0.0002 

C4 0.0003 0.0003 

C5 0.0001 0.0001  

 

D2=0.0016 
C6 0.0004 0.0004 

C7 0.0006 0.0006 

C8 0.0003 0.0003 

C9 0.0002 0.0002 

 

 

 

 

 

C10 

C101 0.0001  

 

 

0.0017 

 

 

 

 

 

 

D3=0.0026 

C102 0.0002 

C103 0.0003 

C104 0.0001 

C105 0.0002 

C106 0.0004 

C107 0.0004 

C108 0.0005 

C109 0.0002 

C11 0.0001 0.0001 

C12 0.0003 0.0003 

C13 0.0005 0.0005 

 

 

 

 

C14 

C141 0.0003 0.0009 

 

 

 

 

 

0.0039 

 

 

 

 

 

D4= 0.0054 

 

C142 0.0006 

 

C143 

C1431 0.0008  

0.0014 

 
C1432 0.0001 

C1433 0.0005 

C144 0.0009 0.0009 

C145 C1451 0.0003 0.0007 

  
C1452 0.0004 

      
C15 0.0009 0.0009 

C16 0.0006 0.0006 

 

Four primary variables (𝐷1, 𝐷2, 𝐷3 and 𝐷4) represent the factors that conduct 

to the top event (electric power generator fault), each of these variables is 

connected to other variables in hierarchical order. In addition, the BN contains a 
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quantitative description of the behavior of the variables, which are expressed 

using a posteriori probability of the prior data previously stored by the experts.  

From the Table 2, by using the values obtained from the four events calculated 

previously (𝐷1, 𝐷2, 𝐷3 and 𝐷4), the top event can be calculated as follows: 

 

 𝑃(𝐸𝑃𝐺) = 𝑃(𝐸𝑃𝐺/𝐷1, 𝐷2, 𝐷3, 𝐷4) = ∑ 𝑃(𝐸𝑃𝐺/𝐷𝑖). 𝑃(𝐷𝑖),4
𝑖=1  (7) 

therefore 

 𝑃(𝐸𝑃𝐺) = 𝑃(𝐸𝑃𝐺/𝐷1). 𝑃(𝐷1) + 𝑃(𝐸𝑃𝐺/𝐷2). 𝑃(𝐷2) + 𝑃(𝐸𝑃𝐺/𝐷3). 𝑃(𝐷3) +
𝑃(𝐸𝑃𝐺/𝐷4). 𝑃(𝐷4) 

From relationship (4), we have 

 𝑃(𝐸𝑃𝐺/𝐷𝑖). 𝑃(𝐷𝑖) = 𝑃(𝐸𝑃𝐺 ∩ 𝐷𝑖), 𝑓𝑜𝑟 𝑖 = 1, . . ,4. (8) 

 

From Table 2, we have 

 𝑃(𝐸𝑃𝐺 ∩ 𝐷1) = 0.0019, 𝑃(𝐸𝑃𝐺 ∩ 𝐷2) = 0.0016, 𝑃(𝐸𝑃𝐺 ∩ 𝐷3) = 0.0026 

and 𝑃(𝐸𝑃𝐺 ∩ 𝐷4) = 0.0054. 
 

It follows from these results that  

 𝑃(𝐸𝑃𝐺) =  0.0019 +  0.0016 +  0.0026 +  0.0054 =  0.0115. 

From the BN of Fig. 5, we have calculated that the probability of occurrence 

of the undesirable event, which is the shutdown of EPG, is 1.2%. This probability 

is temporarily acceptable in terms of quantity, but from an economic point of 

view, and also given the importance of electricity in the life of the population, it 

is necessary to address the sources of the faults before they create other problems, 

by identifying the weaknesses and taking corrective measures to reduce the 

probabilities of faults. Therefore, we must return to the FT to find out the causes 

of top impact on the EPG, using Table 2, which gives us an approximate view of 

the probability of each event occurring (quantitative description of each event). 

The contribution of each of the main events (𝐷1, . . . , 𝐷4) to the total failure rate 

can be expressed in percent. 

For instance, the probability of 0.0019 of the first main event “𝐷1” represents 

a 17% contribution to the total failure rate of 1.15%. According to the results 

shown in Table 2, we conclude that the prediction of occurrence of a posteriori 

probability of bearings (𝐷4) due to the high temperature and lubrication system, 

the most important factor as it ranks first in EPG fault approximately with 49%. 

High temperature accompanied by vibrations (𝐷3) also plays a significant role, 

but to a lesser extent as they contribute about 23% to EPG fault. EPG overheating 
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(𝐷2) and vibration (𝐷1) contribute less to the system fault, by rates of 14% and 

17% respectively. 

Due to the importance and strategic role of the EPG in the community, in order 

to improve its operational safety, the maintenance team is required to reduce the 

occurrence probability of the top events. This is done by focusing on the main 

events, such as reducing vibrations and temperature increases at the bearings, by 

conducting preventive checks to reduce them, such as checking the lubricating 

oil system (pumps, filters, and pipes). Also, it is important to take corrective 

actions for other events that are less harmful to the system. By making these 

corrections, it is possible to raise the efficiency of the EPG and reduce the 

exorbitant maintenance costs, in addition to increasing the energy production, and 

this is what the power units aspire for. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure5: Bayesian network of electric power generator fault 
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5. Conclusion 

In this study, a probabilistic analysis of EPG faults was performed, firstly 

using FT analysis to know all the main and secondary causes that could lead to 

EPG fault. After listing all faults in Table 1 based on initial data collected by 

operators and maintenance experts, by the proposed approach of integrating the 

FT and BN it becomes easy for us to calculate all the a posteriori probability 

leading to the prediction of occurrence of the EPG fault. The results obtained, 

shown in Table 2, indicate that EPG failure is primarily attributed to the high 

temperature at the bearings (𝑫𝟒), accounting for approximately 49% of failures. 

Subsequently, high temperature accompanied by vibrations (𝑫𝟑) is identified as 

another significant factor, contributing to failure at an approximate rate of 23%. 

In contrast, generator overheating (𝑫𝟐) and vibrations (𝑫𝟏) are recognized as 

causative factors at lower rates, estimated at 14% and 17%, respectively. Based 

on the results obtained, the proposed method simplifies complex industrial 

models, especially those that are challenging for failure analysis. This method 

helps to identify fragile branches in the FT, which is crucial to understanding the 

main causes of system failure. Also, it allows the maintenance team to evaluate 

potential faults and take preventive measures to avoid or reduce them. In 

conclusion, the goal of this approach is to improve the reliability of the EPG and 

of the entire system. 
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