
38

DOI: 10.2478/sbeef-2022-0018

QUADCOPTER PROTOTYPE STABILITY ANALYSIS USING MATLAB SIMSCAPE
LIBRARY

HAMZA DJIZI1,2, ZOUBIR ZAHZOUH3, ABDELAZIZ LAKEHAL3,*

1Department of Mechanical Engineering, University of Souk Ahras, P.O. Box 1553, Souk Ahras, 41000, Algeria.
2INFRA-RES Laboratory, University of Souk Ahras, Algeria.

3Laboratoire de Recherche en Électromécanique et Sûreté de Fonctionnement, LRESF Laboratory, University of Souk
Ahras, P.O. Box 1553, Souk Ahras, 41000, Algeria.

E-mail (corresponding author): a.lakehal@univ-soukahras.dz

Abstract. Nowadays, the use of quadcopters in daily life has
become important due to its capabilities and ability to carry out
many tasks in many fields like civil, military, industrial, and
agricultural fields. The modelling of the quadcopter and deeply
understanding its movements is very important to ensure that
the simulations of its behaviour are as close as possible to
reality and also helps us to design a flight controller. In this
work, we used a modern technique on MATLAB (Simscape) to
simulate a quadcopter in real-time. At first, we build a
quadcopter using Simscape multibody then we simulated the
PID regulator, the command algorithms, and the motor model
with the applied forces on the body to achieve the global model
that we can use to study the movement of the quadcopter on the
three-axis which ensure a stable functioning. The results
obtained show the stability of the four movements of the
quadcopter (roll, pitch, yaw, and altitude).

Keywords: Quadcopter, Electrical model, PID regulator,
Simscape, Stability.

1. INTRODUCTION

Nowadays, with the incredible development of technology,
especially electronics and computer science, which led to
appear powerful microcontrollers and powerful software,
this is what helped people to increase the performance of
drones from both sides: software, and hardware. Some
important applications of this aircraft are that it can be
used in the army, entertainment, surveillance, aerial
photography, agriculture, and transportation, where
individual goods can be transported too anywhere. The
irrigation has become more efficient when using drones to
be watering, monitoring fields and detects water pooling or
leaks using thermal cameras.

Quadcopters have a different behaviour from other planes,
as they have four movements resulting from the rotation of
four engines in diverse ways. To obtain a vertical
movement, all the engines must rotate at the same speed.
As for the other movements there are two types of
quadcopters (+ and x), and each type has its own way of
controlling [1].

The control of the quadcopter depends mainly on its
stability [2-3]. Where a special control unit is designed
based on the basic movements made by the aircraft during

flight. These movements are controlled by special
propellers that produce forces and this shows that the
aerodynamic properties of the aircraft are very important
as many researchers have studied these properties in depth
[4]. In addition to the mechanical vibration characteristics
of the propellers which help the quadcopter to fly safely in
optimal conditions [5].

Ensuring drone stability is an important task for ensure a
safety flying. So, to stabilize a quadcopter there are many
different regulators used. The most important and widely
used regulators in the field of drones are: PID and LQR [6-
7]. In addition, other different hybrid regulators can be
used (P-LQR, PD-LQR and PD2-LQR) [8]. However, the
PID has the ability to correct the error and apply accurate
and optimal control using three control terms: proportional,
integral and derivative. As for the LQR is a method that
used to find the optimal control action that ensure a high
stability and performance to the system by reducing the
cost J value using two matrices Q and R, where Q is a
square matrix with rows equal the number of states, and R
is square matrix with rows equal to the number of inputs.
Also, many artificial intelligent techniques based on
Artificial Neural Networks (ANN) are used for improving
the response of the PID regulator and make the system
more reliable [9-10].

To develop a quadcopter model under MATLAB
(Simulink), it is important to understand the quadcopter
behaviour and its movements (Altitude, Roll, Pitch, and
Yaw). In addition to understand the relation between the
different equations, there are different ways to simulate a
quadcopter model on MATLAB. The different
mathematical equations of a quadcopter can be used to
create a Simulink model in several ways [11-12]. A
mechanical model can be developed based on Simscape
Multibody library with the help of an electric library to
simulate the motors [13].

In this work, we studied the x-type, where in this type we
can control the three movements (roll, pitch, yaw) through
pairs of motors. Firstly, to achieve a roll movement, the
speed of the two motors on the left must be increased, and
the speed of the two motors on the right must be decreased.
This applies torque around the x-axis to obtain a rotational

mailto:a.lakehal@univ-soukahras.dz

Scientific Bulletin of the Electrical Engineering Faculty – Year 22 No.2 (47) ISSN 2286-2455

39

movement this movement is coupled with a translational
movement along the y-axis. Secondly, to achieve a pitch
movement, the speed of the two motors on the front must
be increased, and the speed of the two motors on the back
must be decreased. This applies torque around the y-axis to
obtain a rotational movement this movement is coupled
with a translational movement along the x-axis. Finally,
the yaw movement can be produced when the two diagonal
motors rotate clockwise while the other two diagonal
motors rotate counter clock wise. The main objective of
the simulation in MATLAB using Simscape library is to
study the aircraft performance in a better efficiency, where
we can achieve and control the aircraft stability in its four
basic movements.

2. EQUATIONS AND METRICS

2.1 The equations used in the model.

To calculate the forces on the three axes generated by each
motor, the following equations are used:

F𝑥𝑥𝑥𝑥 = TF ∗ sin(y) (1)

F𝑦𝑦𝑦𝑦 = TF ∗ sin(x) (2)

Fz = �((TF ∗ cos(x))2 + ((TF ∗ cos(y))2 (3)

To calculate the thrust force the equation (4) is used:

Thrust = D3 ∗ Pitch ∗ RPM2 ∗ 10−10 (4)

2.2 Command Algorithms

𝐌𝐌𝐌𝐌𝟏𝟏𝟏𝟏 = 𝐓𝐓𝐓𝐓 + 𝐑𝐑𝐑𝐑 + 𝐏𝐏𝐏𝐏 – 𝐘𝐘𝐘𝐘 (5)
𝐌𝐌𝐌𝐌𝟐𝟐𝟐𝟐 = 𝐓𝐓𝐓𝐓 – 𝐑𝐑𝐑𝐑 + 𝐏𝐏𝐏𝐏 + 𝐘𝐘𝐘𝐘 (6)
𝐌𝐌𝐌𝐌𝟑𝟑𝟑𝟑 = 𝐓𝐓𝐓𝐓 – 𝐑𝐑𝐑𝐑 – 𝐏𝐏𝐏𝐏 – 𝐘𝐘𝐘𝐘 (7)
𝐌𝐌𝐌𝐌𝟒𝟒𝟒𝟒 = 𝐓𝐓𝐓𝐓 + 𝐑𝐑𝐑𝐑 – 𝐏𝐏𝐏𝐏 + 𝐘𝐘𝐘𝐘 (8)

2.3 PID Equation

The PID regulator, also called PID corrector (proportional,
integral, derivative) is a control system that improves the
systems performance.

The following equation shows the PID command:

Table 1. PID coefficients

PID Coefficients
Kp Ki Kd

Roll 0.5 0.4 0.5
Pitch 0.5 0.4 0.5
Yaw 1 0.5 0.9

Altitude 0.2 0.2 0.1

In Table 2, mechanics parameters and metrics are
presented.

Table 2. Mechanics parameters and metrics

Parameters Value / Units
Weight of drone (m) 0.49 (kg)

Speed of motor (RPM)
Propellers size D/Pitch –08/4.5 (inches)

Thrust-ForceTF, Fx, Fy,
and Fz one force(Oz), and Newton (N)

x, y, z Meter (m)

Ix, Iy, Iz [0.00266, 0.00266, 0.0027]
(kg.m2)

Angles (roll, pitch, yaw) (rad)
Speed (m/s)

Mi motors
T, R, P, Y (Thrust, Roll, Pitch, Yaw)

3. SIMULATION

Computer or digital simulation refers to executing a
computer program to simulate a real and complex physical
phenomenon. So, a built in Simscape library under
MATLAB used to simulate a prototype of quadcopter. The
figures below show the important blocks and the global
model.

To study the stability of the quadcopter, the regulator PID
is used with the model. Each movement has a specific
regulator (Figure 1).
• Roll PID regulator.
• Pitch PID regulator
• Yaw PID regulator
• Altitude PID regulator

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = 𝐾𝐾𝐾𝐾 𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) + 𝐾𝐾𝐾𝐾 ∫ 𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 + 𝐾𝐾𝐾𝐾
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

(9)
𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

After studying and improving the system, we were able to
obtain the constants shown in (Table 1), which are the
right values for the stability of the system.

Figure 1. PID regulator model for each movement

Scientific Bulletin of the Electrical Engineering Faculty – Year 22 No.2 (47) ISSN 2286-2455

40

Each motor must have a model (electrical model) using
electrical tools under Simscape library as shown in the
(Figure 2).

Figure 2. Brushless Direct Current motor (BLDC) motor
model

Figure 3 shows how the control commands are linked to
control the four movements of the quadcopter, each
character for a specific motor (U, L, D, R).

After we calculate the thrust of each motor, we must
calculate the force along of each axis. From Figure 4, we
see how the forces along of the three axes can be
calculated.

The software SolidWorks is used to design the quadcopter
structure. At first, the base plate is simulated, arms to
support motors then the propellers blades and
motors. After that the model is uploaded on MATLAB as
shown in the (Figure 5).

Figure 3. Command Algorithms model

Figure 4. Forces along of the three axes (x, y, and z)

Figure 5. Quadcopter structure model using Simscape
multibody.

Figure 6 shows the quadcopter structure in the mechanics
explorer under MATLAB environment:

Figure 6. Quadcopter in Mechanics Explorer

Scientific Bulletin of the Electrical Engineering Faculty – Year 22 No.2 (47) ISSN 2286-2455

41

To develop the global model, it is necessary to understand
the behaviour of the quadcopter and its movements. It is
known that the plane has six (6) degrees of freedom, but
only four basic movements. So, it is easy to choose the
variables that cause the quadcopter to move in different
directions.
• Control the altitude along the vertical z-axis: Altitude.
• Control of rotation around the x-axis: Roll.
• Control of rotation around the y-axis: Pitch.
• Control of rotation around the z-axis: Yaw

And know the relationships between the different blocks
and models of the quadcopters (regulator, motors model,
command algorithms model, and forces model).

Figure 7 shows the global model of the quadcopter:

Figure 7. The quadcopter global model

4. RESULTS AND DISCUSSION

After developing the quadcopter model, the most important
parameter to be studied is the aircraft stability during the
performance of its four basic movements avoiding any
external perturbations.

Then, the PID regulators must be tuned and adjusted.
There are four movements, so we have four PID
regulators. Each regulator has three constants (kp, ki, kd).
All these constants are adjusted until optimal stability is
gotten (Table 1).

4.1 Altitude results

In order to obtain a vertical movement, it is necessary that
all the lifting force is opposed to the force of gravity along
the z-axis. On the other hand, the lifting force created by
each motor must be the same to prevent overturning of the
quadcopter. For this, the thrust produced by motors must
be identical.

The up and down movement is obtained by changing the
speed of motors rotation. If the thrust force is greater than
the weight of the quadcopter, the movement is upward, and
if it is less than the weight of the quadcopter, the
movement is downward.

In the (Figure 8) we can see the stability on the z-axis.
When, we give a command to the drone to climb a height
of five meters, the PID regulator adjust the velocity of the
quadcopter to stabilize at the given height command after
about six seconds, which represent a good result compared
with the literature.

Scientific Bulletin of the Electrical Engineering Faculty – Year 22 No.2 (47) ISSN 2286-2455

42

Figure 9. Roll command and response (Roll angle,

acceleration, velocity, and position)

4.3 Pitch movement

This movement is similar to that of rolling. When a torque
is given around the y-axis, it rotates the plane at a specific
angle. This movement produces another movement along
the x-axis. This allows the drone to go forward or
backward. To stabilize the movement along the x-axis, the
PID parameters are tuned for the Pitch movement. Figure
10 shows the drone's stability along the x-axis.

Figure 8. Altitude command and response (Altitude, Motor
speed, velocity, and acceleration)

4.2 Roll results

The roll movement is done when a torque is given around
the x-axis. This torque rotates the plane at a specific angle.
This movement produces another movement along the y-
axis. This allows the drone to go left or right.

To stabilize the movement along the y-axis, the PID
parameters are tuned for the roll movement. Figure 9
shows the drone's stability along the y-axis.

Figure 10. Pitch command and response(Pitch angle,
acceleration, velocity, and position)

4.4 Yaw results

The yaw movement makes the drone change her direction.
When a torque is given around the z-axis using the

Scientific Bulletin of the Electrical Engineering Faculty – Year 22 No.2 (47) ISSN 2286-2455

43

diagonals motors, the torque rotates the plane at a specific
angle around the z-axis. To stabilize the Yaw movement
around the z-axis we have tuned the PID parameters to
ensure the stabilization.

Figure 11 shows the drone’s stability around the z- axis.

Figure 11. Yaw command and response

5. CONCLUSIONS

The Simulink quadcopter model was introduced using the
Simscape library under MATLAB and a PID controller to
study the stability of a quadcopter in real time. After
giving the motion command and measuring the output, the
output error was calculated and then adjusted the error
using a PID controller. The results were transmitted
through the control algorithms to the kinetic model in the
form of electrical energy, which rotates the motors, the
latter produces a lift force, and this force can move the
quadcopter.

When we ordered the quadcopter to climb to a height of
three meters, it stabilized at this height in about seven
seconds which is a good result according to the proposed
system in this paper and compared to the literature. Also
when the quadcopter is ordered to go left or right by giving
the Roll angle about six or –six degrees, it stabilized in
about eight seconds which also represent a nice result. The
third result of this study is when the quadcopter is ordered
to go forward or backward by giving the Pitch angle about
six or -six degrees, the quadcopter stabilized in about eight
seconds. Finally, the quadcopter too stabilized in the yaw
movement in about eight second on the one hand and in
the other hand the period of time for the drone stability of
was so close due to the fact that the design of the
quadcopter is symmetric.

6. REFRENCES

[1] Khaled Hassan M, Ayman Shehata T, Abdelrady OE.

Design and Manufacturing of X-Shape Quadcopter.
International Journal of Engineering Research & Science
2022; 8(4): 12–20.

[2] Jaehyun Y, Jaehyeok D. Optimal PID control for hovering
stabilization of quadcopter using long short-term memory.
Advanced Engineering Informatics 2022; 53: 101679.

[3] Trenev I, Tkachenko A, Kustov A. Movement stabilization
of the parrot mambo quadcopter along a given trajectory

based on PID controllers. IFAC Papers On Line 2021;
54(13): 227-232.

[4] Polivanov P. A, Sidorenko A. A. Aerodynamic
Characteristics of a Quadcopter with Propellers. In AIP
Conference Proceedings 2351, 040053, 2021.

[5] Faraz A, Anamika B, Pushpendra K, Pravin P. Patil.
Modeling and Mechanical Vibration characteristics analysis
of a Quadcopter Propeller using FEA. In IOP Conf. Series:
Materials Science and Engineering 577, 012022, 2019.

[6] Leszek C, Krzysztof W. Optimizing PID controller gains to
model the performance of a quadcopter. Transportation
Research Procedia 2019; 40: 156-169.

[7] Faraz A, Pushpendra K, Anamika B, Pravin P. Patil,
Simulation of the Quadcopter Dynamics with LQR based
Control, Materials Today: Proceedings, Volume 24, Part 2,
2020, Pages 326- 332.

[8] Mohamad Norherman S, Parvathy R, Nurulasikin M S. An
effective proportional-double derivative-linear quadratic
regulator controller for quadcopter attitude and altitude
control. Automatika 2021; 62(3-4): 415-433.

[9] Yoon G. Y, Yamamoto A, Lim H. O., Mechanism and
neural network based on PID control of quadcopter. In 16th
International Conference on Control, Automation and
Systems (ICCAS), 19-24, 2016.

[10] Nguyen N. P, Mung N. X, Thanh H. L. N. N, Huynh T. T,
Lam N. T, Hong S. K. Adaptive Sliding Mode Control for
Attitude and Altitude System of a Quadcopter UAV via
Neural Network. In IEEE Access, vol. 9; 40076-40085,
2021.

[11] Waqas M, Sakhawat H. Developing of the smart
quadcopter with improved fight dynamics and stability.
Journal of Electrical Systems and Information Technology
2019; 6:6.

[12] González-Hernández I, Salazar S, Lozano R, Ramírez-
Ayala. Real-Time Improvement of a Trajectory-Tracking
Control Based on Super-Twisting Algorithm for a
Quadrotor Aircraft. Drones 2022; 6: 36.

