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Abstract. Nowadays, the use of quadcopters in daily life has 
become important due to its capabilities and ability to carry out 
many tasks in many fields like civil, military, industrial, and 
agricultural fields. The modelling of the quadcopter and deeply 
understanding its movements is very important to ensure that 
the simulations of its behaviour are as close as possible to 
reality and also helps us to design a flight controller. In this 
work, we used a modern technique on MATLAB (Simscape) to 
simulate a quadcopter in real-time. At first, we build a 
quadcopter using Simscape multibody then we simulated the 
PID regulator, the command algorithms, and the motor model 
with the applied forces on the body to achieve the global model 
that we can use to study the movement of the quadcopter on the 
three-axis which ensure a stable functioning. The results 
obtained show the stability of the four movements of the 
quadcopter (roll, pitch, yaw, and altitude). 

Keywords: Quadcopter, Electrical model, PID regulator, 
Simscape, Stability. 

 

1. INTRODUCTION 
 

Nowadays, with the incredible development of technology, 
especially electronics and computer science, which led to 
appear powerful microcontrollers and powerful software, 
this is what helped people to increase the performance of 
drones from both sides: software, and hardware. Some 
important applications of this aircraft are that it can be 
used in the army, entertainment, surveillance, aerial 
photography, agriculture, and transportation, where 
individual goods can be transported too anywhere. The 
irrigation has become more efficient when using drones to 
be watering, monitoring fields and detects water pooling or 
leaks using thermal cameras. 

 
Quadcopters have a different behaviour from other planes, 
as they have four movements resulting from the rotation of 
four engines in diverse ways. To obtain a vertical 
movement, all the engines must rotate at the same speed. 
As for the other movements there are two types of 
quadcopters (+ and x), and each type has its own way of 
controlling [1]. 

 
The control of the quadcopter depends mainly on its 
stability [2-3]. Where a special control unit is designed 
based on the basic movements made by the aircraft during 

flight. These movements are controlled by special 
propellers that produce forces and this shows that the 
aerodynamic properties of the aircraft are very important 
as many researchers have studied these properties in depth 
[4]. In addition to the mechanical vibration characteristics 
of the propellers which help the quadcopter to fly safely in 
optimal conditions [5]. 

 
Ensuring drone stability is an important task for ensure a 
safety flying. So, to stabilize a quadcopter there are many 
different regulators used. The most important and widely 
used regulators in the field of drones are: PID and LQR [6- 
7]. In addition, other different hybrid regulators can be 
used (P-LQR, PD-LQR and PD2-LQR) [8]. However, the 
PID has the ability to correct the error and apply accurate 
and optimal control using three control terms: proportional, 
integral and derivative. As for the LQR is a method that 
used to find the optimal control action that ensure a high 
stability and performance to the system by reducing the 
cost J value using two matrices Q and R, where Q is a 
square matrix with rows equal the number of states, and R 
is square matrix with rows equal to the number of inputs. 
Also, many artificial intelligent techniques based on 
Artificial Neural Networks (ANN) are used for improving 
the response of the PID regulator and make the system 
more reliable [9-10]. 

 
To develop a quadcopter model under MATLAB 
(Simulink), it is important to understand the quadcopter 
behaviour and its movements (Altitude, Roll, Pitch, and 
Yaw). In addition to understand the relation between the 
different equations, there are different ways to simulate a 
quadcopter model on MATLAB. The different 
mathematical equations of a quadcopter can be used to 
create a Simulink model in several ways [11-12]. A 
mechanical model can be developed based on Simscape 
Multibody library with the help of an electric library to 
simulate the motors [13]. 

 
In this work, we studied the x-type, where in this type we 
can control the three movements (roll, pitch, yaw) through 
pairs of motors. Firstly, to achieve a roll movement, the 
speed of the two motors on the left must be increased, and 
the speed of the two motors on the right must be decreased. 
This applies torque around the x-axis to obtain a rotational 
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movement this movement is coupled with a translational 
movement along the y-axis. Secondly, to achieve a pitch 
movement, the speed of the two motors on the front must 
be increased, and the speed of the two motors on the back 
must be decreased. This applies torque around the y-axis to 
obtain a rotational movement this movement is coupled 
with a translational movement along the x-axis. Finally, 
the yaw movement can be produced when the two diagonal 
motors rotate clockwise while the other two diagonal 
motors rotate counter clock wise. The main objective of 
the simulation in MATLAB using Simscape library is to 
study the aircraft performance in a better efficiency, where 
we can achieve and control the aircraft stability in its four 
basic movements. 

 
2. EQUATIONS AND METRICS 

 
2.1 The equations used in the model. 

 
To calculate the forces on the three axes generated by each 
motor, the following equations are used: 

F𝑥𝑥𝑥𝑥 = TF ∗ sin(y) (1) 

F𝑦𝑦𝑦𝑦 = TF ∗ sin(x) (2) 
 

Fz = �((TF ∗ cos(x))2 + ((TF ∗ cos(y))2 (3) 

To calculate the thrust force the equation (4) is used: 

Thrust = D3 ∗ Pitch ∗ RPM2 ∗ 10−10 (4) 

2.2 Command Algorithms 
 

𝐌𝐌𝐌𝐌𝟏𝟏𝟏𝟏 = 𝐓𝐓𝐓𝐓 + 𝐑𝐑𝐑𝐑 + 𝐏𝐏𝐏𝐏 – 𝐘𝐘𝐘𝐘 (5) 
𝐌𝐌𝐌𝐌𝟐𝟐𝟐𝟐 = 𝐓𝐓𝐓𝐓 – 𝐑𝐑𝐑𝐑 + 𝐏𝐏𝐏𝐏 + 𝐘𝐘𝐘𝐘 (6) 
𝐌𝐌𝐌𝐌𝟑𝟑𝟑𝟑 = 𝐓𝐓𝐓𝐓 – 𝐑𝐑𝐑𝐑 – 𝐏𝐏𝐏𝐏 – 𝐘𝐘𝐘𝐘 (7) 
𝐌𝐌𝐌𝐌𝟒𝟒𝟒𝟒 = 𝐓𝐓𝐓𝐓 + 𝐑𝐑𝐑𝐑 – 𝐏𝐏𝐏𝐏 + 𝐘𝐘𝐘𝐘 (8) 

2.3 PID Equation 
 

The PID regulator, also called PID corrector (proportional, 
integral, derivative) is a control system that improves the 
systems performance. 

 
The following equation shows the PID command: 

 
Table 1. PID coefficients 

 

PID Coefficients 
Kp Ki Kd 

Roll 0.5 0.4 0.5 
Pitch 0.5 0.4 0.5 
Yaw 1 0.5 0.9 

Altitude 0.2 0.2 0.1 
 

In Table 2, mechanics parameters and metrics are 
presented. 

 
Table 2. Mechanics parameters and metrics 

Parameters Value / Units 
Weight of drone (m) 0.49 (kg) 

Speed of motor (RPM) 
Propellers size D/Pitch –08/4.5 (inches) 

Thrust-ForceTF, Fx, Fy, 
and Fz one force(Oz), and Newton (N) 

x, y, z Meter (m) 

Ix, Iy, Iz [0.00266, 0.00266, 0.0027] 
(kg.m2) 

Angles (roll, pitch, yaw) (rad) 
Speed (m/s) 

Mi motors 
T, R, P, Y (Thrust, Roll, Pitch, Yaw) 

 
3. SIMULATION 

 
Computer or digital simulation refers to executing a 
computer program to simulate a real and complex physical 
phenomenon. So, a built in Simscape library under 
MATLAB used to simulate a prototype of quadcopter. The 
figures below show the important blocks and the global 
model. 

 
To study the stability of the quadcopter, the regulator PID 
is used with the model. Each movement has a specific 
regulator (Figure 1). 
• Roll PID regulator. 
• Pitch PID regulator 
• Yaw PID regulator 
• Altitude PID regulator 

𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = 𝐾𝐾𝐾𝐾 𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) + 𝐾𝐾𝐾𝐾 ∫ 𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 + 𝐾𝐾𝐾𝐾 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 
 

(9) 
𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 
After studying and improving the system, we were able to 
obtain the constants shown in (Table 1), which are the 
right values for the stability of the system. 

 
Figure 1. PID regulator model for each movement 
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Each motor must have a model (electrical model) using 
electrical tools under Simscape library as shown in the 
(Figure 2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Brushless Direct Current motor (BLDC) motor 
model 

 
Figure 3 shows how the control commands are linked to 
control the four movements of the quadcopter, each 
character for a specific motor (U, L, D, R). 

 
After we calculate the thrust of each motor, we must 
calculate the force along of each axis. From Figure 4, we 
see how the forces along of the three axes can be 
calculated. 

 
The software SolidWorks is used to design the quadcopter 
structure. At first, the base plate is simulated, arms to 
support motors then the propellers blades and 
motors. After that the model is uploaded on MATLAB as 
shown in the (Figure 5). 

 

Figure 3. Command Algorithms model 

Figure 4. Forces along of the three axes (x, y, and z) 
 

Figure 5. Quadcopter structure model using Simscape 
multibody. 

 
Figure 6 shows the quadcopter structure in the mechanics 
explorer under MATLAB environment: 

 

Figure 6. Quadcopter in Mechanics Explorer 
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To develop the global model, it is necessary to understand 
the behaviour of the quadcopter and its movements. It is 
known that the plane has six (6) degrees of freedom, but 
only four basic movements. So, it is easy to choose the 
variables that cause the quadcopter to move in different 
directions. 
• Control the altitude along the vertical z-axis: Altitude. 
• Control of rotation around the x-axis: Roll. 
• Control of rotation around the y-axis: Pitch. 
• Control of rotation around the z-axis: Yaw 

 
And know the relationships between the different blocks 
and models of the quadcopters (regulator, motors model, 
command algorithms model, and forces model). 

 
Figure 7 shows the global model of the quadcopter: 

 

Figure 7. The quadcopter global model 

 
4. RESULTS AND DISCUSSION 

 
After developing the quadcopter model, the most important 
parameter to be studied is the aircraft stability during the 
performance of its four basic movements avoiding any 
external perturbations. 

 
Then, the PID regulators must be tuned and adjusted. 
There are four movements, so we have four PID 
regulators. Each regulator has three constants (kp, ki, kd). 
All these constants are adjusted until optimal stability is 
gotten (Table 1). 

 
4.1 Altitude results 

 
In order to obtain a vertical movement, it is necessary that 
all the lifting force is opposed to the force of gravity along 
the z-axis. On the other hand, the lifting force created by 
each motor must be the same to prevent overturning of the 
quadcopter. For this, the thrust produced by motors must 
be identical. 

 
The up and down movement is obtained by changing the 
speed of motors rotation. If the thrust force is greater than 
the weight of the quadcopter, the movement is upward, and 
if it is less than the weight of the quadcopter, the 
movement is downward. 

 
In the (Figure 8) we can see the stability on the z-axis. 
When, we give a command to the drone to climb a height 
of five meters, the PID regulator adjust the velocity of the 
quadcopter to stabilize at the given height command after 
about six seconds, which represent a good result compared 
with the literature. 
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Figure 9. Roll command and response (Roll angle, 

acceleration, velocity, and position) 
 

4.3 Pitch movement 
 

This movement is similar to that of rolling. When a torque 
is given around the y-axis, it rotates the plane at a specific 
angle. This movement produces another movement along 
the x-axis. This allows the drone to go forward or 
backward. To stabilize the movement along the x-axis, the 
PID parameters are tuned for the Pitch movement. Figure 
10 shows the drone's stability along the x-axis. 

 

Figure 8. Altitude command and response (Altitude, Motor 
speed, velocity, and acceleration) 

 
4.2 Roll results 

 
The roll movement is done when a torque is given around 
the x-axis. This torque rotates the plane at a specific angle. 
This movement produces another movement along the y- 
axis. This allows the drone to go left or right. 