[13] Budnyaev V. A, Filippov I. F, Vertegel V. V and Dudnikov
S. Y. Simulink-based Quadcopter Control System Model.
In 1st International Conference Problems of Informatics,
Electronics, and Radio Engineering (PIERE), 246-250,
2020.

 Int. J. Automation and Control, Vol. X, No. Y, xxxx 1

 Copyright © 20XX Inderscience Enterprises Ltd.

A quadrotor controlled in real-time using hand
gestures and ROS2 multi-node communication within
GAZEBO 3D environment

Hamza Djizi
INFRA-RES Laboratory,
Department of Mechanical Engineering,
University of Souk Ahras,
P.O. Box 1553, Souk-Ahras,
41000, Algeria
Email: hamzadjizi@gmail.com

Abdelaziz Lakehal* and Zoubir Zahzouh
Laboratory of Research on Electromechanical and Dependability,
University of Souk Ahras,
P.O. Box 1553, Souk-Ahras,
41000, Algeria
Email: lakehal21@yahoo.fr
Email: z.zahzouh@univ-soukahras.dz
*Corresponding author

Abstract: This paper introduces a novel way of designing and controlling a
quadrotor prototype using hand gestures, utilising the Robotic Operating
System 2 (ROS2) and GAZEBO11 3D environment. A C++-based plug-in was
created for GAZEBO, while the cross-platform pipeline framework Media-Pipe
was used to manage the quadrotor’s movements through hand gestures. The
PID regulator was utilised to enhance the movements’ accuracy and
responsiveness, leading to a more efficient and precise response to user
commands for a better user experience. The obtained results demonstrated that
the PID regulator improved the response of the quadrotor to hand gestures with
greater accuracy.

Keywords: Robotic Operating System 2; ROS2; quadrotor; GAZEBO; control;
communication; hand gestures.

Reference to this paper should be made as follows: Djizi, H., Lakehal, A. and
Zahzouh, Z. (xxxx) ‘A quadrotor controlled in real-time using hand gestures
and ROS2 multi-node communication within GAZEBO 3D environment’,
Int. J. Automation and Control, Vol. X, No. Y, pp.xxx–xxx.

Biographical notes: Hamza Djizi received his Master’s degree from the
University of Skikda, Algeria, and currently working toward his PhD in
Electromechanical Engineering at the University of Souk Ahras, Algeria. His
research interests include system control, robotics and artificial intelligence
methods.

 2 H. Djizi et al.

Abdelaziz Lakehal received his PhD and the Habilitation to supervise research
activities in Electromechanical Engineering, in 2013, and 2016 respectively. He
is currently a Full Professor at the University of Souk Ahras. His research
interests include maintenance, quality reliability and safety, fault diagnosis and
prediction, electromechanical engineering.

Zoubir Zahzouh received his Doctorate in Electromechanical Specialty from
the Skikda University, Algeria in 2015. He is currently an Associate Professor
at the University of Souk Ahras. His areas of interest include power systems
optimisation, power quality, power systems protection and renewable energies.

1 Introduction

Quadrotors have rapidly advanced in the last decade with increased hardware and
software capabilities, relying more on artificial intelligence for complex tasks (Spanaki
et al., 2022). The importance of drones in human society has grown due to their high
efficiency and low cost. As a result, researchers and scientists have become highly
interested in this type of aircraft. However, a reliable and precise controller is still
necessary for these aircraft to perform tasks with minimal errors (Shirzadeh et al., 2021).
To meet this need, The ROS system (ROS Docs, 2022) has gained popularity for its high
efficiency and powerful software platform, particularly in the industrial field, which
makes companies adopt it widely for research and development. This platform helps
them move from research and prototyping to deployment and production.

There are two main versions of this system (ROS and ROS2). The community
supports ROS on various Linux distributions, although it was first developed on Ubuntu.
Robotic Operating System 2 (ROS2) is developed on Ubuntu, Windows, and MacOS
(ROS docs). Additionally, an open-source 3D robotics simulator called GAZEBO
(GAZEBO Docs, 2022) is used with ROS. This software is based on physics engine and
OpenGL rendering, and it supports various sensors such as cameras, lidars, GPS, etc. The
importance of GAZEBO appears during the manufacturing process, as it can save time
and money to produce a cheaper product (gazebo APIs). There are an increasing demand
for ROS applications in automation systems (Erős et al., 2019), particularly in the field of
unmanned aerial vehicles (Orozco Soto et al., 2022). ROS helps researchers to develop
more reliable solutions to ensure system robustness and autonomous mission success
(García and Molina, 2022; Omar, 2022). ROS applications are also being utilised in the
field of mobile industrial robots, which can be programmed to carry out repetitive tasks
with high efficiency and accuracy (Puck et al., 2020).

One of the main challenges in programming a quadrotor is maintaining stability
during flight. This can be achieved by using various regulators, such as PID regulators,
that are integrated with the control commands to improve performance and maintain
stability (Goud et al., 2022; Trenev et al., 2021). The PID regulator is widely used in
industry for automatic process control, including in drones due to its ease of use and
advantages (Yoon and Doh, 2022).

However, various controllers were developed to address the stability issues, such as
linear controllers, nonlinear controllers, and learning-based control techniques. LQR and
hybrid LQR offer higher efficiency and improved the quadrotor performance (Shauqee
et al., 2021). The linear quadratic Gaussian controller uses feedback and optimal control

 A quadrotor controlled in real-time using hand gestures 3

theory to regulate and control dynamic systems with high performance and stability
(Fessi and Bouallègue, 2019; Kumar et al., 2023). The H∞ controller is a popular robust
control system used in aerospace and automotive industries to achieve high performance
and stability for complex linear time-invariant systems (Bellahcene et al., 2021). Model
predictive control is an advanced control system used for regulating dynamic systems,
especially quadrotors (Meradi et al., 2022; Zhao and Wu, 2023). Fuzzy logic and
artificial neural networks are learning-based control techniques that can also improve
quadrotor stability and performance (Abedzadeh Maafi et al., 2022; Dey et al., 2022;
Guettal et al., 2022; Pakro and Nikkhah, 2022).

When the quadrotor is created and evaluated, it can be fabricated using the on-axis
microstereolithography (OMSL) method, which is a method that uses layer-by-layer
photopolymerisation to create three-dimensional (3D) components. It employs a laser
beam to harden a liquid photopolymer to produce detailed, high-resolution structures.
This technique is used to print the 3D quadrotor models created with 3D modelling
software. The OMSL printer then uses the design to steer the laser beam into the liquid
resin, resulting in the construction of the quadrotor’s components (Gandhi et al., 2013).
Bulk lithography is also a technology used to produce microelectronic components and
integrated circuits. They are a type of photolithography technology that fabricates
quadrotor components using light-sensitive materials and masks. By enforcing spatial
variation of laser intensity at every location in a single-layer scan, this technique
produces a variable depth 3D microstructure (Gandhi and Bhole, 2013).

A quadrotor control system that uses Media-Pipe, GAZEBO, and ROS2 is presented
in this work (Figure 1). Media-Pipe is a framework for multimodal machine learning
pipelines, GAZEBO is a robotics simulation environment, and ROS2 is an open-source
robot operating system. Media-Pipe processes quadrotor sensor data and generates
control commands based on hand gestures, which are then published and subscribed
between the nodes using ROS2, while GAZEBO simulates the 3D model, flight
dynamics, and environment of the quadrotor. By combining Media-Pipe, GAZEBO, and
ROS2, the quadrotor model can be realistically and scalably tested and evaluated without
physical hardware.

Research highlights:

 introduction to quadrotor design and control using ROS2 and GAZEBO

 using MediaPipe framework to control the quadrotor with hand gestures

 PID regulator implementation to improve quadrotor response and stability

 future research and development can be guided by this work.

This study provides a detailed explanation of building a quadrotor model in ROS2 and
GAZEBO and controlling it through hand gestures using ROS2 nodes. The quadrotor
model’s response is enhanced by the PID regulator, which improves stability in four basic
movements, indicating the system’s effectiveness and potential for future development.
However, in Section 2, the ROS2 project architecture is presented. Section 3 details how
to create the quadrotor 3D model with URDF. Section 4 describes the development of a
C++ GAZEBO plug-in based on Newton’s second law of motion to manage the various
movements of the quadrotor. Section 5 goes through how to control the quadrotor with
hand gestures. Section 6 describes the system’s implementation. Section 7 demonstrates
and discusses the communication between the different ROS2 nodes to control and

 4 H. Djizi et al.

monitor the system. The simulation results pertaining to the system are presented in
Section 8. Finally, conclusions and future work are mentioned in Section 9.

Figure 1 A graphical abstract that illustrates the process of controlling the quadrotor
(see online version for colours)

2 Quadrotor project architecture

This project builds a quadrotor using the recommended installation of ROS2 (Humble
Hawksbill) on Ubuntu Linux – Jammy Jellyfish (22.04). The project’s architecture is
illustrated in Figure 2, with the setup environment for installed ROS2 packages and
libraries serving as the underlay. Ubuntu Jammy currently supports ROS2 Humble
Hawksbill packages. The overlay serves as the setup environment for the workspace
packages that were built for the drone project. Three packages were created, each one
dedicated to a specific part of the project. The first package, hamza_msgs, contains
interfaces used for communication between ROS2 applications, including messages,
services, and actions. The second package, drone_pkg, contains the quadrotor model
description designed using a unified robot description format based on Extensible
Markup Language (XML). In addition to the python scripts programmed to recognise
hand gestures as commands using the Media-Pipe framework. The third package,
control_pkg, contains a C++ plug-in responsible for controlling the quadrotor’s motors,
sensors, and other components in GAZEBO11. This plug-in is called from the URDF file.
Furthermore, this plug-in is intended to receive commands from the control node, and
send data to the visualisation node.

To begin working with ROS2, a new directory must be created to contain the
workspace called drone_ws. Create packages within the ‘src’ folder under the created
directory. These packages serve as a container for ROS2 code. The packages must then

 A quadrotor controlled in real-time using hand gestures 5

be built to obtain the generated files for the project. Finally, to launch the packages, the
installation file must be sourced using the terminal.

Figure 2 ROS2 project architecture (see online version for colours)

3 Create quadrotor 3D model

GAZEBO is an invaluable tool for robotics development, as it provides a realistic 3D
environment to simulate real-world physics and test the performance of robots with
various sensors. It is useful when the hardware is unavailable, as it allows developers to
build and test robot prototypes in a virtual environment. Even when the hardware is
available, GAZEBO is still an important tool for testing robots before they are
implemented in the real world. With its open-source nature, GAZEBO is a powerful and
efficient tool for robotics development.

URDF is an XML language used with ROS and GAZEBO to create 3D quadrotors,
where the quadrotor model of this work consists of links connected between each other
through joints, as a parent and a child. Figure 3 demonstrates the different parts of the
quadrotor. The rectangles denote links and the ellipses denote the joints. The
base_footprint is linked to the base_link through the fixed chassis_joint, then the two
arms (arm1_link and arm2_link) are linked to the base_link through two fixed joints
(arm1_joint and arm2_joint), then four motor_links and four foot_links are linked to the
two arm_links through fixed joints. Finally, the four propeller_links are linked to the four
motor_links through four continuous joints in order to move the propellers freely. To
control the 3D model in the GAZEBO, the C++ plug-in must be added to the URDF files.

 6 H. Djizi et al.

Figure 3 Hierarchical graph from quadrotor model (URDF) (see online version for colours)

4 Create GAZEBO plug-in

To control the 3D model in GAZEBO, a new plug-in must be created with the help of the
GAZEBO APIs based on C++ language, where this plug-in gives the URDF model
greater functionality and more flexibility to connect between ROS2 nodes for sending
and receiving data. The plug-in must be developed until the quadrotor can respond to the
on_off, take_off, and landing commands, it can also respond to the command velocities
(x_cmd, y_cmd, z_cmd, and yaw_cmd), and it can fly through different states (taking_off,
flying, landing, and low_battery state). Additionally, A PID regulator should also be
included in the model since it may considerably enhance the quadrotor’s reaction and
stability during flight. The quadrotor can maintain its ideal attitude and altitude more
accurately and consistently by utilising this regulator, as well as providing a more robust
response to external disturbances. This ensures the stability of the quadrotor, and it can
carry out intended functions with better accuracy and dependability.

The GAZEBO plug-in that controls the quadrotor’s movement must be based on the
principles and physical laws that govern its movement in 3D space. The forces created by
the spinning of the quadrotor’s four propellers govern its behaviour. These forces can be
employed to control its movement. According to Newton’s second law of motion, the
quadrotor’s acceleration is determined by two variables: the total net force created by the
four propellers and the quadrotor’s mass. Additionally, the forces created by the
propellers must be included when calculating the drag and lift forces experienced by the
quadrotor in flight.

 A quadrotor controlled in real-time using hand gestures 7

4.1 Newton’s second law of motion

Newton’s second law of motion is used to determine the acceleration of the quadrotor in
response to the net force generated by its propellers.

F ma (1)

1 2 3 4F F F F mg ma (2)

Fi force generated by each propeller (N)

M quadrotor’s weight (kg)

a quadrotor acceleration (m/s2)

g gravitational acceleration (m/s2).

4.2 Hovering flight condition

Hovering flight is a stationary flight where the quadrotor remains stable in the air without
any movement. This is achieved when the total thrust generated by the propellers is equal
to the mass of the quadrotor multiplied by the gravitational force. By maintaining this
balance, the quadrotor is able to remain in a stationary position in the air.

0ma (3)

1 2 3 4mg F F F F (4)

4.3 Vertical flight condition

The vertical motion of a quadrotor can be achieved by controlling the thrust of its rotors
when it ascends and descends. By adjusting the thrust of each rotor, the quadrotor can
move up and down, allowing it to generate a vertical force.

 Ascend: The quadrotor can ascend when the sum of the forces generated by the
propellers exceeds its weight, which is equal to its mass multiplied by the
gravitational force.

0ma (5)

1 2 3 4mg F F F F (6)

 Descend: The quadrotor can descend when the sum of forces generated by the
propellers is less than its weight multiplied by the gravitational force.

0ma (7)

1 2 3 4mg F F F F (8)

4.4 PID regulator

To improve the performance of the quadrotor for the four movements, the PID regulator
should be implemented using a header file containing source code written in C++

 8 H. Djizi et al.

programming language. Then it must be added to the main program file (GAZEBO
plug-in) using the #include directive. Equation (9) will utilise for calculating the integral
using the resulting velocity error between the desired velocity and the current velocity, in
addition to the updated running time. Equation (10) will employ for calculating the
derivative using the error and the previous error along with the up-to-date running time.
Equation (11) calculates the PID response by summing three parameters: proportional,
integral, and derivative. Furthermore, the PID regulator must be tuned to ensure optimal
performance of the quadrotor. This can be done by adjusting the PID parameters, such as
the proportional, integral, and derivative gains.

()integral integral error dt (9)

(_)derivative error previous error dt (10)

p i dPID K error K integral K derivative (11)

4.5 Moment of inertia

To design a simple prototype using URDF files, boxes and cylinders can be used as
components of the quadrotor. Each component’s inertia matrix can be calculated from its
mass, length, width, height, and radius based on box and cylinder characteristics. The
inertia matrix can be calculated using the two following formulas:

1 Inertia matrix of a box:

2 2

2 2

2 2

1
0 0

2
1

0 0
12

1
0 0

12

xx xy xz

box yx yy yz

zx zy zz

m y z
I I I

I I I I m x z

I I I
m x y

 (12)

2 Inertia matrix of a cylinder:

2 2

2 2

2

1
3 0 0

12
1

0 3 0
12

1
0 0

2

xx xy xz

cylinder yx yy yz

zx zy zz

m R L
I I I

I I I I m R L

I I I
mR

 (13)

Where Table 1 presents the physical quantities used to calculate the inertia matrix.

5 Hand gestures control node

The quadrotor control will use ROS2’s closed-loop system and real-time computing,
which is a crucial characteristic of autonomous vehicles. The quadrotor prototype will be
tested and verified for successful takeoff, flight, and landing using hand gestures,

 A quadrotor controlled in real-time using hand gestures 9

utilising the Python Media-Pipe library’s powerful capabilities. This library allows
developers to rapidly create real-time applications that can detect and track hand
movements. The Python Media-Pipe library is an excellent choice for hand gesture-based
applications due to its robust feature set. Developed by Google, Media-Pipe is an
open-source framework that simplifies the creation of custom machine-learning solutions
for live and streaming media. The framework enhances computer vision applications and
has several advantages, including being open-source, free, and cross-platform compatible
with Android, iOS, Mac, web, and Linux. Media-Pipe also supports common hardware
such as GPUs, CPUs, and TPUs, which enables fast ML inference and video processing.
This framework offers a variety of machine-learning solutions, such as FaceDetection,
FaceMesh, ObjectDetection, HandsDetection, and more.