 
To stabilize the movement along the y-axis, the PID 
parameters are tuned for the roll movement. Figure 9 
shows the drone's stability along the y-axis. 

 
 
 
 
 
 
 
 
 
 
 

Figure 10. Pitch command and response(Pitch angle, 
acceleration, velocity, and position) 

 
4.4 Yaw results 

 
The yaw movement makes the drone change her direction. 
When a torque is given around the z-axis using the 
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diagonals motors, the torque rotates the plane at a specific 
angle around the z-axis. To stabilize the Yaw movement 
around the z-axis we have tuned the PID parameters to 
ensure the stabilization. 

 
Figure 11 shows the drone’s stability around the z- axis. 

 

Figure 11. Yaw command and response 
 

5. CONCLUSIONS 
 

The Simulink quadcopter model was introduced using the 
Simscape library under MATLAB and a PID controller to 
study the stability of a quadcopter in real time. After 
giving the motion command and measuring the output, the 
output error was calculated and then adjusted the error 
using a PID controller. The results were transmitted 
through the control algorithms to the kinetic model in the 
form of electrical energy, which rotates the motors, the 
latter produces a lift force, and this force can move the 
quadcopter. 

 
When we ordered the quadcopter to climb to a height of 
three meters, it stabilized at this height in about seven 
seconds which is a good result according to the proposed 
system in this paper and compared to the literature. Also 
when the quadcopter is ordered to go left or right by giving 
the Roll angle about six or –six degrees, it stabilized in 
about eight seconds which also represent a nice result. The 
third result of this study is when the quadcopter is ordered 
to go forward or backward by giving the Pitch angle about 
six or -six degrees, the quadcopter stabilized in about eight 
seconds. Finally, the quadcopter too stabilized in the yaw 
movement in about eight second on the one hand and in 
the other hand the period of time for the drone stability of 
was so close due to the fact that the design of the 
quadcopter is symmetric. 
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Abstract: This paper introduces a novel way of designing and controlling a 
quadrotor prototype using hand gestures, utilising the Robotic Operating 
System 2 (ROS2) and GAZEBO11 3D environment. A C++-based plug-in was 
created for GAZEBO, while the cross-platform pipeline framework Media-Pipe 
was used to manage the quadrotor’s movements through hand gestures. The 
PID regulator was utilised to enhance the movements’ accuracy and 
responsiveness, leading to a more efficient and precise response to user 
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1 Introduction 

Quadrotors have rapidly advanced in the last decade with increased hardware and 
software capabilities, relying more on artificial intelligence for complex tasks (Spanaki  
et al., 2022). The importance of drones in human society has grown due to their high 
efficiency and low cost. As a result, researchers and scientists have become highly 
interested in this type of aircraft. However, a reliable and precise controller is still 
necessary for these aircraft to perform tasks with minimal errors (Shirzadeh et al., 2021). 
To meet this need, The ROS system (ROS Docs, 2022) has gained popularity for its high 
efficiency and powerful software platform, particularly in the industrial field, which 
makes companies adopt it widely for research and development. This platform helps 
them move from research and prototyping to deployment and production. 

There are two main versions of this system (ROS and ROS2). The community 
supports ROS on various Linux distributions, although it was first developed on Ubuntu. 
Robotic Operating System 2 (ROS2) is developed on Ubuntu, Windows, and MacOS 
(ROS docs). Additionally, an open-source 3D robotics simulator called GAZEBO 
(GAZEBO Docs, 2022) is used with ROS. This software is based on physics engine and 
OpenGL rendering, and it supports various sensors such as cameras, lidars, GPS, etc. The 
importance of GAZEBO appears during the manufacturing process, as it can save time 
and money to produce a cheaper product (gazebo APIs). There are an increasing demand 
for ROS applications in automation systems (Erős et al., 2019), particularly in the field of 
unmanned aerial vehicles (Orozco Soto et al., 2022). ROS helps researchers to develop 
more reliable solutions to ensure system robustness and autonomous mission success 
(García and Molina, 2022; Omar, 2022). ROS applications are also being utilised in the 
field of mobile industrial robots, which can be programmed to carry out repetitive tasks 
with high efficiency and accuracy (Puck et al., 2020). 

One of the main challenges in programming a quadrotor is maintaining stability 
during flight. This can be achieved by using various regulators, such as PID regulators, 
that are integrated with the control commands to improve performance and maintain 
stability (Goud et al., 2022; Trenev et al., 2021). The PID regulator is widely used in 
industry for automatic process control, including in drones due to its ease of use and 
advantages (Yoon and Doh, 2022). 

However, various controllers were developed to address the stability issues, such as 
linear controllers, nonlinear controllers, and learning-based control techniques. LQR and 
hybrid LQR offer higher efficiency and improved the quadrotor performance (Shauqee  
et al., 2021). The linear quadratic Gaussian controller uses feedback and optimal control 
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theory to regulate and control dynamic systems with high performance and stability 
(Fessi and Bouallègue, 2019; Kumar et al., 2023). The H∞ controller is a popular robust 
control system used in aerospace and automotive industries to achieve high performance 
and stability for complex linear time-invariant systems (Bellahcene et al., 2021). Model 
predictive control is an advanced control system used for regulating dynamic systems, 
especially quadrotors (Meradi et al., 2022; Zhao and Wu, 2023). Fuzzy logic and 
artificial neural networks are learning-based control techniques that can also improve 
quadrotor stability and performance (Abedzadeh Maafi et al., 2022; Dey et al., 2022; 
Guettal et al., 2022; Pakro and Nikkhah, 2022). 

When the quadrotor is created and evaluated, it can be fabricated using the on-axis 
microstereolithography (OMSL) method, which is a method that uses layer-by-layer 
photopolymerisation to create three-dimensional (3D) components. It employs a laser 
beam to harden a liquid photopolymer to produce detailed, high-resolution structures. 
This technique is used to print the 3D quadrotor models created with 3D modelling 
software. The OMSL printer then uses the design to steer the laser beam into the liquid 
resin, resulting in the construction of the quadrotor’s components (Gandhi et al., 2013). 
Bulk lithography is also a technology used to produce microelectronic components and 
integrated circuits. They are a type of photolithography technology that fabricates 
quadrotor components using light-sensitive materials and masks. By enforcing spatial 
variation of laser intensity at every location in a single-layer scan, this technique 
produces a variable depth 3D microstructure (Gandhi and Bhole, 2013). 

A quadrotor control system that uses Media-Pipe, GAZEBO, and ROS2 is presented 
in this work (Figure 1). Media-Pipe is a framework for multimodal machine learning 
pipelines, GAZEBO is a robotics simulation environment, and ROS2 is an open-source 
robot operating system. Media-Pipe processes quadrotor sensor data and generates 
control commands based on hand gestures, which are then published and subscribed 
between the nodes using ROS2, while GAZEBO simulates the 3D model, flight 
dynamics, and environment of the quadrotor. By combining Media-Pipe, GAZEBO, and 
ROS2, the quadrotor model can be realistically and scalably tested and evaluated without 
physical hardware. 

Research highlights: 

 introduction to quadrotor design and control using ROS2 and GAZEBO 

 using MediaPipe framework to control the quadrotor with hand gestures 

 PID regulator implementation to improve quadrotor response and stability 

 future research and development can be guided by this work. 

This study provides a detailed explanation of building a quadrotor model in ROS2 and 
GAZEBO and controlling it through hand gestures using ROS2 nodes. The quadrotor 
model’s response is enhanced by the PID regulator, which improves stability in four basic 
movements, indicating the system’s effectiveness and potential for future development. 
However, in Section 2, the ROS2 project architecture is presented. Section 3 details how 
to create the quadrotor 3D model with URDF. Section 4 describes the development of a 
C++ GAZEBO plug-in based on Newton’s second law of motion to manage the various 
movements of the quadrotor. Section 5 goes through how to control the quadrotor with 
hand gestures. Section 6 describes the system’s implementation. Section 7 demonstrates 
and discusses the communication between the different ROS2 nodes to control and 
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monitor the system. The simulation results pertaining to the system are presented in 
Section 8. Finally, conclusions and future work are mentioned in Section 9. 

Figure 1 A graphical abstract that illustrates the process of controlling the quadrotor  
(see online version for colours) 

 
 
 

 
 
 

 

 

 

 

 

  

2 Quadrotor project architecture 

This project builds a quadrotor using the recommended installation of ROS2 (Humble 
Hawksbill) on Ubuntu Linux – Jammy Jellyfish (22.04). The project’s architecture is 
illustrated in Figure 2, with the setup environment for installed ROS2 packages and 
libraries serving as the underlay. Ubuntu Jammy currently supports ROS2 Humble 
Hawksbill packages. The overlay serves as the setup environment for the workspace 
packages that were built for the drone project. Three packages were created, each one 
dedicated to a specific part of the project. The first package, hamza_msgs, contains 
interfaces used for communication between ROS2 applications, including messages, 
services, and actions. The second package, drone_pkg, contains the quadrotor model 
description designed using a unified robot description format based on Extensible  
Markup Language (XML). In addition to the python scripts programmed to recognise 
hand gestures as commands using the Media-Pipe framework. The third package, 
control_pkg, contains a C++ plug-in responsible for controlling the quadrotor’s motors, 
sensors, and other components in GAZEBO11. This plug-in is called from the URDF file. 
Furthermore, this plug-in is intended to receive commands from the control node, and 
send data to the visualisation node. 

To begin working with ROS2, a new directory must be created to contain the 
workspace called drone_ws. Create packages within the ‘src’ folder under the created 
directory. These packages serve as a container for ROS2 code. The packages must then 
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be built to obtain the generated files for the project. Finally, to launch the packages, the 
installation file must be sourced using the terminal. 

Figure 2 ROS2 project architecture (see online version for colours) 

 

 

 

 

 

 

 

 

  

3 Create quadrotor 3D model 

GAZEBO is an invaluable tool for robotics development, as it provides a realistic 3D 
environment to simulate real-world physics and test the performance of robots with 
various sensors. It is useful when the hardware is unavailable, as it allows developers to 
build and test robot prototypes in a virtual environment. Even when the hardware is 
available, GAZEBO is still an important tool for testing robots before they are 
implemented in the real world. With its open-source nature, GAZEBO is a powerful and 
efficient tool for robotics development. 

URDF is an XML language used with ROS and GAZEBO to create 3D quadrotors, 
where the quadrotor model of this work consists of links connected between each other 
through joints, as a parent and a child. Figure 3 demonstrates the different parts of the 
quadrotor. The rectangles denote links and the ellipses denote the joints. The 
base_footprint is linked to the base_link through the fixed chassis_joint, then the two 
arms (arm1_link and arm2_link) are linked to the base_link through two fixed joints 
(arm1_joint and arm2_joint), then four motor_links and four foot_links are linked to the 
two arm_links through fixed joints. Finally, the four propeller_links are linked to the four 
motor_links through four continuous joints in order to move the propellers freely. To 
control the 3D model in the GAZEBO, the C++ plug-in must be added to the URDF files. 
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Figure 3 Hierarchical graph from quadrotor model (URDF) (see online version for colours) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

4 Create GAZEBO plug-in 

To control the 3D model in GAZEBO, a new plug-in must be created with the help of the 
GAZEBO APIs based on C++ language, where this plug-in gives the URDF model 
greater functionality and more flexibility to connect between ROS2 nodes for sending 
and receiving data. The plug-in must be developed until the quadrotor can respond to the 
on_off, take_off, and landing commands, it can also respond to the command velocities 
(x_cmd, y_cmd, z_cmd, and yaw_cmd), and it can fly through different states (taking_off, 
flying, landing, and low_battery state). Additionally, A PID regulator should also be 
included in the model since it may considerably enhance the quadrotor’s reaction and 
stability during flight. The quadrotor can maintain its ideal attitude and altitude more 
accurately and consistently by utilising this regulator, as well as providing a more robust 
response to external disturbances. This ensures the stability of the quadrotor, and it can 
carry out intended functions with better accuracy and dependability. 

The GAZEBO plug-in that controls the quadrotor’s movement must be based on the 
principles and physical laws that govern its movement in 3D space. The forces created by 
the spinning of the quadrotor’s four propellers govern its behaviour. These forces can be 
employed to control its movement. According to Newton’s second law of motion, the 
quadrotor’s acceleration is determined by two variables: the total net force created by the 
four propellers and the quadrotor’s mass. Additionally, the forces created by the 
propellers must be included when calculating the drag and lift forces experienced by the 
quadrotor in flight. 



   

 

   

   
 

   

   

 

   

    A quadrotor controlled in real-time using hand gestures 7    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

4.1 Newton’s second law of motion 

Newton’s second law of motion is used to determine the acceleration of the quadrotor in 
response to the net force generated by its propellers. 

F ma  (1) 

1 2 3 4F F F F mg ma      (2) 

Fi force generated by each propeller (N) 

M quadrotor’s weight (kg) 

a quadrotor acceleration (m/s2) 

g gravitational acceleration (m/s2). 

4.2 Hovering flight condition 

Hovering flight is a stationary flight where the quadrotor remains stable in the air without 
any movement. This is achieved when the total thrust generated by the propellers is equal 
to the mass of the quadrotor multiplied by the gravitational force. By maintaining this 
balance, the quadrotor is able to remain in a stationary position in the air. 

0ma   (3) 

1 2 3 4mg F F F F     (4) 

4.3 Vertical flight condition 

The vertical motion of a quadrotor can be achieved by controlling the thrust of its rotors 
when it ascends and descends. By adjusting the thrust of each rotor, the quadrotor can 
move up and down, allowing it to generate a vertical force. 

 Ascend: The quadrotor can ascend when the sum of the forces generated by the 
propellers exceeds its weight, which is equal to its mass multiplied by the 
gravitational force. 

0ma   (5) 

1 2 3 4mg F F F F     (6) 

 Descend: The quadrotor can descend when the sum of forces generated by the 
propellers is less than its weight multiplied by the gravitational force. 

0ma   (7) 

1 2 3 4mg F F F F     (8) 

4.4 PID regulator 

To improve the performance of the quadrotor for the four movements, the PID regulator 
should be implemented using a header file containing source code written in C++ 
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programming language. Then it must be added to the main program file (GAZEBO  
plug-in) using the #include directive. Equation (9) will utilise for calculating the integral 
using the resulting velocity error between the desired velocity and the current velocity, in 
addition to the updated running time. Equation (10) will employ for calculating the 
derivative using the error and the previous error along with the up-to-date running time. 
Equation (11) calculates the PID response by summing three parameters: proportional, 
integral, and derivative. Furthermore, the PID regulator must be tuned to ensure optimal 
performance of the quadrotor. This can be done by adjusting the PID parameters, such as 
the proportional, integral, and derivative gains. 

( )integral integral error dt    (9) 

( _ )derivative error previous error dt   (10) 

p i dPID K error K integral K derivative       (11) 

4.5 Moment of inertia 

To design a simple prototype using URDF files, boxes and cylinders can be used as 
components of the quadrotor. Each component’s inertia matrix can be calculated from its 
mass, length, width, height, and radius based on box and cylinder characteristics. The 
inertia matrix can be calculated using the two following formulas: 

1 Inertia matrix of a box: 
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2 Inertia matrix of a cylinder: 
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 (13) 

Where Table 1 presents the physical quantities used to calculate the inertia matrix. 

5 Hand gestures control node 

The quadrotor control will use ROS2’s closed-loop system and real-time computing, 
which is a crucial characteristic of autonomous vehicles. The quadrotor prototype will be 
tested and verified for successful takeoff, flight, and landing using hand gestures, 
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utilising the Python Media-Pipe library’s powerful capabilities. This library allows 
developers to rapidly create real-time applications that can detect and track hand 
movements. The Python Media-Pipe library is an excellent choice for hand gesture-based 
applications due to its robust feature set. Developed by Google, Media-Pipe is an  
open-source framework that simplifies the creation of custom machine-learning solutions 
for live and streaming media. The framework enhances computer vision applications and 
has several advantages, including being open-source, free, and cross-platform compatible 
with Android, iOS, Mac, web, and Linux. Media-Pipe also supports common hardware 
such as GPUs, CPUs, and TPUs, which enables fast ML inference and video processing. 
This framework offers a variety of machine-learning solutions, such as FaceDetection, 
FaceMesh, ObjectDetection, HandsDetection, and more. 

Table 1 Physical quantities used for inertia matrix 

Type Symbol Description Physical quantity Unit 

Box Ibox Box moment of inertia MomentOfInertia kg.m2 

m Mass Mass kg 

x Length Length m 

y Width Width m 

z Height Height m 

Cylinder Icylinder Cylinder moment of inertia MomentOfInertia kg.m2 

m Mass Mass kg 

L Length Length m 

R Radius Radius m 

Figure 4 Diagram of the steps followed for quadrotor control using hand gestures  
(see online version for colours) 

 

The quadcopter control will be based on the HandDetection solution in ROS2 
environment. The control commands will be executed according to the hand gestures, 
which will be interpreted using 21 3D coordinates. The x and y values were obtained 
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from the size of the video, while the z value was taken from the image depth how the 21 
landmarks must be taken is shown in Figure 4. 

The control node is dedicated to interpreting commands from hand gestures using the 
latest artificial intelligence and computer vision technology. To do this, the Media-Pipe 
library from the Python language is used to detect human hands, extracting 21 landmarks 
for each hand. These landmarks are then used to recognise and classify the hand gestures, 
which are then interpreted and published as commands to the quadrotor node 
subscriptions through topics based on certain conditions. This allows for a seamless and 
intuitive way to control the quadrotor with just the movement of hands. The diagram 
presented in Figure 4 illustrates the architecture for utilising Media-Pipe hand gestures 
with ROS2 to control the quadrotor model. 

5.1 Taking-off or landing 

To quickly and easily get the quadrotor in the air, two-handed gestures can be used. 
Firstly, ensure the quadcopter is powered on and your hands are in the correct position in 
front of the computer camera. Figure 5(a) shows how to use a two-handed gesture to 
initiate take-off, and closing both hands together can initiate landing while in flight as 
shown in Figure 5(b). This will signal the quadrotor to begin its descent and land on the 
ground. 

5.2 Forward, backward, upward, or downward movement 

To control the quadrotor’s movement, a right-handed gesture is utilised to move it 
forward or backward, and a left-handed gesture is used to move it upward or downward. 
The system’s functionality should be tested by performing the appropriate gesture and 
observing the quadrotor’s response. If it responds as expected, the system is deemed 
operational. The hand gestures for each movement are illustrated in Figure 5: forward 
[Figure 5(g)], backward [Figure 5(h)], upward [Figure 5(i)], and downward [Figure 5(j)]. 

5.3 Right or left movement 

The Media-Pipe framework allows for simple manipulation of the quadrotor with a few 
hand gestures, enabling left or right movements, and enhancing the overall interactive 
and engaging experience for the user. As demonstrated in Figure 5(c), the gesture for 
causing the quadrotor to move left is a simple movement of both hands. Similarly,  
Figure 5(d) depicts the gesture for the quadrotor to move right, which is also a simple 
movement of both hands. 

5.4 Yaw movement 

The yaw motion can be intuitively controlled through hand gestures. As illustrated in 
Figure 5(e), the gesture of both hands will result in a counterclockwise rotation around 
the z-axis for the quadrotor, and as shown in Figure 5(f), the gesture of both hands will 
result in a clockwise rotation. By performing these gestures in front of the camera, the 
user can easily and efficiently control the rotational movement (yaw) of the quadrotor. 
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Figure 5 Hand gestures for control the quadrotor (see online version for colours) 

 

 

   

(a)     (b) 

 

 

 
  

(c)     (d)  

 

 

  

(e)     (f) 

 

 

 
    

(g) (h) (i) (j) 

6 Implementation 

To integrate the quadrotor’s model and control programs, they must be connected 
through ROS2 interfaces for communication and control. The ROS2 tools can be utilised 
to verify and observe the system’s performance. The project must be built with the colcon 
tool, sourced, and launched with the ROS2 launch command. Then, the quadrotor model 
must be spawned in GAZEBO using the robot_description topic (Figure 6). Simulations 
must be conducted to evaluate the system’s outcomes and ensure its proper operation. 
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Figure 6 3D model under GAZEBO11 (see online version for colours) 

 

7 Communication between ROS2 nodes 

Nodes are the executable files that make things happen in ROS2, these nodes can send 
and receive data to the other nodes using topics, services, actions, or parameters. Topics 
are a vital element that acts as a bus for nodes to exchange messages using publishers and 
subscribers. A node can publish messages to any number of topics simultaneously and 
can also have subscriptions to any number of topics. When the project is launched, three 
main nodes must be running: The control node, The GAZEBO node (libsetvelocity), and 
the visualisation node, as shown in Figure 7(a). The control node is responsible for 
controlling the quadrotor’s motion, the GAZEBO node is responsible for simulating the 
quadrotor’s environment, and the visualisation node is responsible for displaying the 
quadrotor’s state. 

Figure 7(b) illustrates the communication between the two nodes [GAZEBO node 
(libsetvelocity), and control node] using topics. The control node transmits the hand 
gesture commands to the gazebo node. The on_off_state command is transmitted to turn 
on the quadrotor through the /dh_drone/on_off_state topic. When the drone is running, 
the control node transmits another command for taking off the drone using the 
/dh_drone/drone_state topic. When the quadrotor is flying, the control node can transmit 
the velocity commands through the /dh_drone/command_velocity topic. The gazebo node 
transmits back the drone flight data through data topics to the control node, allowing for 
real-time controlling of the quadrotor’s performance. 

To enhance and monitor the quadrotor’s performance, the animation function 
(FuncAnimation) from the Matplotlib library in Python must be used to plot the position, 
velocity, acceleration, force, and torque curves. This function enables the creation of a 
real-time animation based on the flight time from Gazebo_sim. The visualisation node 
plots the position, force, torque, acceleration, and time data received from the GAZEBO 
node (/libsetvilocity) as shown in Figure 7(c) for each movement. This data can be used 
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to analyse the quadrotor’s performance and identify areas of improvement. For example, 
the acceleration data can be used to determine the quadrotor’s responsiveness to 
commands, while the force and torque data can be used to measure the amount of power 
being generated by the motors. By analysing this data, the quadrotor’s performance can 
be improved by making adjustments to the motor power, the weight of the quadrotor, or 
the chassis design. 

Figure 7 (a) Multi-node communication graph (b) Communication between control node and 
gazebo node (c) Communication between gazebo node and visualisation node 

 

(a) 

   

(b)     (c) 

8 Results and discussion 

The obtained results show that the system control is able to accurately detect and respond 
to the various hand gestures, allowing the quadrotor to take off, land, and perform various 
movements such as hovering, turning, and ascending/descending as instructed. 
Furthermore, the system is able to respond to the hand gestures in real-time, providing a 
smooth and responsive experience. 
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8.1 Vertical movement results 

The quadrotor’s exceptional altitude performance is demonstrated. The capacity to react 
swiftly and precisely to orders is proven, as seen in Figure 8(a), which illustrates velocity. 
According to Newton’s second rule, the force is directly proportional to acceleration, as 
shown in Figures 8(d) and (b) which display the total thrust produced by the four motors 
and acceleration. The displacement variable [Figure 8(c)] shows how the location varies 
in response to the required velocity. As seen, movement starts when the velocity is set to 
4 m/s and ends when the velocity is set to 0 m/s. The PID regulator’s results are 
satisfactory and comparable to those reported in the literature. This contribution 
facilitates the quadrotor control by users. 