Table 1 Physical quantities used for inertia matrix

Type Symbol Description Physical quantity Unit

Box Ibox Box moment of inertia MomentOfInertia kg.m2

m Mass Mass kg

x Length Length m

y Width Width m

z Height Height m

Cylinder Icylinder Cylinder moment of inertia MomentOfInertia kg.m2

m Mass Mass kg

L Length Length m

R Radius Radius m

Figure 4 Diagram of the steps followed for quadrotor control using hand gestures
(see online version for colours)

The quadcopter control will be based on the HandDetection solution in ROS2
environment. The control commands will be executed according to the hand gestures,
which will be interpreted using 21 3D coordinates. The x and y values were obtained

 10 H. Djizi et al.

from the size of the video, while the z value was taken from the image depth how the 21
landmarks must be taken is shown in Figure 4.

The control node is dedicated to interpreting commands from hand gestures using the
latest artificial intelligence and computer vision technology. To do this, the Media-Pipe
library from the Python language is used to detect human hands, extracting 21 landmarks
for each hand. These landmarks are then used to recognise and classify the hand gestures,
which are then interpreted and published as commands to the quadrotor node
subscriptions through topics based on certain conditions. This allows for a seamless and
intuitive way to control the quadrotor with just the movement of hands. The diagram
presented in Figure 4 illustrates the architecture for utilising Media-Pipe hand gestures
with ROS2 to control the quadrotor model.

5.1 Taking-off or landing

To quickly and easily get the quadrotor in the air, two-handed gestures can be used.
Firstly, ensure the quadcopter is powered on and your hands are in the correct position in
front of the computer camera. Figure 5(a) shows how to use a two-handed gesture to
initiate take-off, and closing both hands together can initiate landing while in flight as
shown in Figure 5(b). This will signal the quadrotor to begin its descent and land on the
ground.

5.2 Forward, backward, upward, or downward movement

To control the quadrotor’s movement, a right-handed gesture is utilised to move it
forward or backward, and a left-handed gesture is used to move it upward or downward.
The system’s functionality should be tested by performing the appropriate gesture and
observing the quadrotor’s response. If it responds as expected, the system is deemed
operational. The hand gestures for each movement are illustrated in Figure 5: forward
[Figure 5(g)], backward [Figure 5(h)], upward [Figure 5(i)], and downward [Figure 5(j)].

5.3 Right or left movement

The Media-Pipe framework allows for simple manipulation of the quadrotor with a few
hand gestures, enabling left or right movements, and enhancing the overall interactive
and engaging experience for the user. As demonstrated in Figure 5(c), the gesture for
causing the quadrotor to move left is a simple movement of both hands. Similarly,
Figure 5(d) depicts the gesture for the quadrotor to move right, which is also a simple
movement of both hands.

5.4 Yaw movement

The yaw motion can be intuitively controlled through hand gestures. As illustrated in
Figure 5(e), the gesture of both hands will result in a counterclockwise rotation around
the z-axis for the quadrotor, and as shown in Figure 5(f), the gesture of both hands will
result in a clockwise rotation. By performing these gestures in front of the camera, the
user can easily and efficiently control the rotational movement (yaw) of the quadrotor.

 A quadrotor controlled in real-time using hand gestures 11

Figure 5 Hand gestures for control the quadrotor (see online version for colours)

(a) (b)

(c) (d)

(e) (f)

(g) (h) (i) (j)

6 Implementation

To integrate the quadrotor’s model and control programs, they must be connected
through ROS2 interfaces for communication and control. The ROS2 tools can be utilised
to verify and observe the system’s performance. The project must be built with the colcon
tool, sourced, and launched with the ROS2 launch command. Then, the quadrotor model
must be spawned in GAZEBO using the robot_description topic (Figure 6). Simulations
must be conducted to evaluate the system’s outcomes and ensure its proper operation.

 12 H. Djizi et al.

Figure 6 3D model under GAZEBO11 (see online version for colours)

7 Communication between ROS2 nodes

Nodes are the executable files that make things happen in ROS2, these nodes can send
and receive data to the other nodes using topics, services, actions, or parameters. Topics
are a vital element that acts as a bus for nodes to exchange messages using publishers and
subscribers. A node can publish messages to any number of topics simultaneously and
can also have subscriptions to any number of topics. When the project is launched, three
main nodes must be running: The control node, The GAZEBO node (libsetvelocity), and
the visualisation node, as shown in Figure 7(a). The control node is responsible for
controlling the quadrotor’s motion, the GAZEBO node is responsible for simulating the
quadrotor’s environment, and the visualisation node is responsible for displaying the
quadrotor’s state.

Figure 7(b) illustrates the communication between the two nodes [GAZEBO node
(libsetvelocity), and control node] using topics. The control node transmits the hand
gesture commands to the gazebo node. The on_off_state command is transmitted to turn
on the quadrotor through the /dh_drone/on_off_state topic. When the drone is running,
the control node transmits another command for taking off the drone using the
/dh_drone/drone_state topic. When the quadrotor is flying, the control node can transmit
the velocity commands through the /dh_drone/command_velocity topic. The gazebo node
transmits back the drone flight data through data topics to the control node, allowing for
real-time controlling of the quadrotor’s performance.

To enhance and monitor the quadrotor’s performance, the animation function
(FuncAnimation) from the Matplotlib library in Python must be used to plot the position,
velocity, acceleration, force, and torque curves. This function enables the creation of a
real-time animation based on the flight time from Gazebo_sim. The visualisation node
plots the position, force, torque, acceleration, and time data received from the GAZEBO
node (/libsetvilocity) as shown in Figure 7(c) for each movement. This data can be used

 A quadrotor controlled in real-time using hand gestures 13

to analyse the quadrotor’s performance and identify areas of improvement. For example,
the acceleration data can be used to determine the quadrotor’s responsiveness to
commands, while the force and torque data can be used to measure the amount of power
being generated by the motors. By analysing this data, the quadrotor’s performance can
be improved by making adjustments to the motor power, the weight of the quadrotor, or
the chassis design.

Figure 7 (a) Multi-node communication graph (b) Communication between control node and
gazebo node (c) Communication between gazebo node and visualisation node

(a)

(b) (c)

8 Results and discussion

The obtained results show that the system control is able to accurately detect and respond
to the various hand gestures, allowing the quadrotor to take off, land, and perform various
movements such as hovering, turning, and ascending/descending as instructed.
Furthermore, the system is able to respond to the hand gestures in real-time, providing a
smooth and responsive experience.

 14 H. Djizi et al.

8.1 Vertical movement results

The quadrotor’s exceptional altitude performance is demonstrated. The capacity to react
swiftly and precisely to orders is proven, as seen in Figure 8(a), which illustrates velocity.
According to Newton’s second rule, the force is directly proportional to acceleration, as
shown in Figures 8(d) and (b) which display the total thrust produced by the four motors
and acceleration. The displacement variable [Figure 8(c)] shows how the location varies
in response to the required velocity. As seen, movement starts when the velocity is set to
4 m/s and ends when the velocity is set to 0 m/s. The PID regulator’s results are
satisfactory and comparable to those reported in the literature. This contribution
facilitates the quadrotor control by users.

Figure 8 Altitude results, (a) velocity (b) acceleration (c) displacement (d) force
(see online version for colours)

(a) (b)

(c) (d)

8.2 Results of forward and backward movement

Figure 9(a)-(d) depict the quadrotor’s movement along the x-axis, displaying velocity,
acceleration, position, and force results. The quadrotor’s stability during motion is
reflected in the velocity results, with a rise time of under 2 seconds and no overshoot. The
changes in acceleration over time are presented similarly, as they are reflected in
generated force variations (Newton’s second law). The position changes in response to
velocity commands are shown in Figure 9(c), where the quadrotor reaches its desired
position in a few seconds. Force variations along the x-axis are consistent with
acceleration and velocity. These results prove the quadrotor’s successful operation.

 A quadrotor controlled in real-time using hand gestures 15

Figure 9 Linear x results, (a) velocity (b) acceleration (c) displacement (d) force
(see online version for colours)

(a) (b)

(c) (d)

Figure 10 Linear y results, (a) velocity (b) acceleration (c) displacement (d) force
(see online version for colours)

(a) (b)

(c) (d)

 16 H. Djizi et al.

8.3 Results of right and left movement

Similar to the x-axis, the movement along the y-axis is shown in Figure 10, including
velocity, acceleration, position, and force. The velocity figure shows the quadrotor’s
stability during motion with a small rise time of fewer than 2 seconds and no overshoot.
Changes in acceleration over time are illustrated in Figure 10(b), which are reflected in
generated force changes according to Newton’s second law of motion. Finally,
displacement shows the changes in position along the y-axis in response to the velocity
command over time, indicating that the quadrotor can maintain a stable trajectory along
the y-axis.

8.4 Yaw movement results

Figure 11 presents the impressive performance of the quadrotor in controlling angular
motion around the z-axis (yaw motion). The figure includes results for angular velocity,
angular acceleration, rotation, and torque generated around the z-axis. The results
demonstrate the stability in rotational motion around the z-axis over time and the efficient
response to control commands. The acceleration around the z-axis shows the quadrotor’s
ability to quickly and accurately adjust angular velocity in response to commands.
Furthermore, the quadrotor’s ability to generate sufficient torque to adjust angular
velocity and acceleration is presented in Figure 11(d). Overall, the results show that the
developed quadrotor has an impressive ability to accurately and efficiently control the
angular motion around the z-axis.

Figure 11 Yaw results, (a) angular velocity (b) angular acceleration (c) rotation (d) torque
(see online version for colours)

(a) (b)

(c) (d)

 A quadrotor controlled in real-time using hand gestures 17

9 Conclusions

In this work, the operation of a 3D quadrotor model required the use of ROS2, GAZEBO
3D environment, Media-Pipe framework, and hand gestures. However, combining
multiple programming languages such as C++, Python, and URDF proved challenging
and time-consuming. To manage the quadrotor through multi-node communication in
ROS2, it was crucial to have a clear understanding of its behaviour and articulate
physical concepts in a simple manner. The system was designed with three nodes, each
with a specific purpose: the first node received and translated hand gestures, the second
node handled the quadrotor model, and the third node visualised data through animated
graphs. The PID regulator was a critical component of the control system, where the
results showed that the system could respond precisely to hand gestures, accomplishing
the desired tasks with great accuracy. Overall, the system demonstrated the effectiveness
of combining these technologies to operate a 3D quadrotor model.

Future work will involve further development of the quadrotor, creating a
professional model using SolidWorks, converting it to URDF files, controlling it using
ROS2 and GAZEBO, and integrating numerous sensors. The system will contain many
exciting possibilities, involving machine learning and computer vision and integrating
cutting-edge technology to make the system more interactive.

References

Abedzadeh Maafi, R., Etemadi Haghighi, S. and Mahmoodabadi, M.J. (2022) ‘Pareto optimal
design of a fuzzy adaptive sliding mode controller for a three-link model of a biped robot via
the multi-objective improved team game algorithm’, Journal of the Brazilian Society of
Mechanical Sciences and Engineering, Vol. 44, No. 9, p.428, DOI: 10.1007/s40430-022-
03719-0.

Bellahcene, Z., Bouhamida, M., Denai, M. et al. (2021) ‘Adaptive neural network-based robust H∞
tracking control of a quadrotor UAV under wind disturbances’, International Journal of
Automation and Control, Vol. 15, No. 1, p.28, DOI: 10.1504/IJAAC.2021.111747.

Dey, C., Mudi, R.K. and De Maity, R.R. (2022) ‘Stable optimal self-tuning interval type-2 fuzzy
controller for servo position control system’, International Journal of Automation and
Control, Vol. 16, No. 5, p.594, DOI: 10.1504/IJAAC.2022.10048165.

Erős, E., Dahl, M., Bengtsson, K. et al. (2019) ‘A ROS2 based communication architecture for
control in collaborative and intelligent automation systems’, Procedia Manufacturing, Vol. 38,
pp.349–357, DOI: 10.1016/j.promfg.2020.01.045.

Fessi, R. and Bouallègue, S. (2019) ‘LQG controller design for a quadrotor UAV based on particle
swarm optimisation’, International Journal of Automation and Control, Vol. 13, No. 5, p.569,
DOI: 10.1504/IJAAC.2019.101910.

Gandhi, P. and Bhole, K. (2013) ‘Characterization of ‘bulk lithography’ process for fabrication of
three-dimensional microstructures’, Journal of Micro and Nano-Manufacturing, Vol. 1, No. 4,
p.41002, DOI: 10.1115/1.4025461.

Gandhi, P., Deshmukh, S., Ramtekkar, R. et al. (2013) ‘‘On-axis’ linear focused spot scanning
microstereolithography system: optomechatronic design, analysis and development’, Journal
of Advanced Manufacturing Systems, Vol. 12, No. 1, pp.43–68, DOI: 10.1142/
S0219686713500030.

García, J. and Molina, J.M. (2022) ‘Simulation in real conditions of navigation and obstacle
avoidance with PX4/GAZEBO platform’, Personal and Ubiquitous Computing, Vol. 26,
No. 4, pp.1171–1191, DOI: 10.1007/s00779-019-01356-4.

 18 H. Djizi et al.

GAZEBO Docs (2022) [online] https://classic.gazebosim.org/api.

Goud, E.C., Rao, A.S. and Chidambaram, M. (2022) ‘Novel design of PID controllers for minimum
and non-minimum phase time delay processes for enhanced performance’, International
Journal of Automation and Control, Vol. 16, No. 6, p.689, DOI: 10.1504/IJAAC.2022.
10050111.

Guettal, L., Chelihi, A., Ajgou, R. et al. (2022) ‘Robust tracking control for quadrotor with
unknown nonlinear dynamics using adaptive neural network based fractional-order
backstepping control’, Journal of the Franklin Institute, Vol. 359, No. 14, pp.7337–7364,
DOI: 10.1016/j.jfranklin.2022.07.043.

Kumar, A., Mohan Singh, B., Kumar, R. et al. (2023) ‘Development of modified LQG controller
for mitigation of seismic vibrations using swarm intelligence’, International Journal of
Automation and Control, Vol. 17, No. 1, p.1, DOI: 10.1504/IJAAC.2023.10049079.

Meradi, D., Benselama, Z.A., Hedjar, R. et al. (2022) ‘Quaternion-based nonlinear MPC for
quadrotor’s trajectory tracking and obstacles avoidance’, in 2022 2nd International
Conference on Advanced Electrical Engineering (ICAEE), IEEE, Constantine, Algeria,
29 October, pp.1–6, DOI: 10.1109/ICAEE53772.2022.9962052.

Omar, H.M. (2022) ‘Hardware-in-the-loop simulation of time-delayed anti-swing controller for
quadrotor with suspended load’, Applied Sciences, Vol. 12, No. 3, p.1706, DOI: 10.3390/
app12031706.

Orozco Soto, S.M., Ruggiero, F. and Lippiello, V. (2022) ‘Globally attractive hyperbolic control
for the robust flight of an actively tilting quadrotor’, Drones, Vol. 6, No. 12, p.373,
DOI: 10.3390/drones6120373.

Pakro, F. and Nikkhah, A.A. (2022) ‘A fuzzy adaptive controller design for integrated guidance
and control of a nonlinear model helicopter’, International Journal of Dynamics and Control,
DOI: 10.1007/s40435-022-00993-7.

Puck, L., Keller, P., Schnell, T. et al. (2020) ‘Distributed and synchronized setup towards real-time
robotic control using ROS2 on Linux’, in 2020 IEEE 16th International Conference on
Automation Science and Engineering (CASE), IEEE, Hong Kong, August, pp.1287–1293,
DOI: 10.1109/CASE48305.2020.9217010.

ROS Docs (2022) [online] https://docs.ros.org.

Shauqee, M.N., Rajendran, P. and Suhadis, N.M. (2021) ‘An effective proportional-double
derivative-linear quadratic regulator controller for quadcopter attitude and altitude control’,
Automatika, Vol. 62, Nos. 3–4, pp.415–433, DOI: 10.1080/00051144.2021.1981527.

Shirzadeh, M., Amirkhani, A., Tork, N. et al. (2021) ‘Trajectory tracking of a quadrotor using a
robust adaptive type-2 fuzzy neural controller optimized by cuckoo algorithm’, ISA
Transactions, Vol. 114, pp.171–190, DOI: 10.1016/j.isatra.2020.12.047.

Spanaki, K., Karafili, E., Sivarajah, U. et al. (2022) ‘Artificial intelligence and food security:
swarm intelligence of AgriTech drones for smart AgriFood operations’, Production Planning
& Control, Vol. 33, No. 16, pp.1498–1516, DOI: 10.1080/09537287.2021.1882688.