Figure 8 Altitude results, (a) velocity (b) acceleration (c) displacement (d) force  
(see online version for colours) 

  

(a)     (b) 

  

(c)     (d) 

8.2 Results of forward and backward movement 

Figure 9(a)-(d) depict the quadrotor’s movement along the x-axis, displaying velocity, 
acceleration, position, and force results. The quadrotor’s stability during motion is 
reflected in the velocity results, with a rise time of under 2 seconds and no overshoot. The 
changes in acceleration over time are presented similarly, as they are reflected in 
generated force variations (Newton’s second law). The position changes in response to 
velocity commands are shown in Figure 9(c), where the quadrotor reaches its desired 
position in a few seconds. Force variations along the x-axis are consistent with 
acceleration and velocity. These results prove the quadrotor’s successful operation. 
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Figure 9 Linear x results, (a) velocity (b) acceleration (c) displacement (d) force  
(see online version for colours) 

  

(a)     (b) 

  

(c)     (d) 

Figure 10 Linear y results, (a) velocity (b) acceleration (c) displacement (d) force  
(see online version for colours) 

  

(a)     (b) 

  

(c)     (d) 
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8.3 Results of right and left movement 

Similar to the x-axis, the movement along the y-axis is shown in Figure 10, including 
velocity, acceleration, position, and force. The velocity figure shows the quadrotor’s 
stability during motion with a small rise time of fewer than 2 seconds and no overshoot. 
Changes in acceleration over time are illustrated in Figure 10(b), which are reflected in 
generated force changes according to Newton’s second law of motion. Finally, 
displacement shows the changes in position along the y-axis in response to the velocity 
command over time, indicating that the quadrotor can maintain a stable trajectory along 
the y-axis. 

8.4 Yaw movement results 

Figure 11 presents the impressive performance of the quadrotor in controlling angular 
motion around the z-axis (yaw motion). The figure includes results for angular velocity, 
angular acceleration, rotation, and torque generated around the z-axis. The results 
demonstrate the stability in rotational motion around the z-axis over time and the efficient 
response to control commands. The acceleration around the z-axis shows the quadrotor’s 
ability to quickly and accurately adjust angular velocity in response to commands. 
Furthermore, the quadrotor’s ability to generate sufficient torque to adjust angular 
velocity and acceleration is presented in Figure 11(d). Overall, the results show that the 
developed quadrotor has an impressive ability to accurately and efficiently control the 
angular motion around the z-axis. 

Figure 11 Yaw results, (a) angular velocity (b) angular acceleration (c) rotation (d) torque  
(see online version for colours) 

  

(a)     (b) 

  

(c)     (d) 
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9 Conclusions 

In this work, the operation of a 3D quadrotor model required the use of ROS2, GAZEBO 
3D environment, Media-Pipe framework, and hand gestures. However, combining 
multiple programming languages such as C++, Python, and URDF proved challenging 
and time-consuming. To manage the quadrotor through multi-node communication in 
ROS2, it was crucial to have a clear understanding of its behaviour and articulate 
physical concepts in a simple manner. The system was designed with three nodes, each 
with a specific purpose: the first node received and translated hand gestures, the second 
node handled the quadrotor model, and the third node visualised data through animated 
graphs. The PID regulator was a critical component of the control system, where the 
results showed that the system could respond precisely to hand gestures, accomplishing 
the desired tasks with great accuracy. Overall, the system demonstrated the effectiveness 
of combining these technologies to operate a 3D quadrotor model. 

Future work will involve further development of the quadrotor, creating a 
professional model using SolidWorks, converting it to URDF files, controlling it using 
ROS2 and GAZEBO, and integrating numerous sensors. The system will contain many 
exciting possibilities, involving machine learning and computer vision and integrating 
cutting-edge technology to make the system more interactive. 
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This paper presents a PyQt6 server-based application design for controlling a quadrotor 

multibody system in a simulated environment using the Gazebo 3D model and ROS2 on 

Linux. The combination of PyQt6 with ROS2 offers an intuitive graphical interface that 

simplifies access to control parameters and flight modes. The system incorporates a unique 

Gazebo plugin that connects to a proportional-derivative (PD) controller, providing stable 

quadrotor flight control. Notably, this plugin facilitates precise quadrotor movements and 

establishes reliable communication between the server and quadrotor, distinguishing it 

from other plugins. Moreover, simulation results demonstrate the effectiveness of the 

proposed PyQt6 server-based application in real-time quadrotor control. The results 

exemplify the system's capability to achieve stable and precise quadrotor movement by 

effectively controlling motion along the three axes (x, y, and z) along with yaw. However, 

the primary contribution of the system presented in this paper lies in the development of a 

robust PyQt6 server-based application designed to control a quadrotor multibody system. 

Furthermore, the system exhibits inherent potential for extension to encompass the control 

of a physical quadrotor, thereby substantiating its viability in real-world applications. 
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1. INTRODUCTION

Quadrotors are a type of unmanned aerial vehicle (UAV) 

with four motors, allowing them to generate force and torque. 

Although possessing six degrees of freedom, only the four 

actuators are required to control all fundamental movements. 

Despite this, there is instability and limited maneuverability 

because of the low number of actuators. Consequently, 

researchers have developed advanced control algorithms and 

feedback systems, such as linear and non-linear controllers, to 

enable precise control command adjustment by considering 

the system's input and output data. Integrating these 

controllers into the quadrotor's underactuated system can 

significantly enhance its stability and maneuverability. For 

instance, linear and non-linear controllers can utilize the 

output data from the system to determine the necessary force 

and torque before modifying the input instruction accordingly. 

Thus, this allows the quadrotor to remain stable and agile even 

in challenging flying conditions. 

Quadrotors have recently been employed in research and 

development as multibody systems, which are structures 

fabricated of several bodies or parts connected by joints. To 

investigate and model these systems, researchers frequently 

utilize software like Gazebo, which enables them to build 

virtual worlds for their quadrotors and other robots, to test and 

model these systems. Researchers may test various control 

algorithms and replicate real-world situations using Gazebo 

Without risking damage to their physical quadrotors. The 

advancement of robotic systems and the creation of quadrotors 

both depend heavily on this technology. 

Researchers use various simulation software tools to 

analyze and optimize the multibody systems' performance, 

including Webots, is a robotics simulation software is used to 

create realistic simulations of robots and virtual environments 

[1, 2]. It supports multiple robot models, such as robots and 

drones. This software used to facilitate the design and test of 

complex robotic systems. SimMechanics is multibody 

dynamics simulation software designed by Mathworks 

company, and it utilized to model and simulate mechanical 

systems. With this software, researchers can analyze and 

optimize the performance of their robots [3, 4]. ADAMS 

(Automatic Dynamic Analysis of Mechanical Systems) is a 

multibody dynamics simulation software used to model and 

analyze mechanical systems [5, 6]. It allows researchers to 

design accurate models such as robots and drones [7, 8]. 

GAZEBO is an open-source robotics simulation software is 

used to design and simulate robots in a realistic environment 

[9]. This 3D software allows researchers to program and add 

custom plugins to handle the different aspects of their robots 

[10]. It also provides advanced tools for simulating complex 

environments, including physics engines, sensors, and 

controllers. GAZEBO works with ROS to offer a complete 

solution for designing, emulating, and testing robotic systems. 

These software packages include features like physics-based 

modeling, visualization, and control design, all of which help 

the development of UAVs. Its combination enables an ample 

understanding of the quadrotor's behavior, easing the design 

for efficient and safe solutions. 

As for the controllers, researchers use different kinds of 

controllers, including PID and PD controllers are among the 
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most widely used control algorithms due to their simplicity 

and effectiveness [11, 12]. LQR and MPC are more advanced 

techniques that provide optimal control of systems with 

constraints [13]. SMC is a nonlinear control technique that 

offers robustness to disturbances and uncertainties [14]. Fuzzy 

Logic and Neural Networks are intelligent control techniques 

that allow for nonlinear mapping of inputs to outputs [15, 16]. 

Backstepping is a recursive design method for designing 

controllers for nonlinear systems [17]. The Linearized 

Controller is a technique used to approximate nonlinear 

systems by a linear one around a given operating point [18]. 

The selection of a control strategy relies on the system's 

characteristics and the particular demands of the application. 

With the integration of controllers, ROS2 has become a 

leading platform for managing complicated robotic systems 

because of its streamlined features. Even though ROS2 and its 

tools have made tremendous advancements, there is still room 

for improvement, especially on the side of quadrotors. Thus, 

this work includes designing a platform for monitoring and 

controlling a quadcopter that utilizes the recently released 

PyQt6 toolkit. Choosing this framework was due to PyQt5's 

use for developing several well-known ROS2 tools, including 

RQT and RVIZ2. This work intends to extend the capabilities 

of ROS2 by utilizing PyQt6's sophisticated features for 

controlling and monitoring a quadrotor using modern user 

interfaces. Hence, we chose this framework over PyQt5 due to 

its superior feature set, enhanced performance, ongoing 

development and support within the presence of well-

organized widgets and functions. However, integrating a 

server-client architecture will substantially contribute when 

developing a robust ROS2 control network, facilitating the 

control of the quadrotor through other devices. This network 

tool is a comprehensive and intuitive user interface that can 

provide real-time feedback on the quadrotor's performance. By 

leveraging PyQt6's networking capabilities, the server-client 

architecture could allow multiple users to monitor and control 

the quadrotor simultaneously. To summarize, this project aims 

to demonstrate the immense potential of combining ROS2 

with PyQt6 to build a platform for monitoring and controlling 

an intelligent quadrotor equipped with several sensors, such as 

a depth camera, lidar, IMU, and GPS. 

This paper is structured as follows. In section 2, the design 

aspects of the PyQt6 application are discussed. It covers the 

architecture, features, and the application, highlighting the 

development choices and considerations. Section 3 presents 

the URDF prototype of the quadrotor. It describes the design 

and modeling of the quadrotor using URDF, including its 

physical components, such as the motors and sensors. Section 

4 delves into the development of a new plugin for Gazebo. The 

plugin enhances the capabilities of Gazebo for simulating and 

interacting with the quadrotor model developed in the previous 

section. Section 5 focuses on the overall implementation of the 

system and the communication protocols involved. It covers 

the integration of the PyQt6 application, the URDF quadrotor 

model, and the Gazebo plugin. In Section 6, the results 

obtained from the system implementation are presented and 

analyzed. It includes performance metrics and simulations. 

The final section delivers a summary of the paper, highlighting 

the pivotal contributions, the accomplishments, and the 

implications of this study. 

 

 

 

 

2. PYQT6-BASED APPLICATION DESIGN 

 

Recently, drones have gained immense popularity due to 

their numerous applications across industries. However, 

controlling a quadrotor can be challenging and requires 

expertise in various domains, such as robotics, control systems, 

and software engineering. In ROS2, there are multiple 

programs available for quadrotor control, including the "rqt 

robot steering" package with a PyQt5-based GUI and the 

“teleop_twist_keyboard” package with a command-line 

interface (CLI). These interfaces enhance the flexibility and 

usability of quadrotor control. However, they have limitations 

in their effectiveness for controlling the quadrotor. Hence, a 

user-friendly PyQt6 application will be created using the 

ROS2 network to overcome this problem and make operating 

a quadrotor more practical and effective. The primary 

objective of the application is to provide an intuitive and 

robust interface for controlling the quadrotor. The app features 

will be divided into several main sections, such as the home 

section for monitoring the quadrotor status, the server section 

for making or breaking connections with other devices like 

computers or smartphones, the joystick section for controlling 

the quadrotor, the visualization section for viewing various 

data, and the settings section for further customizing the 

application. By employing this application, users can 

efficiently operate the quadrotor and leverage the benefits of 

this technology. 

 

2.1 Home screen design 

 

The designed home screen in PyQt6 features a clear and 

concise layout (Figure 1). The current time is displayed in a 

large, easy-to-read font in the time section, providing users 

with real-time updates. The quadrotor's displacement, velocity, 

and acceleration are presented in a visually appealing manner, 

offering a clear overview of its movement dynamics. IMU data, 

including orientation and rotation, is displayed in a separate 

section for comprehensive understanding the motion of the 

quadrotor. The GPS data, including location and altitude, is 

displayed to provide essential positioning information. Finally, 

lidar data and distance measurements is presented, enabling an 

accurate assessment of the quadrotor's surroundings. Overall, 

the home screen design in PyQt6 is optimized for efficient 

monitoring of vital quadrotor data while maintaining a visually 

appealing and user-friendly interface. 