Trenev, I., Tkachenko, A. and Kustov, A. (2021) ‘Movement stabilization of the parrot mambo
quadcopter along a given trajectory based on PID controllers’, IFAC-PapersOnLine, Vol. 54,
No. 13, pp.227–232, DOI: 10.1016/j.ifacol.2021.10.450.

Yoon, J. and Doh, J. (2022) ‘Optimal PID control for hovering stabilization of quadcopter using
long short term memory’, Advanced Engineering Informatics, Vol. 53, p.101679,
DOI: 10.1016/j.aei.2022.101679.

Zhao, D. and Wu, R. (2023) ‘Lyapunov-based MPC for nonlinear process with on-line triggered
linearized model’, International Journal of Automation and Control, Vol. 17, No. 1, p.1,
DOI: 10.1504/IJAAC.2023.10046543.

A PyQt6-Based Platform for Real-Time Control and Monitoring of a Quadrotor Multibody

System Using ROS2 and Gazebo

Hamza Djizi1* , Zoubir Zahzouh2

1 Department of Mechanical Engineering, University of Souk Ahras, Souk-Ahras 41000, Algeria
2 Laboratoire de Recherche en Électromécanique et Sûreté de Fonctionnement, LRESF Laboratory University of Souk Ahras,

Souk-Ahras 41000, Algeria

Corresponding Author Email: hamzadjizi@gmail.com

https://doi.org/10.18280/jesa.560308 ABSTRACT

Received: 13 April 2023

Accepted: 12 June 2023

This paper presents a PyQt6 server-based application design for controlling a quadrotor

multibody system in a simulated environment using the Gazebo 3D model and ROS2 on

Linux. The combination of PyQt6 with ROS2 offers an intuitive graphical interface that

simplifies access to control parameters and flight modes. The system incorporates a unique

Gazebo plugin that connects to a proportional-derivative (PD) controller, providing stable

quadrotor flight control. Notably, this plugin facilitates precise quadrotor movements and

establishes reliable communication between the server and quadrotor, distinguishing it

from other plugins. Moreover, simulation results demonstrate the effectiveness of the

proposed PyQt6 server-based application in real-time quadrotor control. The results

exemplify the system's capability to achieve stable and precise quadrotor movement by

effectively controlling motion along the three axes (x, y, and z) along with yaw. However,

the primary contribution of the system presented in this paper lies in the development of a

robust PyQt6 server-based application designed to control a quadrotor multibody system.

Furthermore, the system exhibits inherent potential for extension to encompass the control

of a physical quadrotor, thereby substantiating its viability in real-world applications.

Keywords:

quadrotor multibody system, ROS2,

GAZEBO, control, server-client, PyQt6,

proportional-derivative (PD) controller, real-

time control

1. INTRODUCTION

Quadrotors are a type of unmanned aerial vehicle (UAV)

with four motors, allowing them to generate force and torque.

Although possessing six degrees of freedom, only the four

actuators are required to control all fundamental movements.

Despite this, there is instability and limited maneuverability

because of the low number of actuators. Consequently,

researchers have developed advanced control algorithms and

feedback systems, such as linear and non-linear controllers, to

enable precise control command adjustment by considering

the system's input and output data. Integrating these

controllers into the quadrotor's underactuated system can

significantly enhance its stability and maneuverability. For

instance, linear and non-linear controllers can utilize the

output data from the system to determine the necessary force

and torque before modifying the input instruction accordingly.

Thus, this allows the quadrotor to remain stable and agile even

in challenging flying conditions.

Quadrotors have recently been employed in research and

development as multibody systems, which are structures

fabricated of several bodies or parts connected by joints. To

investigate and model these systems, researchers frequently

utilize software like Gazebo, which enables them to build

virtual worlds for their quadrotors and other robots, to test and

model these systems. Researchers may test various control

algorithms and replicate real-world situations using Gazebo

Without risking damage to their physical quadrotors. The

advancement of robotic systems and the creation of quadrotors

both depend heavily on this technology.

Researchers use various simulation software tools to

analyze and optimize the multibody systems' performance,

including Webots, is a robotics simulation software is used to

create realistic simulations of robots and virtual environments

[1, 2]. It supports multiple robot models, such as robots and

drones. This software used to facilitate the design and test of

complex robotic systems. SimMechanics is multibody

dynamics simulation software designed by Mathworks

company, and it utilized to model and simulate mechanical

systems. With this software, researchers can analyze and

optimize the performance of their robots [3, 4]. ADAMS

(Automatic Dynamic Analysis of Mechanical Systems) is a

multibody dynamics simulation software used to model and

analyze mechanical systems [5, 6]. It allows researchers to

design accurate models such as robots and drones [7, 8].

GAZEBO is an open-source robotics simulation software is

used to design and simulate robots in a realistic environment

[9]. This 3D software allows researchers to program and add

custom plugins to handle the different aspects of their robots

[10]. It also provides advanced tools for simulating complex

environments, including physics engines, sensors, and

controllers. GAZEBO works with ROS to offer a complete

solution for designing, emulating, and testing robotic systems.

These software packages include features like physics-based

modeling, visualization, and control design, all of which help

the development of UAVs. Its combination enables an ample

understanding of the quadrotor's behavior, easing the design

for efficient and safe solutions.

As for the controllers, researchers use different kinds of

controllers, including PID and PD controllers are among the

Journal Européen des Systèmes Automatisés
Vol. 56, No. 3, June, 2023, pp. 415-424

Journal homepage: http://iieta.org/journals/jesa

415

https://orcid.org/0000-0002-3493-1482
https://orcid.org/0009-0007-0683-8217
https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.560308&domain=pdf

most widely used control algorithms due to their simplicity

and effectiveness [11, 12]. LQR and MPC are more advanced

techniques that provide optimal control of systems with

constraints [13]. SMC is a nonlinear control technique that

offers robustness to disturbances and uncertainties [14]. Fuzzy

Logic and Neural Networks are intelligent control techniques

that allow for nonlinear mapping of inputs to outputs [15, 16].

Backstepping is a recursive design method for designing

controllers for nonlinear systems [17]. The Linearized

Controller is a technique used to approximate nonlinear

systems by a linear one around a given operating point [18].

The selection of a control strategy relies on the system's

characteristics and the particular demands of the application.

With the integration of controllers, ROS2 has become a

leading platform for managing complicated robotic systems

because of its streamlined features. Even though ROS2 and its

tools have made tremendous advancements, there is still room

for improvement, especially on the side of quadrotors. Thus,

this work includes designing a platform for monitoring and

controlling a quadcopter that utilizes the recently released

PyQt6 toolkit. Choosing this framework was due to PyQt5's

use for developing several well-known ROS2 tools, including

RQT and RVIZ2. This work intends to extend the capabilities

of ROS2 by utilizing PyQt6's sophisticated features for

controlling and monitoring a quadrotor using modern user

interfaces. Hence, we chose this framework over PyQt5 due to

its superior feature set, enhanced performance, ongoing

development and support within the presence of well-

organized widgets and functions. However, integrating a

server-client architecture will substantially contribute when

developing a robust ROS2 control network, facilitating the

control of the quadrotor through other devices. This network

tool is a comprehensive and intuitive user interface that can

provide real-time feedback on the quadrotor's performance. By

leveraging PyQt6's networking capabilities, the server-client

architecture could allow multiple users to monitor and control

the quadrotor simultaneously. To summarize, this project aims

to demonstrate the immense potential of combining ROS2

with PyQt6 to build a platform for monitoring and controlling

an intelligent quadrotor equipped with several sensors, such as

a depth camera, lidar, IMU, and GPS.

This paper is structured as follows. In section 2, the design

aspects of the PyQt6 application are discussed. It covers the

architecture, features, and the application, highlighting the

development choices and considerations. Section 3 presents

the URDF prototype of the quadrotor. It describes the design

and modeling of the quadrotor using URDF, including its

physical components, such as the motors and sensors. Section

4 delves into the development of a new plugin for Gazebo. The

plugin enhances the capabilities of Gazebo for simulating and

interacting with the quadrotor model developed in the previous

section. Section 5 focuses on the overall implementation of the

system and the communication protocols involved. It covers

the integration of the PyQt6 application, the URDF quadrotor

model, and the Gazebo plugin. In Section 6, the results

obtained from the system implementation are presented and

analyzed. It includes performance metrics and simulations.

The final section delivers a summary of the paper, highlighting

the pivotal contributions, the accomplishments, and the

implications of this study.

2. PYQT6-BASED APPLICATION DESIGN

Recently, drones have gained immense popularity due to

their numerous applications across industries. However,

controlling a quadrotor can be challenging and requires

expertise in various domains, such as robotics, control systems,

and software engineering. In ROS2, there are multiple

programs available for quadrotor control, including the "rqt

robot steering" package with a PyQt5-based GUI and the

“teleop_twist_keyboard” package with a command-line

interface (CLI). These interfaces enhance the flexibility and

usability of quadrotor control. However, they have limitations

in their effectiveness for controlling the quadrotor. Hence, a

user-friendly PyQt6 application will be created using the

ROS2 network to overcome this problem and make operating

a quadrotor more practical and effective. The primary

objective of the application is to provide an intuitive and

robust interface for controlling the quadrotor. The app features

will be divided into several main sections, such as the home

section for monitoring the quadrotor status, the server section

for making or breaking connections with other devices like

computers or smartphones, the joystick section for controlling

the quadrotor, the visualization section for viewing various

data, and the settings section for further customizing the

application. By employing this application, users can

efficiently operate the quadrotor and leverage the benefits of

this technology.

2.1 Home screen design

The designed home screen in PyQt6 features a clear and

concise layout (Figure 1). The current time is displayed in a

large, easy-to-read font in the time section, providing users

with real-time updates. The quadrotor's displacement, velocity,

and acceleration are presented in a visually appealing manner,

offering a clear overview of its movement dynamics. IMU data,

including orientation and rotation, is displayed in a separate

section for comprehensive understanding the motion of the

quadrotor. The GPS data, including location and altitude, is

displayed to provide essential positioning information. Finally,

lidar data and distance measurements is presented, enabling an

accurate assessment of the quadrotor's surroundings. Overall,

the home screen design in PyQt6 is optimized for efficient

monitoring of vital quadrotor data while maintaining a visually

appealing and user-friendly interface.

Figure 1. Home screen for real-time monitoring and control

of quadrotor system

416

The application home screen is designed to update in real

time, utilizing the spin function in the ROS2 node and the

threading protocol. By employing the spin function, the node

can remain active and continuously processes incoming

messages and events from the ROS2 network. It allows for

immediate updates on the home screen, ensuring that every

change or new data are promptly displayed to the user. The

threading protocol further enhances this capability by running

the spin function on a separate thread, enabling concurrent

execution and preventing potential delays or freezes in the user

interface. Consequently, the home screen maintains a dynamic

and up-to-date representation of the quadrotor's status,

providing users with real-time information and facilitating

efficient control and monitor of the system.

2.2 Server screen design

To create a server using the socket package in Python, we

can start by specifying a host and port number, which the

server will use to connect clients. The server then can be

written to include two buttons: a "start" button and a "stop"

button, created using the PyQt6 library widgets. Clicking the

"start" button initiates the server and begins listening for

incoming connections. Meanwhile, clicking the "stop" button

shuts down the server and disconnects the active clients.

Additionally, to Secure reliable and ordered data transmission,

the server can utilize the TCP (Transmission Control Protocol)

protocol instead of UDP. TCP provides reliable, connection-

oriented communication, guaranteeing delivery and in-order

arrival of data packets. By combining the socket package,

PyQt6 library, and TCP protocol, a robust and user-friendly

server that facilitates secure and reliable communication and

data transfer between multiple devices can be designed (Figure

2).

To ensure real-time control addressing potential latency

issues and implementing appropriate measures is crucial. The

system may encounter challenges like data overlapping and

connectivity issues. Thus, to address these concerns, the

application utilizes the try function in Python. By employing

this function, the application can effectively handle and

disregard any latency problems that may arise, allowing the

system to maintain smooth functionality despite intermittent

delays or disruptions. As a result, the application provides a

seamless and uninterrupted real-time control experience,

significantly enhancing the system's reliability and

responsiveness.

Figure 2. Server screen to start and stop the server

2.3 Joystick screen design

To create a new PyQt6 application featuring two joysticks,

the essential first step is to import the necessary libraries,

including PyQt6 and math. Two joysticks can then be created

using QPainter and paintEvent, with the drawEllipse method

to draw the circles required for the joysticks. Then, the two

joysticks should be placed in a single widget using

QHBoxLayout and included in a new QWidget class. Three

interactive functions, mousePressEvent, mouseMoveEvent,

and mouseReleaseEvent, can then be added to detect mouse

clicks, movements, and releases to enhance the app's

functionality. Finally, to restrict the motion of the joysticks to

within the circle's boundaries, the application of the distance

formula is necessary (Figure 3). This technique effectively

constrains the joysticks' movement within the prescribed circle.

Following these steps helps us to design an interactive PyQt6

application with two joysticks to control the quadrotor.

Once the joystick for quadcopter control is created, the

joystick data needs to be scaled to manage the quadcopter's

four fundamental movements. These movements include yaw,

forward and backward, left and right, up, and down. Mapping

the input values from the joystick to the required output range

for each movement includes scaling the joystick data. It

ensures that the quadrotor flies in a predictable and regulated

manner, precisely translating the operator's motion to the

quadrotor's actions. It is possible to control the quadrotor's

movements precisely and quickly by sending the scaled

joystick data to the quadrotor control system.

(a) the program that controls how the joystick moves

(b) Joystick screen design

Figure 3. The joystick screen on which the quadrotor is

controlled

417

In order to achieve smooth control, the joystick's sensitivity

has been fine-tuned to strike a balance between being too

sensitive or less sensitive. This optimization ensures that the

quadrotor responds accurately to even subtle movements of

the joystick, enabling precise control over its motion. The

sensitivity is adjusted based on the quadrotor's linear velocity

along the three axes and its angular velocity around the z-axis.

The linear velocity is constrained within the range of -8 to

8m/s, while the angular velocity is confined to -0.4 to 0.4rad/s.

As for the responsiveness, the joystick's responsiveness is

significantly improved by utilizing the DDS (Data

Distribution Service) protocol. DDS facilitates efficient real-

time data exchange, ensures reliable and secure

communication, reduces latency, and maximizes the joystick's

responsiveness for accurate on-screen actions.

However, the quadrotor system receives joystick data

through the integration of two ROS2 nodes. The first node,

integrated with the PyQt6 application, receives and publishes

joystick data via topics. The second node which is integrated

with the Gazebo plugin, actively spins and receives real-time

data through subscriptions. This data is subsequently utilized

to control and execute actions on the motors.

3. DEVELOPING GAZEBO 3D MODEL

Gazebo, with its realistic physics, sensor simulation, control

integration, and flexibility, plays a crucial role in developing

3D quadrotors using URDF and SDF. As an open-source tool,

it has demonstrated its value in creating and evaluating robotic

systems, driving advancements in robotics. Its precise

quadrotor dynamics simulation and seamless URDF and SDF

integration empower developers to design, test, and enhance

3D quadrotor systems in a simulated environment.

Creating a multi-body quadrotor using URDF and xacro

involves several steps. First, the basic structure of the

quadrotor, such as the body shape, the length of arms, and the

number of rotors, need to be defined in the URDF file. Next,

the joints that connect the different components of the

quadrotor, such as the rotors and the body, need to be specified.

These joints enable the quadrotor to move and articulate

realistically. After defining the basic structure and joints,

sensors can be added to the quadrotor model. Four commonly

used sensors are the LIDAR, depth camera, IMU, and GPS.

Each sensor in Gazebo is connected to the quadrotor through

specific joints and associated links. For instance, the camera

utilizes the camera_link as its reference frame. The IMU relies

on the IMU_link. The GPS is connected through the

GPS_joint and references the GPS_link, while the LIDAR

sensor uses the lidar_link as its reference frame and is

connected via the lidar_joint. This well-defined linkage

enables accurate positioning and interaction between the

quadrotor and its various sensors within the simulation.

The LIDAR sensor creates a 3D point cloud of the

surroundings by measuring the distances to objects in the

environment using lasers. Similarly, the depth camera

produces a detailed depth map of the quadrotor's surroundings

by employing infrared sensors to measure distance.

Autonomous systems often rely on these sensors for accurate,

reliable navigation and obstacle avoidance. The quadrotor's

acceleration, angular velocity, and orientation are all measured

using the inertial measurement unit or IMU. When there are

outside disturbances present, this sensor is crucial for

maintaining the quadrotor's orientation and stabilization.

Finally, location and velocity data are provided by the GPS

sensor. In outdoor conditions, this sensor is helpful with its

ability to provide real-time location information. The GPS

sensor is a valuable tool for navigation, localization, and

mapping applications. Thus, integrating these sensors into a

multi-body quadrotor URDF model can improve its

functionality and let it fly by itself in a wide range of settings.