 

 
 

Figure 1. Home screen for real-time monitoring and control 

of quadrotor system 
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The application home screen is designed to update in real 

time, utilizing the spin function in the ROS2 node and the 

threading protocol. By employing the spin function, the node 

can remain active and continuously processes incoming 

messages and events from the ROS2 network. It allows for 

immediate updates on the home screen, ensuring that every 

change or new data are promptly displayed to the user. The 

threading protocol further enhances this capability by running 

the spin function on a separate thread, enabling concurrent 

execution and preventing potential delays or freezes in the user 

interface. Consequently, the home screen maintains a dynamic 

and up-to-date representation of the quadrotor's status, 

providing users with real-time information and facilitating 

efficient control and monitor of the system. 

 

2.2 Server screen design 

 

To create a server using the socket package in Python, we 

can start by specifying a host and port number, which the 

server will use to connect clients. The server then can be 

written to include two buttons: a "start" button and a "stop" 

button, created using the PyQt6 library widgets. Clicking the 

"start" button initiates the server and begins listening for 

incoming connections. Meanwhile, clicking the "stop" button 

shuts down the server and disconnects the active clients. 

Additionally, to Secure reliable and ordered data transmission, 

the server can utilize the TCP (Transmission Control Protocol) 

protocol instead of UDP. TCP provides reliable, connection-

oriented communication, guaranteeing delivery and in-order 

arrival of data packets. By combining the socket package, 

PyQt6 library, and TCP protocol, a robust and user-friendly 

server that facilitates secure and reliable communication and 

data transfer between multiple devices can be designed (Figure 

2). 

To ensure real-time control addressing potential latency 

issues and implementing appropriate measures is crucial. The 

system may encounter challenges like data overlapping and 

connectivity issues. Thus, to address these concerns, the 

application utilizes the try function in Python. By employing 

this function, the application can effectively handle and 

disregard any latency problems that may arise, allowing the 

system to maintain smooth functionality despite intermittent 

delays or disruptions. As a result, the application provides a 

seamless and uninterrupted real-time control experience, 

significantly enhancing the system's reliability and 

responsiveness. 

 

 
 

Figure 2. Server screen to start and stop the server 

2.3 Joystick screen design 

 

To create a new PyQt6 application featuring two joysticks, 

the essential first step is to import the necessary libraries, 

including PyQt6 and math. Two joysticks can then be created 

using QPainter and paintEvent, with the drawEllipse method 

to draw the circles required for the joysticks. Then, the two 

joysticks should be placed in a single widget using 

QHBoxLayout and included in a new QWidget class. Three 

interactive functions, mousePressEvent, mouseMoveEvent, 

and mouseReleaseEvent, can then be added to detect mouse 

clicks, movements, and releases to enhance the app's 

functionality. Finally, to restrict the motion of the joysticks to 

within the circle's boundaries, the application of the distance 

formula is necessary (Figure 3). This technique effectively 

constrains the joysticks' movement within the prescribed circle. 

Following these steps helps us to design an interactive PyQt6 

application with two joysticks to control the quadrotor. 

Once the joystick for quadcopter control is created, the 

joystick data needs to be scaled to manage the quadcopter's 

four fundamental movements. These movements include yaw, 

forward and backward, left and right, up, and down. Mapping 

the input values from the joystick to the required output range 

for each movement includes scaling the joystick data. It 

ensures that the quadrotor flies in a predictable and regulated 

manner, precisely translating the operator's motion to the 

quadrotor's actions. It is possible to control the quadrotor's 

movements precisely and quickly by sending the scaled 

joystick data to the quadrotor control system. 

 
 

 
(a) the program that controls how the joystick moves 

 

 
(b) Joystick screen design 

 
Figure 3. The joystick screen on which the quadrotor is 

controlled 
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In order to achieve smooth control, the joystick's sensitivity 

has been fine-tuned to strike a balance between being too 

sensitive or less sensitive. This optimization ensures that the 

quadrotor responds accurately to even subtle movements of 

the joystick, enabling precise control over its motion. The 

sensitivity is adjusted based on the quadrotor's linear velocity 

along the three axes and its angular velocity around the z-axis. 

The linear velocity is constrained within the range of -8 to 

8m/s, while the angular velocity is confined to -0.4 to 0.4rad/s. 

As for the responsiveness, the joystick's responsiveness is 

significantly improved by utilizing the DDS (Data 

Distribution Service) protocol. DDS facilitates efficient real-

time data exchange, ensures reliable and secure 

communication, reduces latency, and maximizes the joystick's 

responsiveness for accurate on-screen actions. 

However, the quadrotor system receives joystick data 

through the integration of two ROS2 nodes. The first node, 

integrated with the PyQt6 application, receives and publishes 

joystick data via topics. The second node which is integrated 

with the Gazebo plugin, actively spins and receives real-time 

data through subscriptions. This data is subsequently utilized 

to control and execute actions on the motors. 

 

 

3. DEVELOPING GAZEBO 3D MODEL 

 

Gazebo, with its realistic physics, sensor simulation, control 

integration, and flexibility, plays a crucial role in developing 

3D quadrotors using URDF and SDF. As an open-source tool, 

it has demonstrated its value in creating and evaluating robotic 

systems, driving advancements in robotics. Its precise 

quadrotor dynamics simulation and seamless URDF and SDF 

integration empower developers to design, test, and enhance 

3D quadrotor systems in a simulated environment. 

Creating a multi-body quadrotor using URDF and xacro 

involves several steps. First, the basic structure of the 

quadrotor, such as the body shape, the length of arms, and the 

number of rotors, need to be defined in the URDF file. Next, 

the joints that connect the different components of the 

quadrotor, such as the rotors and the body, need to be specified. 

These joints enable the quadrotor to move and articulate 

realistically. After defining the basic structure and joints, 

sensors can be added to the quadrotor model. Four commonly 

used sensors are the LIDAR, depth camera, IMU, and GPS. 

Each sensor in Gazebo is connected to the quadrotor through 

specific joints and associated links. For instance, the camera 

utilizes the camera_link as its reference frame. The IMU relies 

on the IMU_link. The GPS is connected through the 

GPS_joint and references the GPS_link, while the LIDAR 

sensor uses the lidar_link as its reference frame and is 

connected via the lidar_joint. This well-defined linkage 

enables accurate positioning and interaction between the 

quadrotor and its various sensors within the simulation. 

The LIDAR sensor creates a 3D point cloud of the 

surroundings by measuring the distances to objects in the 

environment using lasers. Similarly, the depth camera 

produces a detailed depth map of the quadrotor's surroundings 

by employing infrared sensors to measure distance. 

Autonomous systems often rely on these sensors for accurate, 

reliable navigation and obstacle avoidance. The quadrotor's 

acceleration, angular velocity, and orientation are all measured 

using the inertial measurement unit or IMU. When there are 

outside disturbances present, this sensor is crucial for 

maintaining the quadrotor's orientation and stabilization. 

Finally, location and velocity data are provided by the GPS 

sensor. In outdoor conditions, this sensor is helpful with its 

ability to provide real-time location information. The GPS 

sensor is a valuable tool for navigation, localization, and 

mapping applications. Thus, integrating these sensors into a 

multi-body quadrotor URDF model can improve its 

functionality and let it fly by itself in a wide range of settings. 

The combination of these sensors may introduce potential 

obstacles, including simulation limitations, computational 

performance considerations, and challenges related to data 

integration and synchronization. These factors need to be 

carefully addressed to ensure accurate and reliable sensor 

fusion within the system. 

 

 
 

Figure 4. Graphical representation of the hierarchical quadrotor system including the sensors 
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Figure 4 illustrates the design of a quadrotor model in 

URDF format, which includes the four rotors and the main 

body of the quadrotor. The sensors: LIDAR, depth camera, 

IMU, and GPS, have been linked to the quadrotor design using 

visual tags in URDF. Through these tags, the sensors can be 

positioned and oriented precisely within the quadrotor's frame 

of reference, enabling them to provide critical data to the 

quadrotor's control systems. The depth camera is positioned at 

the front of the quadrotor to improve obstacle detection and 

3D mapping capabilities, aided by the centrally located lidar. 

Meanwhile, the IMU and GPS at the center measure the 

quadrotor's acceleration, velocity, and position. By integrating 

these sensors into the quadrotor's design in URDF, the 

quadrotor can accurately perceive its environment and 

navigate through it with precision and stability. In addition, the 

URDF quadrotor system must be built on TF2, a potent tool 

that enables us to track coordinate frames in a ROS2 network. 

TF2 (Transform Library 2) is a software library that provides 

a mechanism for managing coordinate frame transformations. 

It allows for the conversion and alignment of coordinate 

frames between different sensors, robots, or platforms within 

a distributed system. TF2 also enables the utilization of sensor 

data to detect a robot's limits through coordinate frame 

transformations. Sensor data, acquired from LIDAR, cameras, 

or proximity sensors, undergoes transformation to the robot's 

base frame using TF2. Collision detection algorithms assess 

whether the robot approaches or surpasses limits by checking 

for obstacles, proximity to objects, or joint angles. Feedback 

from sensed limits aids in adjusting trajectory and actions 

through motion planning algorithms, ensuring real-time limit 

awareness within the ROS2 network. 

In order to ensure successful operation of the quadrotor 

system, it is crucial to establish accurate coordination and 

linkage among multiple connections and joints. With the aid 

of TF2, we can create a hierarchy between these elements and 

precisely determine their locations and orientations 

concerning one another. It is essential for maintaining the 

quadrotor's stability, predictability, and control of its 

movements. The quadrotor system can connect and cooperate 

with other nodes in the network thanks to TF2's smooth 

integration into a broader ROS2 network. 

 

 

4. DEVELOPING GAZEBO PLUGIN 

 

The design process of a new C++ based plugin involves 

specifying the quadrotor's behavior and implementing it using 

GAZEBO's API. Importing GAZEBO libraries, ROS2 

functions, ROS2 interfaces, and the PD function is necessary 

for controlling the quadrotor's movement. The main file code 

must include constants for maximum height, speed, and 

battery duration, as well as variables for the quadrotor's state, 

position, velocity, thrust, time, and torque. Functions for 

controlling linear and angular velocities and adding linear 

force are also essential. Accurate definitions of links and joints 

are crucial as they define the quadrotor's physical structure, 

including position, orientation, base frame, motors, propellers, 

and sensors. Matching the link and joint names with the URDF 

files ensures realistic movements and appropriate responses to 

external forces, maintaining the integrity of the quadrotor's 

components. 

The plugin is based on the fundamental principles of 

physics, specifically Newton's second law of motion, which is 

instrumental in governing the dynamics of the quadrotor 

multibody system. In addition, different flight conditions are 

considered, such as hovering, ascending, descending, taking 

off, and landing, and adjusts the control inputs accordingly. 

The plugin also includes a Proportional-Derivative (PD) 

controller, which enables precise control over the quadrotor's 

movements. The PD gains are meticulously and precisely 

tuned using a dedicated PyQt6 interface, significantly 

enhancing the quadrotor's prompt response to commands. 

As a ROS2 node, the plugin is equipped with subscriptions 

and publishers, thus enabling communication with other nodes 

within the ROS2 network. Moreover, the plugin presents 

interfaces for various data types, including AccelerationData, 

DroneState, DroneTime, VelocityData, ForceTorqueData, 

OnOffState, and PositionData. Each of these interfaces 

encompasses essential data types, including float32, int32, and 

string, to fulfill the requirement of the quadrotor. These 

interfaces are transmitted between the nodes using topics, 

enabling seamless access and data manipulation by other 

nodes in the network. These topics includes: 

/dh_drone/drone_state, /dh_drone/force_torque_data, 

/dh_drone/velocity_data, /dh_drone/acceleration_data, 

/dh_drone/command_velocity, /dh_drone/time_data, 

/dh_drone/on_off_state, /dh_drone/position_data. 

However, the communication between nodes using topics 

and interfaces enhances the plugin’s importance as a powerful 

tool for effectively controlling the quadrotor system. 

In order to integrate the GAZEBO plugin with the URDF 

quadrotor model, we must include a new section to the main 

URDF file. This section defines the movable links and joints 

of the quadrotor, and contains the necessary plugin to control 

the system (Figure 5). The plugin will then apply forces and 

torques to the links that can be moved, allowing for precise 

control over the quadrotor's movements. This process is 

essential to ensure the proper functioning of the plugin with 

the quadrotor model, providing accurate and reliable 

communication throughout the simulation. 

The main URDF file serves as the central definition for the 

quadrotor multibody system, encompassing various 

components through the utilization of the xacro macro 

language. This facilitates the inclusion of quadrotor parts such 

as drone, drone constants, inertial macros, lidar, GPS, camera, 

and imu. In conjunction with the Gazebo plugin, these 

individual xacro files collectively define the structure and 

characteristics of the quadrotor within the URDF specification. 

 

 
 

Figure 5. Integration of Gazebo plugin into the main URDF 

file 
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Figure 6. A graphical representation of the ROS2 network and communication model, demonstrating server-client 

communication and TCP/IP protocols with ROS2 nodes 

5. IMPLEMENTATION AND COMMUNICATION

The process of constructing the system involves creating 

three packages within the source directory of the workspace: 

quadrotor_pkg, msgs_pkg, and gazebo_plugin_pkg. Each of 

the packages encompasses different dependencies necessary 

for the system's functionality. The quadrotor_pkg contains the 

essential components such as URDF files, launch files, and 

Python scripts responsible for node creation and the PyQt6 

application. The msgs_pkg is dedicated to housing the 

required interfaces for seamless system operation. The 

gazebo_plugin_pkg incorporates the Gazebo plugin, which, 

after project building, will be exported to ensure optimal 

integration with the system. 

The implementation of the system will be done after 

finishing the main programs, including the gazebo plugin, 

quadrotor URDF design, and PyQt6 application, and 

initializing a ROS2 project. It is essential to create the 

necessary packages for the network. This step involves 

creating a new package, defining the dependencies and 

message types, and setting up the nodes for communication. 

Thorough testing of the quadrotor system is required following 

the launch of the ROS2 project. This process includes 

verifying that the gazebo plugin can control the quadrotor in 

different flight conditions, that the PyQt6 application can 

interface with the plugin to provide user control, and that the 

ROS2 network is correctly working, allowing nodes to 

communicate and exchange data. Thorough testing is 

imperative to ascertain the quadrotor system's reliability, 

accuracy, and suitability for real-time applications, instilling 

confidence in its performance. 

The communication between ROS2 nodes in the quadrotor 

system is essential. The server node, responsible for receiving 

clients input and sending commands to the quadrotor node, 

communicates with the quadrotor node via a series of topic 

subscriptions and publishers (Figure 6). The quadrotor node 

provides the server node with data related to the drone's state, 

force and torque information, velocity data, acceleration data, 

time data, on-off state, and position data. Thus, this data is then 

utilized by the server node to generate commands, which are 

subsequently sent back to the quadrotor node for precise 

control over its movements. 

Moreover, the server node, which was programmed using 

Python with the help of the socket and struct libraries, uses the 

TCP/IP protocol to communicate with clients. Data about the 

quadrotor status, force and torque data, velocity and 

acceleration data, time data, on-off state, and location data are 

all transmitted via the server node. The quadrotor may then be 

moved and updated in its status for clients. This protocol 

enables multiple applications for the quadrotor system by 

offering adaptable and dependable communication between 

the server node and clients. Thus, the quadrotor system may 

work effectively and correctly thanks to the TCP/IP protocol 

and excellent communication between nodes using DDS (Data 

Distribution Service), making it a precious tool for many real-

time applications. 

The quadrotor with LiDAR simulation was conducted in a 

controlled testing environment within Gazebo and ROS2. The 

specific setup involves placing various obstacles, such as static 

objects, within the simulated environment (Figure 7). The 

testing procedures consisted of executing predefined flight 

paths and maneuvers while collecting LiDAR sensor data. 

(a) Quadrotor model on gazebo with the lidar sensor
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(b) Lidar sensor data on RViz2

Figure 7. Visualization of LiDAR sensor data using RViz2: a 

graphical representation of point cloud data captured by the 

sensor 

Throughout the simulation, the quadrotor's LiDAR sensor 

accurately detected and calculated the distances between the 

quadrotor and the objects in its surroundings, providing 

measurements in meters. This distance measurement is a 

critical metric for evaluating the system's effectiveness. The 

assessment of performance criteria encompassed analyzing the 

accuracy of distance calculations, the speed of obstacle 

detection, and the system responsiveness. 

The simulation results were highly encouraging, with the 

system effectively detecting and calculating distances to 

obstacles. These findings underscore the potential for 

developing an advanced obstacle avoidance algorithm, 

enabling the quadrotor to navigate complex environments 

while prioritizing safety. 

6. RESULTS AND DISCUSSION

To obtain the results that confirm the system's effectiveness, 

the Plotjuggler tool, an open-source tool renowned for 

visualizing real-time data in ROS2 applications, is employed. 

This tool enables quickly and easily plotting data from 

different topics and nodes in a ROS2 system. Plotjuggler 

works by subscribing to ROS2 topics and receiving data in 

real-time. It then uses customizable plots to display this data 

intuitively and interactively. With Plotjuggler, users can easily 

monitor and debug their ROS2 applications. They also can 

gain insights into the behavior of the system. It can also help 

them to improve the performance and reliability of systems. 

However, Plotjuggler listens to the integrated node within 

the Gazebo plugin, along with the node that publishes velocity 

commands. It acquires data from the following topics: 

/dh_drone/force_torque_data, /dh_drone/velocity_data, 

/dh_drone/acceleration_data, /dh_drone/command_velocity, 

/dh_drone/time_data, and /dh_drone/position_data. These 

topics transmit interfaces containing data types such as int32 

and float32, which describe quadrotor parameters, including 

velocity, acceleration, position, torque, and force. 

Moreover, the comprehensive analysis of the quadrotor 

system encompassed an evaluation of key performance 

metrics and criteria, including velocity, acceleration, force, 

and motion control, along the x, y, and z axes, as well as yaw 

motion. The illustrated results in Figures 8, 9, 10, and 11 

highlight the quadrotor's exceptional maneuverability and 

control achieved through the developed control system. 

Notably, the quadrotor demonstrates precise movements along 

the x, y, and z axes, ensuring high control levels and stability 

during flight. Furthermore, its yaw motion, enabling rotation 

around the vertical axis, exhibits remarkable responsiveness 

and accuracy. These outcomes can be attributed to the 

meticulous control of the four rotors, facilitating precise 

adjustments to the quadrotor's thrust and orientation. The 

evaluation process considered various factors, including 

response time, stability, and control accuracy, which play a 

role to the system's outstanding performance. 

(a) Results of altitude: velocity command and response

(b) Results of altitude: generated force response

(c) Results of altitude: acceleration response

Figure 8. Results of optimized altitude control of quadrotor 

achieved: precise control commands enhance velocity, force, 

and acceleration 

Quantitative analysis of the quadrotor's performance 

unveils promised statistics. During the evaluation process, the 

quadrotor exhibited outstanding capabilities in various 

domains. Along the z-axis, according to the given velocity of 

1m/s. The quadrotor demonstrated swift acceleration, reaching 

an average of 1.8m/s². In terms of force, it exerted an average 

thrust of 22.3 N. Moving on to the motion along the x and y 

axes, the evaluation velocity stood at 2m/s. The quadrotor 

showcased rapid acceleration, averaging at 4m/s², while 
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exerting an average force of 7.5 N. As for the yaw motion, the 

evaluation velocity measured 0.2rad/s. Remarkably, the 

quadrotor demonstrated swift acceleration, reaching an 

average of 0.33rad/s², complemented by an average torque of 

0.72 N.m. 

Despite the satisfactory results, it is crucial to acknowledge 

that the quadrotor system still possesses certain limitations that 

present opportunities for further development from various 

aspects. Firstly, in terms of velocity, although the quadrotor 

reached a maximum speed of 8m/s, exploring methods to 

enhance its velocity and stability performance would open 

doors to applications that demand higher velocities and swift 

maneuverability. Additionally, while the quadrotor 

demonstrated rapid acceleration, improvements can be made 

to improve its agility and responsiveness, enhancing its ability 

to navigate seamlessly through complex environments replete 

with dynamic obstacles. Moreover, increasing the force and 

thrust capabilities of the quadrotor would enable it to handle 

more demanding tasks and payloads, expanding its range of 

potential applications. Furthermore, refining the control 

algorithms and mechanisms associated with the yaw motion 

can contribute to better stability and precision during 

rotational maneuvers; and ensure the quadrotor's adaptability 

in scenarios requiring intricate movements. It is through 

addressing these limitations and pursuing further 

advancements that the quadrotor system can continue to 

evolve and achieve new heights of performance and versatility. 

In summary, the impressive obtained statistics suggest that 

the quadrotor system exhibits minimal deviation in control. 

The consistent values for velocity, acceleration, force, and 

torque highlight its reliability and precision, ensuring stable 

and accurate flight maneuvers. Thus, the analysis confirms the 

quadrotor system's exceptional attributes and establishes its 

suitability for multiple applications such as Aerial 

Surveillance and Monitoring, Search and Rescue Operations, 

Industrial Inspections, and Agriculture and Crop Monitoring. 

(a) Results of x motion: velocity command and response

(b) Results of x motion: generated force response

(c) Results of x motion: acceleration response

Figure 9. Results of optimized x motion control of quadrotor 

achieved: precise control commands enhance velocity, force, 

and acceleration 

(a) Results of y motion: velocity command and response

(b) Results of y motion: generated force response

(c) Results of y motion: acceleration response

Figure 10. Results of optimized y motion control of 

quadrotor achieved: precise control commands enhance 

velocity, force, and acceleration 
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(a) Results of yaw motion: velocity command and

response 

(b) Results of yaw motion: generated torque response

(c) Results of yaw motion: acceleration response

Figure 11. Results of optimized yaw motion control of 

quadrotor achieved: precise control commands enhance 

velocity, force, and acceleration 

7. CONCLUSION

In this work, the PyQt6 application played a crucial role in 

conveniently managing the quadrotor's movements, 

demonstrating advancements in robotics and control systems. 

It enabled effective control of the quadrotor's motions, 

contributing to project success and enhancing maneuverability 

in quadrotor multibody systems. The findings collected in this 

study affirm the system's efficacy in governing the quadrotor's 

motions, including motion along the three axes (x, y, and z), 

in addition to the yaw motion. Moreover, this project 

significantly contributes to the field of quadrotor multibody 

systems, paving the way for further advancements in the 

control and monitoring of complex systems. While this work 

highlights several achievements, it is essential to acknowledge 

its limitations. Scalability, robustness, and adaptability to 

different environments are some of the challenges that future 

researchers should consider. By addressing these aspects, the 

system has the potential for further enhancement to cater to the 

requirements of diverse applications. By setting sights on the 

future, many projects can leverage advanced technologies like 

SLAM and yolov8 to enhance the quadrotor's intelligence in 

obstacle avoidance, mapping, and object detection. The 

integration of machine learning techniques holds the potential 

for achieving autonomous quadrotor operation, thereby 

driving notable progress in the sector of quadrotor multibody 

systems. Overall, this project has successfully contributed to 

the control systems of quadrotors, with implications extending 

beyond this specific domain. The potential impact 

encompasses the development of autonomous aerial vehicles, 

enhancing search and rescue operations, and enabling remote 

sensing applications. 
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Abstract. The increasing use of drones in various fields has 
led to their popularity in developed countries due to their ease 
of use and manufacture. This Miniature Pilotless Aircraft has 
numerous beneficial usages such as express shipping, 
gathering information, crop monitoring, cargo transport, 
storm tracking, geographic mapping of inaccessible terrain, 
search and rescue operations, among others. This study aims 
to investigate the stability of a quadcopter through simulations 
based on the mathematical model that describes the 
quadcopter's dynamic and flight mechanics, using the Euler-
Lagrange approach. It conducts simulations in MATLAB and 
present the principles that govern quadcopter stability, 
focusing on setting the PID coefficients to achieve optimal 
stability. This study provides insights into the principles of 
drone mechanics and stability, enabling us to better 
understand the quadcopter's behavior and performance. 