The combination of these sensors may introduce potential

obstacles, including simulation limitations, computational

performance considerations, and challenges related to data

integration and synchronization. These factors need to be

carefully addressed to ensure accurate and reliable sensor

fusion within the system.

Figure 4. Graphical representation of the hierarchical quadrotor system including the sensors

418

Figure 4 illustrates the design of a quadrotor model in

URDF format, which includes the four rotors and the main

body of the quadrotor. The sensors: LIDAR, depth camera,

IMU, and GPS, have been linked to the quadrotor design using

visual tags in URDF. Through these tags, the sensors can be

positioned and oriented precisely within the quadrotor's frame

of reference, enabling them to provide critical data to the

quadrotor's control systems. The depth camera is positioned at

the front of the quadrotor to improve obstacle detection and

3D mapping capabilities, aided by the centrally located lidar.

Meanwhile, the IMU and GPS at the center measure the

quadrotor's acceleration, velocity, and position. By integrating

these sensors into the quadrotor's design in URDF, the

quadrotor can accurately perceive its environment and

navigate through it with precision and stability. In addition, the

URDF quadrotor system must be built on TF2, a potent tool

that enables us to track coordinate frames in a ROS2 network.

TF2 (Transform Library 2) is a software library that provides

a mechanism for managing coordinate frame transformations.

It allows for the conversion and alignment of coordinate

frames between different sensors, robots, or platforms within

a distributed system. TF2 also enables the utilization of sensor

data to detect a robot's limits through coordinate frame

transformations. Sensor data, acquired from LIDAR, cameras,

or proximity sensors, undergoes transformation to the robot's

base frame using TF2. Collision detection algorithms assess

whether the robot approaches or surpasses limits by checking

for obstacles, proximity to objects, or joint angles. Feedback

from sensed limits aids in adjusting trajectory and actions

through motion planning algorithms, ensuring real-time limit

awareness within the ROS2 network.

In order to ensure successful operation of the quadrotor

system, it is crucial to establish accurate coordination and

linkage among multiple connections and joints. With the aid

of TF2, we can create a hierarchy between these elements and

precisely determine their locations and orientations

concerning one another. It is essential for maintaining the

quadrotor's stability, predictability, and control of its

movements. The quadrotor system can connect and cooperate

with other nodes in the network thanks to TF2's smooth

integration into a broader ROS2 network.

4. DEVELOPING GAZEBO PLUGIN

The design process of a new C++ based plugin involves

specifying the quadrotor's behavior and implementing it using

GAZEBO's API. Importing GAZEBO libraries, ROS2

functions, ROS2 interfaces, and the PD function is necessary

for controlling the quadrotor's movement. The main file code

must include constants for maximum height, speed, and

battery duration, as well as variables for the quadrotor's state,

position, velocity, thrust, time, and torque. Functions for

controlling linear and angular velocities and adding linear

force are also essential. Accurate definitions of links and joints

are crucial as they define the quadrotor's physical structure,

including position, orientation, base frame, motors, propellers,

and sensors. Matching the link and joint names with the URDF

files ensures realistic movements and appropriate responses to

external forces, maintaining the integrity of the quadrotor's

components.

The plugin is based on the fundamental principles of

physics, specifically Newton's second law of motion, which is

instrumental in governing the dynamics of the quadrotor

multibody system. In addition, different flight conditions are

considered, such as hovering, ascending, descending, taking

off, and landing, and adjusts the control inputs accordingly.

The plugin also includes a Proportional-Derivative (PD)

controller, which enables precise control over the quadrotor's

movements. The PD gains are meticulously and precisely

tuned using a dedicated PyQt6 interface, significantly

enhancing the quadrotor's prompt response to commands.

As a ROS2 node, the plugin is equipped with subscriptions

and publishers, thus enabling communication with other nodes

within the ROS2 network. Moreover, the plugin presents

interfaces for various data types, including AccelerationData,

DroneState, DroneTime, VelocityData, ForceTorqueData,

OnOffState, and PositionData. Each of these interfaces

encompasses essential data types, including float32, int32, and

string, to fulfill the requirement of the quadrotor. These

interfaces are transmitted between the nodes using topics,

enabling seamless access and data manipulation by other

nodes in the network. These topics includes:

/dh_drone/drone_state, /dh_drone/force_torque_data,

/dh_drone/velocity_data, /dh_drone/acceleration_data,

/dh_drone/command_velocity, /dh_drone/time_data,

/dh_drone/on_off_state, /dh_drone/position_data.

However, the communication between nodes using topics

and interfaces enhances the plugin’s importance as a powerful

tool for effectively controlling the quadrotor system.

In order to integrate the GAZEBO plugin with the URDF

quadrotor model, we must include a new section to the main

URDF file. This section defines the movable links and joints

of the quadrotor, and contains the necessary plugin to control

the system (Figure 5). The plugin will then apply forces and

torques to the links that can be moved, allowing for precise

control over the quadrotor's movements. This process is

essential to ensure the proper functioning of the plugin with

the quadrotor model, providing accurate and reliable

communication throughout the simulation.

The main URDF file serves as the central definition for the

quadrotor multibody system, encompassing various

components through the utilization of the xacro macro

language. This facilitates the inclusion of quadrotor parts such

as drone, drone constants, inertial macros, lidar, GPS, camera,

and imu. In conjunction with the Gazebo plugin, these

individual xacro files collectively define the structure and

characteristics of the quadrotor within the URDF specification.

Figure 5. Integration of Gazebo plugin into the main URDF

file

419

Figure 6. A graphical representation of the ROS2 network and communication model, demonstrating server-client

communication and TCP/IP protocols with ROS2 nodes

5. IMPLEMENTATION AND COMMUNICATION

The process of constructing the system involves creating

three packages within the source directory of the workspace:

quadrotor_pkg, msgs_pkg, and gazebo_plugin_pkg. Each of

the packages encompasses different dependencies necessary

for the system's functionality. The quadrotor_pkg contains the

essential components such as URDF files, launch files, and

Python scripts responsible for node creation and the PyQt6

application. The msgs_pkg is dedicated to housing the

required interfaces for seamless system operation. The

gazebo_plugin_pkg incorporates the Gazebo plugin, which,

after project building, will be exported to ensure optimal

integration with the system.

The implementation of the system will be done after

finishing the main programs, including the gazebo plugin,

quadrotor URDF design, and PyQt6 application, and

initializing a ROS2 project. It is essential to create the

necessary packages for the network. This step involves

creating a new package, defining the dependencies and

message types, and setting up the nodes for communication.

Thorough testing of the quadrotor system is required following

the launch of the ROS2 project. This process includes

verifying that the gazebo plugin can control the quadrotor in

different flight conditions, that the PyQt6 application can

interface with the plugin to provide user control, and that the

ROS2 network is correctly working, allowing nodes to

communicate and exchange data. Thorough testing is

imperative to ascertain the quadrotor system's reliability,

accuracy, and suitability for real-time applications, instilling

confidence in its performance.

The communication between ROS2 nodes in the quadrotor

system is essential. The server node, responsible for receiving

clients input and sending commands to the quadrotor node,

communicates with the quadrotor node via a series of topic

subscriptions and publishers (Figure 6). The quadrotor node

provides the server node with data related to the drone's state,

force and torque information, velocity data, acceleration data,

time data, on-off state, and position data. Thus, this data is then

utilized by the server node to generate commands, which are

subsequently sent back to the quadrotor node for precise

control over its movements.

Moreover, the server node, which was programmed using

Python with the help of the socket and struct libraries, uses the

TCP/IP protocol to communicate with clients. Data about the

quadrotor status, force and torque data, velocity and

acceleration data, time data, on-off state, and location data are

all transmitted via the server node. The quadrotor may then be

moved and updated in its status for clients. This protocol

enables multiple applications for the quadrotor system by

offering adaptable and dependable communication between

the server node and clients. Thus, the quadrotor system may

work effectively and correctly thanks to the TCP/IP protocol

and excellent communication between nodes using DDS (Data

Distribution Service), making it a precious tool for many real-

time applications.

The quadrotor with LiDAR simulation was conducted in a

controlled testing environment within Gazebo and ROS2. The

specific setup involves placing various obstacles, such as static

objects, within the simulated environment (Figure 7). The

testing procedures consisted of executing predefined flight

paths and maneuvers while collecting LiDAR sensor data.

(a) Quadrotor model on gazebo with the lidar sensor

420

(b) Lidar sensor data on RViz2

Figure 7. Visualization of LiDAR sensor data using RViz2: a

graphical representation of point cloud data captured by the

sensor

Throughout the simulation, the quadrotor's LiDAR sensor

accurately detected and calculated the distances between the

quadrotor and the objects in its surroundings, providing

measurements in meters. This distance measurement is a

critical metric for evaluating the system's effectiveness. The

assessment of performance criteria encompassed analyzing the

accuracy of distance calculations, the speed of obstacle

detection, and the system responsiveness.

The simulation results were highly encouraging, with the

system effectively detecting and calculating distances to

obstacles. These findings underscore the potential for

developing an advanced obstacle avoidance algorithm,

enabling the quadrotor to navigate complex environments

while prioritizing safety.

6. RESULTS AND DISCUSSION

To obtain the results that confirm the system's effectiveness,

the Plotjuggler tool, an open-source tool renowned for

visualizing real-time data in ROS2 applications, is employed.

This tool enables quickly and easily plotting data from

different topics and nodes in a ROS2 system. Plotjuggler

works by subscribing to ROS2 topics and receiving data in

real-time. It then uses customizable plots to display this data

intuitively and interactively. With Plotjuggler, users can easily

monitor and debug their ROS2 applications. They also can

gain insights into the behavior of the system. It can also help

them to improve the performance and reliability of systems.

However, Plotjuggler listens to the integrated node within

the Gazebo plugin, along with the node that publishes velocity

commands. It acquires data from the following topics:

/dh_drone/force_torque_data, /dh_drone/velocity_data,

/dh_drone/acceleration_data, /dh_drone/command_velocity,

/dh_drone/time_data, and /dh_drone/position_data. These

topics transmit interfaces containing data types such as int32

and float32, which describe quadrotor parameters, including

velocity, acceleration, position, torque, and force.

Moreover, the comprehensive analysis of the quadrotor

system encompassed an evaluation of key performance

metrics and criteria, including velocity, acceleration, force,

and motion control, along the x, y, and z axes, as well as yaw

motion. The illustrated results in Figures 8, 9, 10, and 11

highlight the quadrotor's exceptional maneuverability and

control achieved through the developed control system.

Notably, the quadrotor demonstrates precise movements along

the x, y, and z axes, ensuring high control levels and stability

during flight. Furthermore, its yaw motion, enabling rotation

around the vertical axis, exhibits remarkable responsiveness

and accuracy. These outcomes can be attributed to the

meticulous control of the four rotors, facilitating precise

adjustments to the quadrotor's thrust and orientation. The

evaluation process considered various factors, including

response time, stability, and control accuracy, which play a

role to the system's outstanding performance.

(a) Results of altitude: velocity command and response

(b) Results of altitude: generated force response

(c) Results of altitude: acceleration response

Figure 8. Results of optimized altitude control of quadrotor

achieved: precise control commands enhance velocity, force,

and acceleration

Quantitative analysis of the quadrotor's performance

unveils promised statistics. During the evaluation process, the

quadrotor exhibited outstanding capabilities in various

domains. Along the z-axis, according to the given velocity of

1m/s. The quadrotor demonstrated swift acceleration, reaching

an average of 1.8m/s². In terms of force, it exerted an average

thrust of 22.3 N. Moving on to the motion along the x and y

axes, the evaluation velocity stood at 2m/s. The quadrotor

showcased rapid acceleration, averaging at 4m/s², while

421

exerting an average force of 7.5 N. As for the yaw motion, the

evaluation velocity measured 0.2rad/s. Remarkably, the

quadrotor demonstrated swift acceleration, reaching an

average of 0.33rad/s², complemented by an average torque of

0.72 N.m.

Despite the satisfactory results, it is crucial to acknowledge

that the quadrotor system still possesses certain limitations that

present opportunities for further development from various

aspects. Firstly, in terms of velocity, although the quadrotor

reached a maximum speed of 8m/s, exploring methods to

enhance its velocity and stability performance would open

doors to applications that demand higher velocities and swift

maneuverability. Additionally, while the quadrotor

demonstrated rapid acceleration, improvements can be made

to improve its agility and responsiveness, enhancing its ability

to navigate seamlessly through complex environments replete

with dynamic obstacles. Moreover, increasing the force and

thrust capabilities of the quadrotor would enable it to handle

more demanding tasks and payloads, expanding its range of

potential applications. Furthermore, refining the control

algorithms and mechanisms associated with the yaw motion

can contribute to better stability and precision during

rotational maneuvers; and ensure the quadrotor's adaptability

in scenarios requiring intricate movements. It is through

addressing these limitations and pursuing further

advancements that the quadrotor system can continue to

evolve and achieve new heights of performance and versatility.

In summary, the impressive obtained statistics suggest that

the quadrotor system exhibits minimal deviation in control.

The consistent values for velocity, acceleration, force, and

torque highlight its reliability and precision, ensuring stable

and accurate flight maneuvers. Thus, the analysis confirms the

quadrotor system's exceptional attributes and establishes its

suitability for multiple applications such as Aerial

Surveillance and Monitoring, Search and Rescue Operations,

Industrial Inspections, and Agriculture and Crop Monitoring.

(a) Results of x motion: velocity command and response

(b) Results of x motion: generated force response

(c) Results of x motion: acceleration response

Figure 9. Results of optimized x motion control of quadrotor

achieved: precise control commands enhance velocity, force,

and acceleration

(a) Results of y motion: velocity command and response

(b) Results of y motion: generated force response

(c) Results of y motion: acceleration response

Figure 10. Results of optimized y motion control of

quadrotor achieved: precise control commands enhance

velocity, force, and acceleration

422

(a) Results of yaw motion: velocity command and

response

(b) Results of yaw motion: generated torque response

(c) Results of yaw motion: acceleration response

Figure 11. Results of optimized yaw motion control of

quadrotor achieved: precise control commands enhance

velocity, force, and acceleration

7. CONCLUSION

In this work, the PyQt6 application played a crucial role in

conveniently managing the quadrotor's movements,

demonstrating advancements in robotics and control systems.

It enabled effective control of the quadrotor's motions,

contributing to project success and enhancing maneuverability

in quadrotor multibody systems. The findings collected in this

study affirm the system's efficacy in governing the quadrotor's

motions, including motion along the three axes (x, y, and z),

in addition to the yaw motion. Moreover, this project

significantly contributes to the field of quadrotor multibody

systems, paving the way for further advancements in the

control and monitoring of complex systems. While this work

highlights several achievements, it is essential to acknowledge

its limitations. Scalability, robustness, and adaptability to

different environments are some of the challenges that future

researchers should consider. By addressing these aspects, the

system has the potential for further enhancement to cater to the

requirements of diverse applications. By setting sights on the

future, many projects can leverage advanced technologies like

SLAM and yolov8 to enhance the quadrotor's intelligence in

obstacle avoidance, mapping, and object detection. The

integration of machine learning techniques holds the potential

for achieving autonomous quadrotor operation, thereby

driving notable progress in the sector of quadrotor multibody

systems. Overall, this project has successfully contributed to

the control systems of quadrotors, with implications extending

beyond this specific domain. The potential impact

encompasses the development of autonomous aerial vehicles,

enhancing search and rescue operations, and enabling remote

sensing applications.

REFERENCES

[1] Ugurlu, H.I., Pham, X.H., Kayacan, E. (2022). Sim-to-

real deep reinforcement learning for safe end-to-end

planning of aerial robots. Robotics, 11(5): 109.

https://doi.org/10.3390/robotics11050109

[2] Vazquez, E.M.C., Merino, A.D.P., Torres, C.M.,

Etcheverry, G. (2019). Simulación de un cuadri-rotor en

el software webots. Memorias del Congreso Nacional de

Control Automático, 67-72.

[3] Jatsun, S., Lushnikov, B., Emelyanova, O., Leon, A.S.M.

(2021). Synthesis of simmechanics model of quadcopter

using solidworks cad translator function. In Proceedings

of 15th International Conference on Electromechanics

and Robotics" Zavalishin's Readings", Springer

Singapore, 125-137. https://doi.org/10.1007/978-981-

15-5580-0_10

[4] Lv, Z.Y., Zhao, Q., Li, S.M., Wu, Y.H. (2022). Finite-

time control design for a quadrotor transporting a slung

load. Control Engineering Practice, 122: 105082.

https://doi.org/10.1016/j.conengprac.2022.105082

[5] Xin, H.B. (2021). Design and analysis of retractable

structure of new quadrotor landing gear. In Journal of

Physics: Conference Series, IOP Publishing, 1750(1):

012022. https://doi.org/10.1088/1742-

6596/1750/1/012022

[6] Xu, J.L., Hao, Y.P., Wang, S.T. (2022). Flight control

simulation and flight test of foldable rotor UAV. In

Journal of Physics: Conference Series, IOP Publishing,

2252(1): 012052. https://doi.org/10.1088/1742-

6596/2252/1/012052

[7] Hamed, A., Fanni, M., Ahmed, S., Sameh, A. (2020).