Keywords: simulation, quadcopter, command, stability, PID 

 
1. INTRODUCTION  
 
Quadcopters have spread quickly across a variety of 
sectors because to their adaptability and simplicity of 
usage, making them a popular alternative for many 
companies looking for effective solutions. Quadcopters 
may carry out a wide range of tasks as an Unmanned 
Aerial Vehicle (UAV), including package delivery, crop 
monitoring, search and rescue missions, and aerial 
videography. Quadcopters are essential in current 
operations because of their small size and agility, which 
allow them to negotiate difficult terrain and reach remote 
areas. As a result, companies and organizations all over 
the world have embraced this technology as a practical 
way to increase the effectiveness, speed, and accuracy of 
their operations. 
 
The civilian drone market has seen a recent influx of new 
models, with many of these multi-rotors utilizing 
advanced and sophisticated technologies previously 
unexplored in the industry. The incorporation of high-
precision technologies, particularly in the areas of 
tracking, recognition, and obstacle avoidance, has 
allowed for greater functionality and efficiency in drone 
operations. These cutting-edge technologies have opened 
up new possibilities for a wide range of applications, from 
aerial surveying and inspection to precision agriculture 

and emergency response. The introduction of these 
advanced features has further expanded the potential uses 
of civilian drones, making them an increasingly popular 
choice for various industries seeking innovative solutions. 
Quadrotors are highly maneuverable aerial vehicles that 
need complex modeling approaches for control and 
optimization. Since it allows for the introduction of 
nonlinear dynamics and external forces, the Euler-
Lagrange technique is often employed for modeling 
quadrotors [1-2]. The Newton-Euler technique is also 
employed since it is based on Newton's principles of 
motion and gives a thorough knowledge of the quadrotor's 
motion [3-4]. The Hamiltonian technique is used to derive 
the quadrotor's equations of motion in an energy-efficient 
manner [5-6]. The state space technique may be used to 
model and control a system using linear equations [7]. The 
linearization method is frequently used to simulate the 
nonlinear dynamics of a quadrotor around an operational 
point [8]. Finally, multibody system approach serves as a 
crucial tool in accurately modeling the quadrotor's 
dynamic behavior and its intricate interactions with the 
environment, taking into consideration the complex 
movements of its various parts. This approach is applied 
in different software such as GAZEBO, Webots, 
SimMechanics, and ADAMS [9-10]. 
 
The present article aims to examine the stability of a novel 
prototype of a quadcopter by employing the Euler 
language approach and utilizing the Proportional-
Integral-Derivative (PID) regulator on MATLAB (Figure 
1). The study will go through the fundamental movements 
of the quadcopter, namely roll, pitch, yaw, and altitude, to 
obtain a comprehensive understanding of the dynamics 
and performance of the device. Overall, this study 
represents an important step towards improving the 
stability and performance of quadcopters, which have 
become increasingly important for various applications, 
including aerial photography, surveillance, and 
transportation. By gaining a deeper understanding of the 
quadcopter's dynamics and behavior, we can develop 
more effective control strategies and improve the safety 
and reliability of these devices. 
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The objective of this study is to investigate the stability of 
a new quadcopter prototype using the Euler language 
technique and the Proportional-Integral-Derivative (PID) 
regulator on MATLAB. The research will go through the 
fundamental movements of the quadcopter, including: 
roll, pitch, yaw, and altitude, in order to understande the 
quadrotors dynamics and performance. Overall, this work 
offers a significant step in improving the stability and 
performance of quadcopters, which have become more 
relevant for a variety of applications. However, Increasing 
the safety and dependability of these aircrafts can be 
achieved by better understanding the dynamics and 
behavior of quadcopters. 
 

 
Figure 1. Quadrotor prototype. 

 
2. QUADROTOR DYNAMICS AND 

REFERENCES  
 
Quadcopters utilize rotor speed variation to execute 
fundamental movements. Tilting the quadcopter in the 
direction of a slower rotor results in translation along the 
corresponding axis, which is the basis of pitch and roll 
movements. Additionally, quadcopters are capable of 
vertical movement and rotation around the Z-axis, known 
as yaw, as depicted in Figure 2. These four movements, 
namely roll, pitch, vertical movement, and yaw, are 
controlled by the torque applied by the motors and are 
sufficient to manipulate the quadcopter's six degrees of 
freedom.  
 
The quadcopters are governed by the laws of physics and 
aerodynamics. These unmanned aerial vehicles rely on the 
variation of rotor speeds to produce the basic movements 
required for their operation, namely roll, pitch, yaw, and 
altitude control. To describe the flight dynamics of 
quadcopters mathematically, two references are used: a 
fixed reference linked to the Earth and a mobile reference 
with its origin at the drone's center of gravity. The 
transformation matrix R is used to convert between these 
references and contains information about the orientation 
and position of the movable reference relative to the fixed 
reference. By modeling the quadcopter's flight dynamics, 
we can gain insight into its behavior and performance 
under different conditions, which can be used to improve 
its design and control strategies. The mathematical model 
can also be used to simulate the quadcopter's behavior and 
test various control algorithms and maneuvers in a virtual 

environment before applying them to real-world 
scenarios. 
 

 
Figure 2. Quadrotor references and movements. 

 
3. QUADROTOR EULER LAGRANGE MODEL  
 
The rotation matrix, which describes the orientation of the 
quadcopter's movable reference frame relative to the fixed 
reference frame, can be obtained using Euler angles. 
Specifically, the rotation matrix is constructed by 
performing rotations around the X, Y, and Z axes, each by 
a respective angle of ϕ, 𝜃𝜃, and ψ. These rotations 
correspond to the quadcopter's roll, pitch, and yaw 
movements, respectively, and are fundamental to 
controlling its position and orientation in three-
dimensional space. The Euler angle approach is a 
powerful mathematical tool for simulating and analyzing 
dynamic systems, and its application to quadcopter flight 
dynamics enables us to study and optimize the 
performance of these devices. By understanding the 
relationship between the Euler angles and the 
quadcopter's movements, we can develop more effective 
control strategies and improve the safety and reliability of 
quadcopters in various applications. 
 
Rotation matrix: 
R = R (ϕ, 𝜃𝜃, ψ) = 

�
𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
−𝑐𝑐𝜃𝜃 𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐 𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐

� (1) 

Lift is the force that allows the quadcopter to rise if it at 
least equals drag. It creates in the direction of the X and Y 
axes, the following two moments. 

𝜏𝜏𝑥𝑥 = 𝑏𝑏𝑏𝑏(𝛺𝛺12 + 𝛺𝛺42 − 𝛺𝛺22 − 𝛺𝛺32)  (2) 
𝜏𝜏𝑦𝑦 = 𝑏𝑏𝑏𝑏(𝛺𝛺12 + 𝛺𝛺22 − 𝛺𝛺32 − 𝛺𝛺42) (3) 

 
Thrust coefficient: to calculate the thrust coefficient we 
use this equation: 

𝑏𝑏 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝛺𝛺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2    (4) 

 
The drag is the result of the friction of the air on the 
quadcopter, it is opposed to the lift. She creates a vertical 
moment. 

𝜏𝜏𝑧𝑧 = 𝑑𝑑(𝛺𝛺22 + 𝛺𝛺42 − 𝛺𝛺12 − 𝛺𝛺32) (5) 
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To calculate the drag coefficient of a quadcopter, it is 
necessary to fix the quadcopter at its center of gravity and 
apply rotation to two opposing motors to initiate rotation 
around the vertical axis. By measuring the complete cycle 
time t, the drag coefficient can be determined using the 
following equation. 

𝑑𝑑 = 𝜋𝜋𝐼𝐼𝑧𝑧
2𝛺𝛺2𝑡𝑡2

   (6) 
 
When the quadcopter is rotating on two axes, this rotation 
generates a force that appears on the third axis and tends 
to resist the movements of the quadcopter (gyroscope 
effect). 

𝜏𝜏𝑔𝑔𝑥𝑥 = 𝐼𝐼𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝜔𝜔𝑦𝑦(𝛺𝛺1 + 𝛺𝛺4 − 𝛺𝛺2 − 𝛺𝛺3) (7) 
𝜏𝜏𝑔𝑔𝑦𝑦 = 𝐼𝐼𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝜔𝜔𝑥𝑥(𝛺𝛺1 + 𝛺𝛺2 − 𝛺𝛺3 − 𝛺𝛺4) (8) 

 
To generate the transfer equations for a motor, it can be 
represented as a simple RLC circuit. By neglecting losses, 
we can derive the following equation. This equation is 
important for understanding the motor's behavior and 
response to various inputs, which is essential for 
designing control systems that effectively regulate the 
quadcopter's movements. 

𝐻𝐻(𝑐𝑐) = 𝐾𝐾
𝐾𝐾2+𝑅𝑅𝑅𝑅𝑅𝑅

  (9) 
 
To determine the moments of inertia of a quadcopter, we 
can treat it as a solid body with a fixed mass and its axes 
parallel to the main axes of inertia. This allows us to 
model it as a rectangular parallelepiped with mass M and 
dimensions L, W, and H. The motors can be modeled as 
cylinders with mass m, height h, radius R, and located at 
a distance of l from the center of gravity. By accurately 
calculating the moments of inertia, we can better 
understand the quadcopter's rotational behavior and 
design control algorithms that ensure stable and precise 
movements. 

𝐼𝐼 =  �
𝐼𝐼𝑥𝑥 0 0
0 𝐼𝐼𝑦𝑦 0
0 0 𝐼𝐼𝑧𝑧

�    (10) 

 
The moments of inertia of a rectangular parallelepiped are 
modeled by the following equations: 

𝐼𝐼𝑋𝑋 = 𝑚𝑚𝑝𝑝𝑚𝑚
12

(𝑊𝑊2 + 𝐻𝐻2) + 𝑚𝑚𝑐𝑐 �𝑅𝑅2 + ℎ2

3
� + 2𝑚𝑚𝑐𝑐𝑏𝑏2    (11) 

𝐼𝐼𝑌𝑌 = 𝑚𝑚𝑝𝑝𝑚𝑚
12

(𝐿𝐿2 + 𝐻𝐻2) + 𝑚𝑚𝑐𝑐 �𝑅𝑅2 + ℎ2

3
� + 2𝑚𝑚𝑐𝑐𝑏𝑏2  (12) 

𝐼𝐼𝑍𝑍 = 𝑚𝑚𝑝𝑝𝑚𝑚
12

(𝐿𝐿2 + 𝑊𝑊2) + 2𝑚𝑚𝑐𝑐𝑅𝑅2 + 2𝑚𝑚𝑐𝑐𝑏𝑏2 (13) 
 
The Lagrange formula can be used to obtain the angular 
accelerations of a quadrotor by using the equations above. 
These equations take into account the forces acting on the 
quadrotor, such as thrust and drag, as well as the moments 
that cause it to rotate.  