Hybrid guidance of quadrotor manipulation system for

indoor-outdoor active tasks. International Journal of

Mechanical & Mechatronics Engineering, 20(04): 1-12.

[8] Six, D., Briot, S., Chriette, A., Martinet, P. (2017). The

kinematics, dynamics and control of a flying parallel

robot with three quadrotors. IEEE Robotics and

Automation Letters, 3(1): 559-566.

https://doi.org/10.1109/LRA.2017.2774920

[9] Zhu, J.C., Xu, C. (2017). A comprehensive simulation

testbench for aerial robot in dynamic scenario using

gazebo-ros. In 2017 Chinese Automation Congress

(CAC), IEEE, 7664-7669.

https://doi.org/10.1109/CAC.2017.8244165

[10] Xie, Y.C., Li, Y.Z., Dong, W. (2022). Behavior

423

https://www.researchgate.net/journal/International-Journal-of-Mechanical-Mechatronics-Engineering-2077-124X
https://www.researchgate.net/journal/International-Journal-of-Mechanical-Mechatronics-Engineering-2077-124X

prediction based trust evaluation for adaptive consensus

of quadrotors. Drones, 6(12): 371.

https://doi.org/10.3390/drones6120371

[11] Labbadi, M., Cherkaoui, M., El Houm, Y., Guisser, M.

(2019). A comparative analysis of control strategies for

stabilizing a quadrotor. In Information Systems and

Technologies to Support Learning: Proceedings of

EMENA-ISTL, Springer International Publishing, 111:

625-630. https://doi.org/10.1007/978-3-030-03577-8_68

[12] Shauqee, M.N., Rajendran, P., Suhadis, N.M. (2021). An

effective proportional-double derivative-linear quadratic

regulator controller for quadcopter attitude and altitude

control. Automatika: Časopis za Automatiku, Mjerenje,

Elektroniku, Računarstvo i Komunikacije, 62(3-4): 415-

433. https://doi.org/10.1080/00051144.2021.1981527

[13] Okasha, M., Kralev, J., Islam, M. (2022). Design and

experimental comparison of PID, LQR and MPC

stabilizing controllers for parrot mambo mini-drone.

Aerospace, 9(6): 298.

https://doi.org/10.3390/aerospace9060298

[14] Huang, S.R., Yang, Y.N. (2022). Adaptive neural-

network-based nonsingular fast terminal sliding mode

control for a quadrotor with dynamic uncertainty. Drones,

6(8): 206. https://doi.org/10.3390/drones6080206

[15] Ginting, A.H., Doo, S.Y., Pollo, D.E., Djahi, H.J.,

Mauboy, E.R. (2022). Attitude control of a quadrotor

with fuzzy logic controller on so (3). Journal of Robotics

and Control (JRC), 3(1): 101-106.

https://doi.org/10.18196/jrc.v3i1.12956

[16] Li, J.H., Mou, S.H., Zhang, D.H. (2021). A novel

adaptive robust control algorithm for quadrotor UAV. In

2021 6th International Conference on Robotics and

Automation Engineering (ICRAE), IEEE, 50-54.

https://doi.org/10.1109/ICRAE53653.2021.9657806

[17] García, O., Ordaz, P., Santos-Sánchez, O.J., Salazar, S.,

Lozano, R. (2019). Backstepping and robust control for

a quadrotor in outdoors environments: An experimental

approach. IEEE Access, 7: 40636-40648.

https://doi.org/10.1109/ACCESS.2019.2906861

[18] Shakeel, T., Arshad, J., Jaffery, M.H., Rehman, A.U.,

Eldin, E.T., Ghamry, N.A., Shafiq, M. (2022). A

comparative study of control methods for X3D quadrotor

feedback trajectory control. Applied Sciences, 12(18):

9254. https://doi.org/10.3390/app12189254

424

https://doi.org/10.3390/app12189254

DOI: 10.2478/sbeef-2023-0003

QUADCOPTER PROTOTYPE STABILITY ASSESSMENT WITH PID CONTROLLER
AND EULER-LAGRANGE APPROACH

1,2HAMZA DJIZI, 3ZOUBIR ZAHZOUH, 4AZZEDINE BOUZAOUIT
1Department of Mechanical Engineering, Mohamed Cherif Messaadia University, P.O. Box 1553, Souk-Ahras, 41000,

Algeria.
2INFRA-RES Laboratory, Mohamed Cherif Messaadia University, Algeria

3Laboratoire de Recherche en Électromécanique et Sûreté de Fonctionnement, LRESF Laboratory, Mohamed Chérif
Messaadia University, P.O. Box 1553, Souk-Ahras, 41000, Algeria.

4University of 20 August 1955 Skikda, Algeria
Email: hamzadjizi@gmail.com

Abstract. The increasing use of drones in various fields has
led to their popularity in developed countries due to their ease
of use and manufacture. This Miniature Pilotless Aircraft has
numerous beneficial usages such as express shipping,
gathering information, crop monitoring, cargo transport,
storm tracking, geographic mapping of inaccessible terrain,
search and rescue operations, among others. This study aims
to investigate the stability of a quadcopter through simulations
based on the mathematical model that describes the
quadcopter's dynamic and flight mechanics, using the Euler-
Lagrange approach. It conducts simulations in MATLAB and
present the principles that govern quadcopter stability,
focusing on setting the PID coefficients to achieve optimal
stability. This study provides insights into the principles of
drone mechanics and stability, enabling us to better
understand the quadcopter's behavior and performance.

Keywords: simulation, quadcopter, command, stability, PID

1. INTRODUCTION

Quadcopters have spread quickly across a variety of
sectors because to their adaptability and simplicity of
usage, making them a popular alternative for many
companies looking for effective solutions. Quadcopters
may carry out a wide range of tasks as an Unmanned
Aerial Vehicle (UAV), including package delivery, crop
monitoring, search and rescue missions, and aerial
videography. Quadcopters are essential in current
operations because of their small size and agility, which
allow them to negotiate difficult terrain and reach remote
areas. As a result, companies and organizations all over
the world have embraced this technology as a practical
way to increase the effectiveness, speed, and accuracy of
their operations.

The civilian drone market has seen a recent influx of new
models, with many of these multi-rotors utilizing
advanced and sophisticated technologies previously
unexplored in the industry. The incorporation of high-
precision technologies, particularly in the areas of
tracking, recognition, and obstacle avoidance, has
allowed for greater functionality and efficiency in drone
operations. These cutting-edge technologies have opened
up new possibilities for a wide range of applications, from
aerial surveying and inspection to precision agriculture

and emergency response. The introduction of these
advanced features has further expanded the potential uses
of civilian drones, making them an increasingly popular
choice for various industries seeking innovative solutions.
Quadrotors are highly maneuverable aerial vehicles that
need complex modeling approaches for control and
optimization. Since it allows for the introduction of
nonlinear dynamics and external forces, the Euler-
Lagrange technique is often employed for modeling
quadrotors [1-2]. The Newton-Euler technique is also
employed since it is based on Newton's principles of
motion and gives a thorough knowledge of the quadrotor's
motion [3-4]. The Hamiltonian technique is used to derive
the quadrotor's equations of motion in an energy-efficient
manner [5-6]. The state space technique may be used to
model and control a system using linear equations [7]. The
linearization method is frequently used to simulate the
nonlinear dynamics of a quadrotor around an operational
point [8]. Finally, multibody system approach serves as a
crucial tool in accurately modeling the quadrotor's
dynamic behavior and its intricate interactions with the
environment, taking into consideration the complex
movements of its various parts. This approach is applied
in different software such as GAZEBO, Webots,
SimMechanics, and ADAMS [9-10].

The present article aims to examine the stability of a novel
prototype of a quadcopter by employing the Euler
language approach and utilizing the Proportional-
Integral-Derivative (PID) regulator on MATLAB (Figure
1). The study will go through the fundamental movements
of the quadcopter, namely roll, pitch, yaw, and altitude, to
obtain a comprehensive understanding of the dynamics
and performance of the device. Overall, this study
represents an important step towards improving the
stability and performance of quadcopters, which have
become increasingly important for various applications,
including aerial photography, surveillance, and
transportation. By gaining a deeper understanding of the
quadcopter's dynamics and behavior, we can develop
more effective control strategies and improve the safety
and reliability of these devices.

15

Scientific Bulletin of the Electrical Engineering Faculty – Year 23 No.1 (48) ISSN 2286-2455

The objective of this study is to investigate the stability of
a new quadcopter prototype using the Euler language
technique and the Proportional-Integral-Derivative (PID)
regulator on MATLAB. The research will go through the
fundamental movements of the quadcopter, including:
roll, pitch, yaw, and altitude, in order to understande the
quadrotors dynamics and performance. Overall, this work
offers a significant step in improving the stability and
performance of quadcopters, which have become more
relevant for a variety of applications. However, Increasing
the safety and dependability of these aircrafts can be
achieved by better understanding the dynamics and
behavior of quadcopters.

Figure 1. Quadrotor prototype.

2. QUADROTOR DYNAMICS AND

REFERENCES

Quadcopters utilize rotor speed variation to execute
fundamental movements. Tilting the quadcopter in the
direction of a slower rotor results in translation along the
corresponding axis, which is the basis of pitch and roll
movements. Additionally, quadcopters are capable of
vertical movement and rotation around the Z-axis, known
as yaw, as depicted in Figure 2. These four movements,
namely roll, pitch, vertical movement, and yaw, are
controlled by the torque applied by the motors and are
sufficient to manipulate the quadcopter's six degrees of
freedom.

The quadcopters are governed by the laws of physics and
aerodynamics. These unmanned aerial vehicles rely on the
variation of rotor speeds to produce the basic movements
required for their operation, namely roll, pitch, yaw, and
altitude control. To describe the flight dynamics of
quadcopters mathematically, two references are used: a
fixed reference linked to the Earth and a mobile reference
with its origin at the drone's center of gravity. The
transformation matrix R is used to convert between these
references and contains information about the orientation
and position of the movable reference relative to the fixed
reference. By modeling the quadcopter's flight dynamics,
we can gain insight into its behavior and performance
under different conditions, which can be used to improve
its design and control strategies. The mathematical model
can also be used to simulate the quadcopter's behavior and
test various control algorithms and maneuvers in a virtual

environment before applying them to real-world
scenarios.

Figure 2. Quadrotor references and movements.

3. QUADROTOR EULER LAGRANGE MODEL

The rotation matrix, which describes the orientation of the
quadcopter's movable reference frame relative to the fixed
reference frame, can be obtained using Euler angles.
Specifically, the rotation matrix is constructed by
performing rotations around the X, Y, and Z axes, each by
a respective angle of ϕ, 𝜃𝜃, and ψ. These rotations
correspond to the quadcopter's roll, pitch, and yaw
movements, respectively, and are fundamental to
controlling its position and orientation in three-
dimensional space. The Euler angle approach is a
powerful mathematical tool for simulating and analyzing
dynamic systems, and its application to quadcopter flight
dynamics enables us to study and optimize the
performance of these devices. By understanding the
relationship between the Euler angles and the
quadcopter's movements, we can develop more effective
control strategies and improve the safety and reliability of
quadcopters in various applications.

Rotation matrix:
R = R (ϕ, 𝜃𝜃, ψ) =

�
𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
−𝑐𝑐𝜃𝜃 𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐 𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐

� (1)

Lift is the force that allows the quadcopter to rise if it at
least equals drag. It creates in the direction of the X and Y
axes, the following two moments.

𝜏𝜏𝑥𝑥 = 𝑏𝑏𝑏𝑏(𝛺𝛺12 + 𝛺𝛺42 − 𝛺𝛺22 − 𝛺𝛺32) (2)
𝜏𝜏𝑦𝑦 = 𝑏𝑏𝑏𝑏(𝛺𝛺12 + 𝛺𝛺22 − 𝛺𝛺32 − 𝛺𝛺42) (3)

Thrust coefficient: to calculate the thrust coefficient we
use this equation:

𝑏𝑏 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝛺𝛺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2 (4)

The drag is the result of the friction of the air on the
quadcopter, it is opposed to the lift. She creates a vertical
moment.

𝜏𝜏𝑧𝑧 = 𝑑𝑑(𝛺𝛺22 + 𝛺𝛺42 − 𝛺𝛺12 − 𝛺𝛺32) (5)

16

Scientific Bulletin of the Electrical Engineering Faculty – Year 23 No.1 (48) ISSN 2286-2455

To calculate the drag coefficient of a quadcopter, it is
necessary to fix the quadcopter at its center of gravity and
apply rotation to two opposing motors to initiate rotation
around the vertical axis. By measuring the complete cycle
time t, the drag coefficient can be determined using the
following equation.

𝑑𝑑 = 𝜋𝜋𝐼𝐼𝑧𝑧
2𝛺𝛺2𝑡𝑡2

 (6)

When the quadcopter is rotating on two axes, this rotation
generates a force that appears on the third axis and tends
to resist the movements of the quadcopter (gyroscope
effect).

𝜏𝜏𝑔𝑔𝑥𝑥 = 𝐼𝐼𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝜔𝜔𝑦𝑦(𝛺𝛺1 + 𝛺𝛺4 − 𝛺𝛺2 − 𝛺𝛺3) (7)
𝜏𝜏𝑔𝑔𝑦𝑦 = 𝐼𝐼𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝜔𝜔𝑥𝑥(𝛺𝛺1 + 𝛺𝛺2 − 𝛺𝛺3 − 𝛺𝛺4) (8)

To generate the transfer equations for a motor, it can be
represented as a simple RLC circuit. By neglecting losses,
we can derive the following equation. This equation is
important for understanding the motor's behavior and
response to various inputs, which is essential for
designing control systems that effectively regulate the
quadcopter's movements.

𝐻𝐻(𝑐𝑐) = 𝐾𝐾
𝐾𝐾2+𝑅𝑅𝑅𝑅𝑅𝑅

 (9)

To determine the moments of inertia of a quadcopter, we
can treat it as a solid body with a fixed mass and its axes
parallel to the main axes of inertia. This allows us to
model it as a rectangular parallelepiped with mass M and
dimensions L, W, and H. The motors can be modeled as
cylinders with mass m, height h, radius R, and located at
a distance of l from the center of gravity. By accurately
calculating the moments of inertia, we can better
understand the quadcopter's rotational behavior and
design control algorithms that ensure stable and precise
movements.

𝐼𝐼 = �
𝐼𝐼𝑥𝑥 0 0
0 𝐼𝐼𝑦𝑦 0
0 0 𝐼𝐼𝑧𝑧

� (10)

The moments of inertia of a rectangular parallelepiped are
modeled by the following equations:

𝐼𝐼𝑋𝑋 = 𝑚𝑚𝑝𝑝𝑚𝑚
12

(𝑊𝑊2 + 𝐻𝐻2) + 𝑚𝑚𝑐𝑐 �𝑅𝑅2 + ℎ2

3
� + 2𝑚𝑚𝑐𝑐𝑏𝑏2 (11)

𝐼𝐼𝑌𝑌 = 𝑚𝑚𝑝𝑝𝑚𝑚
12

(𝐿𝐿2 + 𝐻𝐻2) + 𝑚𝑚𝑐𝑐 �𝑅𝑅2 + ℎ2

3
� + 2𝑚𝑚𝑐𝑐𝑏𝑏2 (12)

𝐼𝐼𝑍𝑍 = 𝑚𝑚𝑝𝑝𝑚𝑚
12

(𝐿𝐿2 + 𝑊𝑊2) + 2𝑚𝑚𝑐𝑐𝑅𝑅2 + 2𝑚𝑚𝑐𝑐𝑏𝑏2 (13)

The Lagrange formula can be used to obtain the angular
accelerations of a quadrotor by using the equations above.
These equations take into account the forces acting on the
quadrotor, such as thrust and drag, as well as the moments
that cause it to rotate.

𝐿𝐿 = 𝑇𝑇 – 𝑈𝑈 (14)

With:

𝑇𝑇 = 1
2

 𝑚𝑚𝑉𝑉2 (15)
𝑈𝑈 = ∫[−𝑔𝑔𝑐𝑐𝑔𝑔𝑔𝑔𝜃𝜃]𝑥𝑥𝑑𝑑𝑚𝑚 + ∫[𝑔𝑔𝑐𝑐𝑔𝑔𝑔𝑔𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃]𝑦𝑦𝑑𝑑𝑚𝑚 +

 ∫[𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃]𝑧𝑧𝑑𝑑𝑚𝑚 (16)

Angular accelerations:
ϕ̈ = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚θ̇(Ω1+Ω4−Ω2−Ω3)

𝐼𝐼𝑥𝑥
+ 1

𝐼𝐼𝑥𝑥
𝑈𝑈2 + 𝐼𝐼𝑦𝑦−𝐼𝐼𝑧𝑧

𝐼𝐼𝑥𝑥
θ̇ψ̇ (17)

θ̈ = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ϕ̇(𝛺𝛺1+𝛺𝛺2−𝛺𝛺3−𝛺𝛺4)
𝐼𝐼𝑦𝑦

+ 1
𝐼𝐼𝑦𝑦
𝑈𝑈3 + 𝐼𝐼𝑧𝑧−𝐼𝐼𝑥𝑥

𝐼𝐼𝑦𝑦
ψ̇ϕ̇ (18)

ψ̈ = 1
𝐼𝐼𝑧𝑧
𝑈𝑈4 + 𝐼𝐼𝑥𝑥−𝐼𝐼𝑦𝑦

𝐼𝐼𝑧𝑧
θ̇ϕ̇ (19)

Linear accelerations:

�̈�𝑥 = 1
𝑚𝑚

(cosϕ cosψ sinθ+ sinϕ sinψ)𝑈𝑈1 (20)

�̈�𝑦 = 1
𝑚𝑚

(cosϕ sinψ sinθ− cosψ sinϕ)𝑈𝑈1 (21)

�̈�𝑧 = 1
𝑚𝑚

(cosϕ cosθ)𝑈𝑈1 − 𝑔𝑔 (22)

With:

𝑈𝑈1 = ∑ 𝑏𝑏 ∗ 𝑇𝑇𝑖𝑖4
𝑖𝑖=1 = 𝑏𝑏(Ω12 + Ω22 + Ω32 + Ω42) (23)
𝑈𝑈2 = 𝑏𝑏. 𝑏𝑏(Ω12 − Ω22 − Ω32 + Ω42) (24)
𝑈𝑈3 = 𝑏𝑏. 𝑏𝑏(Ω12 + Ω22 − Ω32 − Ω42) (25)
𝑈𝑈4 = 𝑑𝑑(Ω22 + Ω42 − Ω12 − Ω32) (26)

Control algorithmes :

𝑀𝑀1 = 𝑇𝑇 + 𝑅𝑅 + 𝑃𝑃 − 𝑌𝑌 (27)
𝑀𝑀2 = 𝑇𝑇 − 𝑅𝑅 + 𝑃𝑃 + 𝑌𝑌 (28)
𝑀𝑀3 = 𝑇𝑇 − 𝑅𝑅 − 𝑃𝑃 − 𝑌𝑌 (29)
𝑀𝑀4 = 𝑇𝑇 + 𝑅𝑅 − 𝑃𝑃 + 𝑌𝑌 (30)

4. SIMULATION

To model a quadcopter using MATLAB (Simulink), it's
important to understand its behavior and movements.
With six degrees of freedom, but only four motors, we can
control four of the six degrees, including altitude, roll,
pitch, and yaw. Understanding the relationships between
equations, including motor thrust, angular acceleration,
gyroscopic effect, control, and displacement equations, is
crucial in establishing a reliable model. Through the use
of MATLAB (Simulink) in order to determine the
constants of the PID and ensure stabilization of the
quadcopter on all three axes of roll, pitch, yaw, and
altitude. Figure 3 and 4 illustrates the quadrotor model in
matlab simulink. Table 1 presents the quadrotor constates
used for the simulation.

Figure 3. Quadrotor Simulink model

17

Scientific Bulletin of the Electrical Engineering Faculty – Year 23 No.1 (48) ISSN 2286-2455

Table 1. Quadrotor parameters

Figure 4. Quadrotor Simulink model with PIDs.

Manually adjusting the coefficients of the PID is a
challenging task as it requires adjusting three coefficients
at the same time with numerous possible combinations.
The process starts with adjusting the Kp coefficient to
improve the response time of the system, followed by
adjusting the Ki coefficient to eliminate errors and ensure
a quick and accurate response. Lastly, the Kd coefficient
is adjusted to increase system stability by minimizing
oscillations. The optimal values for each PID, including
roll, pitch, yaw, and altitude, are provided in Table 2.

Table 2. PID parameters.

5. RESULTS AND DISCUSSION

Following the simulation of the quadrotor using
MATLAB Simulink, we were able to obtain valuable
results that depict the system's stability across all four
movements, including roll, pitch, yaw, and altitude. In
addition, the quadrotor's movements along the X and Y
axes, based on its roll and pitch movements, were also
evaluated. The results presented in Figures (5, 6, 7 and
8), offer comprehensive visual representations of the
quadrotor's dynamic behavior and provide significant
insights for the purpose of further analysis and control
optimization.

Figure 5. Altitude results.

Figure 6. Roll results.

Param Value Param Value

Ix 4.8 * 10-2 (Kg.m2) 𝑏𝑏 0.275 (m)

Iy 4.8 * 10-2 (Kg.m2) 𝑑𝑑 7.5 *10-6
(Kg.m.rad-2)

Iz 8.5 * 10-2 (Kg.m2) 𝑏𝑏 3.1 * 10-6
(Kg.m.rad-2)

m 1.34(kg) 𝐾𝐾 230.36 (rad/s)
Irotor 3.1 * 10-5 (Kg.m2) t 0.15 s

Roll Pitch Yaw Altitude

Param

V
alue

Param

V
alue

Param

V
alue

Param

V
alue

Kp 1 Kp 1 Kp 0.8 Kp 3
Ki 0.01 Ki 0.01 Ki 0.01 Ki 0.85
Kd 1.2 Kd 1 Kd 1.1 Kd 3

18

Scientific Bulletin of the Electrical Engineering Faculty – Year 23 No.1 (48) ISSN 2286-2455

Figure 7. Pitch results.

Figure 8. Yaw results.

6. CONCLUSION

In this study, The quadrotor model was simulated using
the Euler-Lagrange technique in MATLAB Simulink, and
its stability was tested using a Proportional-Integral-
Derivative (PID) controller. The simulation results
confirmed the PID controller's usefulness in controlling
the quadrotor's motion and preserving its stability
throughout flight. The study also emphasizes the
significance of the Euler-Lagrange technique in
adequately describing the complicated dynamics of the
quadrotor. Overall, this work gives useful insights for the
development and improvement of quadrotor control
systems and emphasizes the need of using modern
simulation tools like MATLAB to explore the dynamics
of complex systems.

7. NOMENCLATURE

ENGLISH LETTERS
Ix: The moment of inertia along the X axis (Kg.m²).
Iy: The moment of inertia along the Y axis in (Kg.m²).
Iz: The moment of inertia along the Z axis in (Kg.m²).
Irotor: The moment of inertia around the motor in (Kg.m²).
d: The drag coefficient (kg. m. rad-2).
b: The thrust coefficient (kg. m. rad-2).
l: The distance between the motor and the centre of
gravity of the quadcopter (m).
Kp, Ki, Kd: The gains of proportional, integrals,
derivatives.
b: The thrust coefficient in (kg.m/rad2).
mpr: The weight of the rectangular parallelepiped (kg).
mc: The mass of the cylinder (kg).

W: The width of the rectangular parallelepiped (m).
h: The height of the cylinder (m).
H: The height of the rectangular parallelepiped (m).
K: The gain of the motor in (V.s / rad).
R: The internal resistance of the motor in (ohm).
J: The inertia of the rotor in (g.cm²).
Mi: Motors
T: Thrust
R: Roll
P: Pitch
Y: Yaw
C: cos
S: sin

GREEK SYMBOLS
ϕ: The angle of rotation around the ‘X’ axis (Roll) in (rad).
𝜽𝜽: The angle of rotation around the ‘Y’ axis (Pitch) in
(rad).
𝚿𝚿: The angle of rotation around the ‘Z’ (Yaw) axis in
(rad).
𝛀𝛀𝐢𝐢: The otors speed in (rad / s).
τ: The time constant of the motors (s).

8. REFERENCES

[1] S. Wang, A. Polyakov, and G. Zheng, “Quadrotor

stabilization under time and space constraints using implicit
PID controller,” Journal of the Franklin Institute, vol. 359,
no. 4, pp. 1505–1530, Mar. 2022, doi:
10.1016/j.jfranklin.2022.01.002.

[2] J. E. Lavín-Delgado, Z. Zamudio Beltrán, J. F. Gómez-
Aguilar, and E. Pérez-Careta, “Controlling a quadrotor
UAV by means of a fractional nested saturation control,”
Advances in Space Research, p. S0273117722009619, Oct.
2022, doi: 10.1016/j.asr.2022.10.023.

[3] C. Sun, M. Liu, C. Liu, X. Feng, and H. Wu, “An Industrial
Quadrotor UAV Control Method Based on Fuzzy Adaptive
Linear Active Disturbance Rejection Control,” Electronics,
vol. 10, no. 4, p. 376, Feb. 2021, doi:
10.3390/electronics10040376.

[4] H. Heidari and M. Saska, “Trajectory Planning of
Quadrotor Systems for Various Objective Functions,”
Robotica, vol. 39, no. 1, pp. 137–152, Jan. 2021, doi:
10.1017/S0263574720000247.

[5] M. Zare, F. Pazooki, and S. Etemadi Haghighi, “Hybrid
controller of Lyapunov-based and nonlinear fuzzy-sliding
mode for a quadrotor slung load system,” Engineering
Science and Technology, an International Journal, vol. 29,
p. 101038, May 2022, doi: 10.1016/j.jestch.2021.07.001.

[6] T. Duong and N. Atanasov, “Adaptive Control of SE(3)
Hamiltonian Dynamics with Learned Disturbance
Features.” arXiv, Mar. 22, 2022. Accessed: Jan. 24, 2023.
[Online]. Available: http://arxiv.org/abs/2109.09974

[7] O. Kose and T. Oktay, “Combined Quadrotor Autopilot
System and Differential Morphing System Design,”
Journal of Aviation, Dec. 2021, doi: 10.30518/jav.856436.

[8] L. Martins, C. Cardeira, and P. Oliveira, “Feedback
Linearization with Zero Dynamics Stabilization for
Quadrotor Control,” J Intell Robot Syst, vol. 101, no. 1, p.
7, Jan. 2021, doi: 10.1007/s10846-020-01265-2.

[9] S. De and D. Guida, “Control design for an under-actuated
UAV model,” FME Transactions, vol. 46, no. 4, pp. 443–
452, 2018, doi: 10.5937/fmet1804443D.

19

Scientific Bulletin of the Electrical Engineering Faculty – Year 23 No.1 (48) ISSN 2286-2455

[10] T. Avant, U. Lee, B. Katona, and K. Morgansen,
“Dynamics, Hover Configurations, and Rotor Failure
Restabilization of a Morphing Quadrotor,” in 2018 Annual
American Control Conference (ACC), Milwaukee, WI:
IEEE, Jun. 2018, pp. 4855–4862. doi:
10.23919/ACC.2018.8431628.

20

DOI: 10.2478/sbeef-2023-0002

LABVIEW AND REMOTEXY INTEGRATION FOR QUADROTOR STABILIZATION
AND CONTROL

1,2HAMZA DJIZI, 3ZOUBIR ZAHZOUH, 4AZZEDINE BOUZAOUIT
1Department of Mechanical Engineering, Mohamed Cherif Messaadia University, P.O. Box 1553, Souk-Ahras, 41000,

Algeria.
2INFRA-RES Laboratory, Mohamed Cherif Messaadia University, Algeria

3Laboratoire de Recherche en Électromécanique et Sûreté de Fonctionnement, LRESF Laboratory, Mohamed Chérif
Messaadia University, P.O. Box 1553, Souk-Ahras, 41000, Algeria.

4University of 20 August 1955 Skikda, Algeria
E-mail: hamzadjizi@gmail.com

Abstract. Nowadays, Small quadcopters have made
significant advancements in recent years, thanks to the
development of control systems, the availability of sensors, and
affordable and reliable materials for their production.
Additionally, programs have been developed to model and
analyze these aircraft before production. The professional
applications of quadcopters are seemingly endless due to their
many advantages. The aim of this research is to build a
quadcopter and test its stability utilizing Arduino Mega, IMU
sensor (Inertial Measurement Unit) and MPU-6050 in
LabVIEW environment. The objective is to select the suitable
PID parameters and create a remote-control program that can
be operated using a smartphone and RemoteXY app on
Android OS.

Keywords: quadcopter, control, LabVIEW, Arduino, sensor.

1. INTRODUCTION

Quadcopters with sensors have developed in terms of their
ability to perceive their surroundings, allowing them to fly
in appropriate conditions and maintain balance. They
consist of four motors with propellers attached to a
wooden or other material cross, with each motor
connected to an electronic speed controller (ESC)
controlled by a control card. The control card receives its
commands from a radio control receiver or a smartphone.
Designing and building a quadcopter is less complicated
than a standard helicopter, but still requires careful
consideration of the parts and assembly during the design
process. When editing, it is crucial to consider some
general points based on experience.

One of the most challenging mounting locations when
designing a custom frame is where the motors and frame
meet since the four mounting holes there need to be set
precisely. Any extra parts should preferably be arranged
symmetrically around an axis to make it easy to determine
the quadcopter's centre of gravity. The middle of the circle
that connects all motors should ideally house the
controller (Arduino Mega). As it is heavy enough for the
quadcopter, the battery should also be placed in the
middle of the device.

Quadrotor control has been an area of interest for many
researchers in recent years due to its potential for

applications in a wide range of fields such as aerial
photography, environmental monitoring, and search-and-
rescue operations [1]. PID (Proportional-Integral-
Derivative) controllers have been widely used in
quadrotor control due to their simplicity and effectiveness
in providing stable flight control [2-3]. Previous studies
have shown that PID controllers can achieve accurate and
stable flight control for quadrotors under various
conditions, including disturbances and changing
environments [4]. However, researchers have been
proposed several regulators for quadrotor control, both
linear and nonlinear. Linear regulators such as PD
(Proportional-Derivative) and LQR (Linear Quadratic
Regulator) have been widely used due to their simplicity
and effectiveness in achieving stable flight control [5-6].
Nonlinear regulators such as MPC (Model Predictive
Control) [7], SMC (Sliding Mode Control)[8], and fuzzy
logic controllers have also shown promising results in
achieving stable and robust control of quadrotors under
various conditions [9]. Moreover, the use of neural
networks has been investigated in quadrotor control as
they have the ability to learn complex nonlinear
relationships between the inputs and outputs of the system
[10].

In this work, we will try to study the stability of a
quadrotor using LabVIEW. To achieave that, we need a
range of components, including a wooden frame for
constructing the quadcopter, an Arduino Mega 2560
microcontroller, four A2212-6T 2200KV motors, four
30A electronic speed controllers (ESC), four 8045
propellers, an MPU-6050 gyroscope, ESP8266 Wi-Fi
module, wires, a 3S 4000mAh Li-Po battery, an IMAX
B6 Li-Po balance charger (Figure 1). In addition to
LabVIEW and an Android OS smartphone equipped with
the RemoteXY app. However, Section 2 provides a
detailed guide on how to construct a quadrotor and link its
components together. Section 3 delves into the control
equations and how they can be used to control the
quadrotor's movement. Section 4 explains how to
implement the control on a LabVIEW environment, while
Section 5 discusses the use of RemoteXY to control the
quadrotor. Section 6 presents the results and discusses
their implications, while the final section, the conclusion,
summarizes the article's key points and emphasizes the
significance of the findings.

9

Scientific Bulletin of the Electrical Engineering Faculty – Year 23 No.1 (48) ISSN 2286-2455

Figure 1. The quadcopter and its basic components.

2. CONSTRUCT THE QUADCOPTER AND

LINK ITS COMPONENTS

The quadcopter will be developed in steps, starting with
the mechanical assembly and continuing with the
functional testing of the parts. The quadcopter's whole
structure will be created by connecting the electrical
components using connection cables (Jumper-Wire),
then assembling them onto the frame. Also, to ensure
that the quadcopter can handle the intended weight or
achieve the desired thrust, The motors will be selected
based on their capabilities to provide the necessary
thrust for the quadcopter's weight and flight
performance.

Developing an effective command interface in
LabVIEW or an interface in Android using the
RemoteXY website, it is imperative to gain a
comprehensive understanding of the operational and
connection mechanisms of the various components of
the quadcopter, including but not limited to Arduino,
motors, gyroscope, Wi-Fi, and ESC. Only by thoroughly
comprehending the functioning of these components
and their interplay can we design and implement a
robust interface that can cater to the specific needs of the
quadcopter and enable efficient control and
maneuverability.

Connecting the fundamental electrical components will
be established according to the diagram presented in
Figure 2, which illustrates the optimal way to link the
Arduino Mega, the four A2212-6T 2200KV motors, the
MPU-6050 gyroscope, the ESP8266 Wi-Fi module, the
four 30A electronic speed controllers (ESC), the Li-Pro
battery (3S, 4000 MAH), and the necessary Jumper-
Wire cables to ensure the proper functioning of the
quadcopter.

Figure 2. Linking the electronic components.

After assembling the quadrotor, it's essential to carry out
a series of tests on the various components to ensure
everything is working correctly (Figure 3). This includes
establishing a stable WiFi connection using the esp8266
module, initializing the ESC to optimize the
performance of the brushless motors, and calibrating the
gyroscope to remove any offsets in the six axes. These
steps are critical for ensuring a smooth and stable flight,
and they must be performed carefully and thoroughly to
minimize the risk of any malfunctions or accidents
during operation. Once all of these tasks are completed
successfully, the quadrotor should be ready for
programming and testing and further optimization.

10

Scientific Bulletin of the Electrical Engineering Faculty – Year 23 No.1 (48) ISSN 2286-2455

Figure 3. The quadcopter model.

3. CONTROL AND EQUATIONS

Accelerometers and gyroscopes are two commonly used
sensors in quadrotors to achieve stabilization and
control. The accelerometer measures the linear
acceleration of the quadrotor in all three axes. Based on
this information, the control system can calculate the
orientation of the quadrotor and adjust the motor thrust
accordingly to maintain stability. Gyroscopes, on the
other hand, measure the angular velocity of the
quadrotor around all three axes. By integrating the
gyroscopic data, the system can calculate the orientation
of the quadrotor over time. Combining the
accelerometer and gyroscope data, the control system
can achieve accurate attitude estimation of the quadrotor
and make necessary adjustments to the motor thrust to
stabilize and control the device. The integration of these
two sensors provides a robust and reliable control
system for quadrotors, enabling them to perform
complex maneuvers and maintain stability in various
flight conditions.

To comprehensively assess the dynamics and stability of
a quadcopter, determining the angles of both
accelerometer and gyroscope is essential. To accurately
calculate the angles of the gyroscope, employing the
equations below is crucial.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = atan � 𝑌𝑌

�𝑋𝑋2+𝑍𝑍2
� (1)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = atan � 𝑋𝑋
�𝑌𝑌2+𝑍𝑍2

� (2)

Accelerometer angles:

𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑥𝑥 = 𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴((𝑎𝑎𝐴𝐴/16384.0)/
𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎(𝑝𝑝𝑝𝑝𝑝𝑝((𝑎𝑎𝐴𝐴/16384.0),2) + 𝑝𝑝𝑝𝑝𝑝𝑝((𝑎𝑎𝑎𝑎/

16384.0),2))) ∗ 𝑠𝑠𝑎𝑎𝑟𝑟_𝑎𝑎𝑝𝑝_𝑟𝑟𝐴𝐴𝐴𝐴; (3)

𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑦𝑦 = 𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴(−1 ∗ (𝑎𝑎𝐴𝐴/16384.0)/
𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎(𝑝𝑝𝑝𝑝𝑝𝑝((𝑎𝑎𝐴𝐴/16384.0),2) 𝑝𝑝𝑝𝑝𝑝𝑝((𝑎𝑎𝑎𝑎/

16384.0),2))) ∗ 𝑠𝑠𝑎𝑎𝑟𝑟_𝑎𝑎𝑝𝑝_𝑟𝑟𝐴𝐴𝐴𝐴; (4)
𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑧𝑧 = 𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴(𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎(𝑝𝑝𝑝𝑝𝑝𝑝((𝑎𝑎𝐴𝐴/

16384.0),2) + 𝑝𝑝𝑝𝑝𝑝𝑝((𝑎𝑎𝐴𝐴/16384.0),2))/
 (𝑎𝑎𝑎𝑎16384.0)) ∗ 𝑠𝑠𝑎𝑎𝑟𝑟_𝑎𝑎𝑝𝑝_𝑟𝑟𝐴𝐴𝐴𝐴;

 (5)

Gyroscope Angles:
𝐺𝐺𝑦𝑦𝑠𝑠𝑝𝑝_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑥𝑥 = 𝐴𝐴𝐴𝐴/131.0; (6)
𝐺𝐺𝑦𝑦𝑠𝑠𝑝𝑝_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑦𝑦 = 𝐴𝐴𝐴𝐴/131.0; (7)
𝐺𝐺𝑦𝑦𝑠𝑠𝑝𝑝_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑧𝑧 = 𝐴𝐴𝐴𝐴/131.0; (8)

Total Angles:

𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝐴𝐴𝐴𝐴_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑥𝑥 = 0.98 ∗ (𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝐴𝐴_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑥𝑥 +
𝐺𝐺𝑦𝑦𝑠𝑠𝑝𝑝_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑥𝑥 ∗ 𝐴𝐴𝐴𝐴𝑎𝑎𝑝𝑝𝑠𝑠𝐴𝐴𝑟𝑟𝑎𝑎𝑒𝑒𝑒𝑒𝐴𝐴) + 0.02 ∗

𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑥𝑥;
(9)

𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝐴𝐴𝐴𝐴_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑦𝑦 = 0.98 ∗ (𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝐴𝐴_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑦𝑦 +
𝐺𝐺𝑦𝑦𝑠𝑠𝑝𝑝_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑦𝑦 ∗ 𝐴𝐴𝐴𝐴𝑎𝑎𝑝𝑝𝑠𝑠𝐴𝐴𝑟𝑟𝑎𝑎𝑒𝑒𝑒𝑒𝐴𝐴) + 0.02 ∗

𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑦𝑦;
(10)

𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝐴𝐴𝐴𝐴_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑧𝑧 = 𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝐴𝐴𝐴𝐴_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑧𝑧 +

 𝐺𝐺𝑦𝑦𝑠𝑠𝑝𝑝_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑧𝑧 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑝𝑝𝑠𝑠𝐴𝐴𝑟𝑟𝑎𝑎𝑒𝑒𝑒𝑒𝐴𝐴
 (11)

Error calculation:

𝐴𝐴𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠_𝑥𝑥 = 𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝐴𝐴𝐴𝐴_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑥𝑥 – 𝑟𝑟𝐴𝐴𝑠𝑠𝑒𝑒𝑠𝑠𝐴𝐴𝑟𝑟_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑥𝑥
(12)

𝐴𝐴𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠_𝑦𝑦 = 𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝐴𝐴𝐴𝐴_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑦𝑦 – 𝑟𝑟𝐴𝐴𝑠𝑠𝑒𝑒𝑠𝑠𝐴𝐴𝑟𝑟_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑦𝑦
(13)

𝐴𝐴𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠_𝑧𝑧 = 𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝐴𝐴𝐴𝐴_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑧𝑧 – 𝑟𝑟𝐴𝐴𝑠𝑠𝑒𝑒𝑠𝑠𝐴𝐴𝑟𝑟_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑧𝑧
(14)

PID equations:
𝑝𝑝𝑒𝑒𝑟𝑟_𝑝𝑝 = 𝑘𝑘𝑝𝑝 ∗ 𝐴𝐴𝑠𝑠𝑠𝑠𝐴𝐴𝑒𝑒𝑠𝑠;
(15)
𝑝𝑝𝑒𝑒𝑟𝑟_𝑟𝑟 = 𝑘𝑘𝑟𝑟 ∗ ((𝐴𝐴𝑠𝑠𝑠𝑠𝐴𝐴𝑒𝑒𝑠𝑠 – 𝐴𝐴𝑠𝑠𝑠𝑠𝐴𝐴𝑒𝑒𝑠𝑠_𝑝𝑝𝑠𝑠é𝑎𝑎é𝑟𝑟𝐴𝐴𝐴𝐴𝑎𝑎)/
𝑎𝑎𝐴𝐴𝑒𝑒𝑝𝑝𝑠𝑠_é𝑎𝑎𝑝𝑝𝑒𝑒𝐴𝐴é);
(16)
𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑝𝑝𝑒𝑒𝑟𝑟_𝑝𝑝 + 𝑝𝑝𝑒𝑒𝑟𝑟_𝑒𝑒 + 𝑝𝑝𝑒𝑒𝑟𝑟_𝑟𝑟;
(17)

With:
aX, aY, aZ: accelerometer variables (axes)
gZ, gY, gZ: gyroscope variables (axes)
kp, ki, kd: PID parameters

4. CONTROL ON LABVIEW ENVIRONMENT

The implementation of a command interface utilizing
LabVIEW has facilitated the study of the quadcopter's
distinct movements in real-life scenarios. The
simulation results derived from this analysis have
enabled us to accurately maintain the speed and stability
of the quadcopter, thus ensuring optimal flight
conditions. The successful integration of these findings
led to the development of an ideal interface under the
Android platform, allowing for remote control of the
quadcopter with unparalleled precision and reliability.

The implementation of the LabVIEW interface was
executed through a systematic construction of the block
diagram, which was employed to configure all essential
functions required for the comprehensive control of the
quadcopter's various components, including the
Arduino, motors, and MPU6050 (Figure 4). Beginning

11

Scientific Bulletin of the Electrical Engineering Faculty – Year 23 No.1 (48) ISSN 2286-2455

with the development of the PIDs diagram, algorithm
mixer diagram, and followed by the motors and
MPU6050 diagrams, the block diagram that based on
the equations above enablees the creation of a seamless
control interface, which represented in Figure 5.

Figure 4. Brushless Motors and gyroscope control

diagram (MPU-6050).

Figure 5. The Control graphical interface on LabVIEW.

5. CONTROL USING ROMOTXY

In order to program and establish a connection between
the Arduino and the website (remotexy.com) and its
corresponding phone application (Figure 6). A Wi-Fi
connection was selected along with an Arduino Mega
device, Wifi-ESP8266 connection module, and the
Arduino IDE development environment. To enable
communication between the smartphone and the
controller (Arduino Mega), it was necessary to connect
it to the Wi-Fi-ESP8266 module via the UART inputs
(Rx, Tx). The ESP8266 module was then configured as
a standalone Wi-Fi access point, requiring no
connection with an existing Wi-Fi network for
operation. The smartphone must be connected to the
access point created to establish a connection. When
programming the controller, the equations and variables
mentioned about will be utilized to calculate the PID
values and the appropriate pulse width modulation
(PWM) to enable precise control over each movement.

12

Scientific Bulletin of the Electrical Engineering Faculty – Year 23 No.1 (48) ISSN 2286-2455

Figure 6. RemoteXY Command interface on smartphone.

6. RESULTS AND DISCUSSION

The analysis of the quadcopter and its real-time
movements, while similar to its simulation counterpart
under MATLAB, presents variations due to the potential
for measurement inaccuracies and manufacturing
discrepancies. As such, the current study employed the
LabVIEW environment to investigate the movement of
the quadcopter and derive precise values for the
essential PIDs parameters, which are crucial for
subsequent programming of the controller (Table 1).

Table 1. PID regulator parameters

The simulation results for the quadrotor system using
the PID regulator on LabVIEW were highly successful.
The altitude results demonstrated consistent and stable
flight at the desired height, with minimal oscillations
and deviations from the setpoint (Figure 7). The roll and
pitch results were also impressive, with the quadrotor
maintaining a level and balanced flight despite varying
wind conditions and disturbances (Figure 8 and 9). The
yaw results were equally noteworthy, showcasing the
system's ability to maintain a stable heading and respond
quickly to changes in orientation (Figure 10). Overall,
the simulation demonstrated the effectiveness of the PID
regulator in controlling the quadrotor's movements and
ensuring smooth, stable flight performance. These
results provide valuable insights for further
development and optimization of quadrotor systems for
a variety of applications

Figure 7. System response for Altitude movement

Figure 8. System response for Roll movement

Figure 9. System response for Pitch movement

PID_Roll PID_Pitch PID_Yaw PID_Altitude

Param Value Param Value Param Value Param Value

Kp 0.2 Kp 0.6 Kp 0.5 Kp 2

Ki 0.1 Ki 0.8 Ki 0.1 Ki 1.8

Kd 0.3 Kd 0.5 Kd 0.4 Kd 1.5

Time (ms)

PW
M

 c
on

tro
l (

m
ic

ro
se

co
nd

)

 PWM control ـــــــ
 Altitude response ـــــــ

Time (ms)

PW
M

 c
on

tro
l (

m
ic

ro
se

co
nd

 PWM control ـــــــ (
 Roll response ـــــــ

Time (ms)

PW
M

 c
on

tro
l (

m
ic

ro
se

co
nd

 PWM control ـــــــ (
 Pitch response ـــــــ

13

Scientific Bulletin of the Electrical Engineering Faculty – Year 23 No.1 (48) ISSN 2286-2455

Figure 10. System response for Yaw movement

7. CONCLUSION

This study has successfully presented a system for
controlling the various movements of the quadcopter
and analyzed the stability of each motion using a PID
regulator in the LabVIEW environment. The
experimental results demonstrated that the stability of
each movement is closely correlated with the speed of
the motors. The practical study conducted on LabVIEW
enabled us to establish appropriate PID parameters for
subsequent controller programming. The IMU sensor
(Inertial Measurement Unit, MPU-6050) was identified
as a key component for quadcopter controller
programming since it can accurately measure all the
basic movements of the quadcopter. By utilizing these
measurements, we can effectively control and stabilize
the quadcopter with remarkable efficiency using
Smartphone (RemotXY).

8. REFERENCES

[1] D. Asadı̇, “Partial Engine Fault Detection and Control of

a Quadrotor Considering Model Uncertainty,” Turkish
Journal of Engineering, Mar. 2021, doi:
10.31127/tuje.843607.

[2] L. Jin, Y. Lou, L.-A. Chen, and Q. Lu, “The Unified
Tracking Controller for a Tilt-Rotor Unmanned Aerial
Vehicle Based on the Dual Quaternion,” in 2022 IEEE
International Conference on Unmanned Systems
(ICUS), Oct. 2022, pp. 1356–1363. doi:
10.1109/ICUS55513.2022.9986880.

[3] X. Lu and Z. Xing, “Application of IoT Quadrotor
Dynamics Simulation,” Electronics, vol. 11, no. 4, p.
590, Feb. 2022, doi: 10.3390/electronics11040590.

[4] B. Jiang, B. Li, W. Zhou, L.-Y. Lo, C.-K. Chen, and C.-
Y. Wen, “Neural Network Based Model Predictive
Control for a Quadrotor UAV,” Aerospace, vol. 9, no. 8,
p. 460, Aug. 2022, doi: 10.3390/aerospace9080460.

[5] S. Martini, S. Sonmez, A. Rizzo, M. Stefanovic, M. J.
Rutherford, and K. P. Valavanis, “Euler-Lagrange
Modeling and Control of Quadrotor UAV with
Aerodynamic Compensation,” in 2022 International
Conference on Unmanned Aircraft Systems (ICUAS),

Dubrovnik, Croatia: IEEE, Jun. 2022, pp. 369–377. doi:
10.1109/ICUAS54217.2022.9836215.

[6] L. Martins, C. Cardeira, and P. Oliveira, “Feedback
Linearization with Zero Dynamics Stabilization for
Quadrotor Control,” J Intell Robot Syst, vol. 101, no. 1,
p. 7, Jan. 2021, doi: 10.1007/s10846-020-01265-2.

[7] D. Yan, W. Zhang, and H. Chen, “Design of a Multi-
Constraint Formation Controller Based on Improved
MPC and Consensus for Quadrotors,” Aerospace, vol. 9,
no. 2, p. 94, Feb. 2022, doi: 10.3390/aerospace9020094.

[8] F. Ma, Z. Yang, and P. Ji, “Sliding Mode Controller
Based on the Extended State Observer for Plant-
Protection Quadrotor Unmanned Aerial Vehicles,”
Mathematics, vol. 10, no. 8, p. 1346, Apr. 2022, doi:
10.3390/math10081346.

[9] K. Liu, R. Wang, S. Dong, and X. Wang, “Adaptive
Fuzzy Finite-time Attitude Controller Design for
Quadrotor UAV with External Disturbances and
Uncertain Dynamics,” in 2022 8th International
Conference on Control, Automation and Robotics
(ICCAR), Xiamen, China: IEEE, Apr. 2022, pp. 363–
368. doi: 10.1109/ICCAR55106.2022.9782598.

[10] J. Li, S. Mou, and D. Zhang, “A Novel Adaptive Robust
Control Algorithm for Quadrotor UAV,” in 2021 6th
International Conference on Robotics and Automation
Engineering (ICRAE), Guangzhou, China: IEEE, Nov.
2021, pp. 50–54. doi:
10.1109/ICRAE53653.2021.9657806.

Time (ms)

PW
M

 c
on

tro
l (

m
ic

ro
se

co
nd

 PWM control ـــــــ (
 Yaw response ـــــــ

14