𝐿𝐿 =  𝑇𝑇 –  𝑈𝑈   (14) 
 
With: 

𝑇𝑇 =  1
2

 𝑚𝑚𝑉𝑉2  (15) 
𝑈𝑈 =  ∫[−𝑔𝑔𝑐𝑐𝑔𝑔𝑔𝑔𝜃𝜃]𝑥𝑥𝑑𝑑𝑚𝑚 +  ∫[𝑔𝑔𝑐𝑐𝑔𝑔𝑔𝑔𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃]𝑦𝑦𝑑𝑑𝑚𝑚 +

 ∫[𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃]𝑧𝑧𝑑𝑑𝑚𝑚  (16) 

Angular accelerations: 
ϕ̈ = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚θ̇(Ω1+Ω4−Ω2−Ω3)

𝐼𝐼𝑥𝑥
+ 1

𝐼𝐼𝑥𝑥
𝑈𝑈2 + 𝐼𝐼𝑦𝑦−𝐼𝐼𝑧𝑧

𝐼𝐼𝑥𝑥
θ̇ψ̇       (17) 

θ̈ = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ϕ̇(𝛺𝛺1+𝛺𝛺2−𝛺𝛺3−𝛺𝛺4)
𝐼𝐼𝑦𝑦

+ 1
𝐼𝐼𝑦𝑦
𝑈𝑈3 + 𝐼𝐼𝑧𝑧−𝐼𝐼𝑥𝑥

𝐼𝐼𝑦𝑦
ψ̇ϕ̇       (18) 

ψ̈ = 1
𝐼𝐼𝑧𝑧
𝑈𝑈4 + 𝐼𝐼𝑥𝑥−𝐼𝐼𝑦𝑦

𝐼𝐼𝑧𝑧
θ̇ϕ̇    (19) 

 
Linear accelerations: 

�̈�𝑥 =  1
𝑚𝑚

(cosϕ cosψ sinθ+ sinϕ sinψ )𝑈𝑈1    (20) 

�̈�𝑦 =  1
𝑚𝑚

(cosϕ sinψ sinθ− cosψ sinϕ )𝑈𝑈1     (21) 

�̈�𝑧 =  1
𝑚𝑚

(cosϕ cosθ )𝑈𝑈1 − 𝑔𝑔 (22) 
 
With:  

𝑈𝑈1 = ∑ 𝑏𝑏 ∗ 𝑇𝑇𝑖𝑖4
𝑖𝑖=1 = 𝑏𝑏(Ω12 + Ω22 + Ω32 + Ω42)    (23) 
𝑈𝑈2 = 𝑏𝑏. 𝑏𝑏(Ω12 − Ω22 − Ω32 + Ω42)        (24) 
𝑈𝑈3 = 𝑏𝑏. 𝑏𝑏(Ω12 + Ω22 −  Ω32 − Ω42)        (25) 
𝑈𝑈4 =  𝑑𝑑(Ω22 + Ω42 − Ω12 − Ω32)        (26) 

 
Control algorithmes : 

𝑀𝑀1  =  𝑇𝑇 +  𝑅𝑅 +  𝑃𝑃 − 𝑌𝑌   (27) 
𝑀𝑀2  =  𝑇𝑇 −  𝑅𝑅 +  𝑃𝑃 +  𝑌𝑌   (28) 
𝑀𝑀3  =  𝑇𝑇 −  𝑅𝑅 −  𝑃𝑃 −  𝑌𝑌   (29) 
𝑀𝑀4  =  𝑇𝑇 +  𝑅𝑅 −  𝑃𝑃 +  𝑌𝑌   (30) 

 
4. SIMULATION  
 
To model a quadcopter using MATLAB (Simulink), it's 
important to understand its behavior and movements. 
With six degrees of freedom, but only four motors, we can 
control four of the six degrees, including altitude, roll, 
pitch, and yaw. Understanding the relationships between 
equations, including motor thrust, angular acceleration, 
gyroscopic effect, control, and displacement equations, is 
crucial in establishing a reliable model. Through the use 
of MATLAB (Simulink) in order to determine the 
constants of the PID and ensure stabilization of the 
quadcopter on all three axes of roll, pitch, yaw, and 
altitude. Figure 3 and 4 illustrates the quadrotor model in 
matlab simulink. Table 1 presents the quadrotor constates 
used for the simulation. 
 

 
Figure 3. Quadrotor Simulink model 
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Table 1. Quadrotor parameters 

 

 
Figure 4. Quadrotor Simulink model with PIDs. 

 
Manually adjusting the coefficients of the PID is a 
challenging task as it requires adjusting three coefficients 
at the same time with numerous possible combinations. 
The process starts with adjusting the Kp coefficient to 
improve the response time of the system, followed by 
adjusting the Ki coefficient to eliminate errors and ensure 
a quick and accurate response. Lastly, the Kd coefficient 
is adjusted to increase system stability by minimizing 
oscillations. The optimal values for each PID, including 
roll, pitch, yaw, and altitude, are provided in Table 2. 

Table 2. PID parameters. 

 
5. RESULTS AND DISCUSSION  
 
Following the simulation of the quadrotor using 
MATLAB Simulink, we were able to obtain valuable 
results that depict the system's stability across all four 
movements, including roll, pitch, yaw, and altitude. In 
addition, the quadrotor's movements along the X and Y 
axes, based on its roll and pitch movements, were also 
evaluated. The results  presented in Figures (5, 6, 7 and 
8), offer comprehensive visual representations of the 
quadrotor's dynamic behavior and provide significant 
insights for the purpose of further analysis and control 
optimization. 
 

 
Figure 5. Altitude results. 

 

 
Figure 6. Roll results. 

Param Value Param Value 

Ix 4.8 * 10-2 (Kg.m2) 𝑏𝑏 0.275 (m) 

Iy 4.8 * 10-2  (Kg.m2) 𝑑𝑑 7.5 *10-6  
(Kg.m.rad-2) 

Iz 8.5 * 10-2  (Kg.m2) 𝑏𝑏 3.1 * 10-6  
(Kg.m.rad-2) 

m 1.34(kg) 𝐾𝐾 230.36 (rad/s) 
Irotor 3.1 * 10-5  (Kg.m2) t 0.15 s 

Roll Pitch Yaw Altitude 

Param
 

V
alue 

Param
 

V
alue 

Param
 

V
alue 

Param
 

V
alue 

Kp 1 Kp 1 Kp 0.8 Kp 3 
Ki 0.01 Ki 0.01 Ki 0.01 Ki 0.85 
Kd 1.2 Kd 1 Kd 1.1 Kd 3 
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Figure 7. Pitch results. 

 

 
Figure 8. Yaw results. 

 
6. CONCLUSION  
 
In this study, The quadrotor model was simulated using 
the Euler-Lagrange technique in MATLAB Simulink, and 
its stability was tested using a Proportional-Integral-
Derivative (PID) controller. The simulation results 
confirmed the PID controller's usefulness in controlling 
the quadrotor's motion and preserving its stability 
throughout flight. The study also emphasizes the 
significance of the Euler-Lagrange technique in 
adequately describing the complicated dynamics of the 
quadrotor. Overall, this work gives useful insights for the 
development and improvement of quadrotor control 
systems and emphasizes the need of using modern 
simulation tools like MATLAB to explore the dynamics 
of complex systems. 
 
7. NOMENCLATURE  
 
ENGLISH LETTERS 
Ix: The moment of inertia along the X axis (Kg.m²). 
Iy: The moment of inertia along the Y axis in (Kg.m²). 
Iz: The moment of inertia along the Z axis in (Kg.m²). 
Irotor: The moment of inertia around the motor in (Kg.m²). 
d: The drag coefficient (kg. m. rad-2). 
b: The thrust coefficient (kg. m. rad-2). 
l: The distance between the motor and the centre of 
gravity of the quadcopter (m). 
Kp, Ki, Kd: The gains of proportional, integrals, 
derivatives. 
b: The thrust coefficient in (kg.m/rad2). 
mpr: The weight of the rectangular parallelepiped (kg). 
mc: The mass of the cylinder (kg). 

W: The width of the rectangular parallelepiped (m). 
h: The height of the cylinder (m). 
H: The height of the rectangular parallelepiped (m). 
K: The gain of the motor in (V.s / rad). 
R: The internal resistance of the motor in (ohm). 
J: The inertia of the rotor in (g.cm²). 
Mi: Motors  
T: Thrust 
R: Roll  
P: Pitch  
Y: Yaw 
C: cos  
S: sin 
 
GREEK SYMBOLS 
ϕ: The angle of rotation around the ‘X’ axis (Roll) in (rad). 
𝜽𝜽: The angle of rotation around the ‘Y’ axis (Pitch) in 
(rad). 
𝚿𝚿: The angle of rotation around the ‘Z’ (Yaw) axis in 
(rad). 
𝛀𝛀𝐢𝐢: The otors speed in (rad / s). 
τ: The time constant of the motors (s). 
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Abstract. Nowadays, Small quadcopters have made 
significant advancements in recent years, thanks to the 
development of control systems, the availability of sensors, and 
affordable and reliable materials for their production. 
Additionally, programs have been developed to model and 
analyze these aircraft before production. The professional 
applications of quadcopters are seemingly endless due to their 
many advantages. The aim of this research is to build a 
quadcopter and test its stability utilizing Arduino Mega, IMU 
sensor (Inertial Measurement Unit) and MPU-6050 in 
LabVIEW environment. The objective is to select the suitable 
PID parameters and create a remote-control program that can 
be operated using a smartphone and RemoteXY app on 
Android OS. 

Keywords: quadcopter, control, LabVIEW, Arduino, sensor. 

 
1. INTRODUCTION  
 
Quadcopters with sensors have developed in terms of their 
ability to perceive their surroundings, allowing them to fly 
in appropriate conditions and maintain balance. They 
consist of four motors with propellers attached to a 
wooden or other material cross, with each motor 
connected to an electronic speed controller (ESC) 
controlled by a control card. The control card receives its 
commands from a radio control receiver or a smartphone. 
Designing and building a quadcopter is less complicated 
than a standard helicopter, but still requires careful 
consideration of the parts and assembly during the design 
process. When editing, it is crucial to consider some 
general points based on experience. 
 
One of the most challenging mounting locations when 
designing a custom frame is where the motors and frame 
meet since the four mounting holes there need to be set 
precisely. Any extra parts should preferably be arranged 
symmetrically around an axis to make it easy to determine 
the quadcopter's centre of gravity. The middle of the circle 
that connects all motors should ideally house the 
controller (Arduino Mega). As it is heavy enough for the 
quadcopter, the battery should also be placed in the 
middle of the device.  
 
Quadrotor control has been an area of interest for many 
researchers in recent years due to its potential for 

applications in a wide range of fields such as aerial 
photography, environmental monitoring, and search-and-
rescue operations [1]. PID (Proportional-Integral-
Derivative) controllers have been widely used in 
quadrotor control due to their simplicity and effectiveness 
in providing stable flight control [2-3]. Previous studies 
have shown that PID controllers can achieve accurate and 
stable flight control for quadrotors under various 
conditions, including disturbances and changing 
environments [4]. However, researchers have been 
proposed several regulators for quadrotor control, both 
linear and nonlinear. Linear regulators such as PD 
(Proportional-Derivative) and LQR (Linear Quadratic 
Regulator) have been widely used due to their simplicity 
and effectiveness in achieving stable flight control [5-6]. 
Nonlinear regulators such as MPC (Model Predictive 
Control) [7], SMC (Sliding Mode Control)[8], and fuzzy 
logic controllers have also shown promising results in 
achieving stable and robust control of quadrotors under 
various conditions [9]. Moreover, the use of neural 
networks has been investigated in quadrotor control as 
they have the ability to learn complex nonlinear 
relationships between the inputs and outputs of the system 
[10]. 
 
In this work, we will try to study the stability of a 
quadrotor using LabVIEW. To achieave that, we need a 
range of components, including a wooden frame for 
constructing the quadcopter, an Arduino Mega 2560 
microcontroller, four A2212-6T 2200KV motors, four 
30A electronic speed controllers (ESC), four 8045 
propellers, an MPU-6050 gyroscope, ESP8266 Wi-Fi 
module, wires, a 3S 4000mAh Li-Po battery, an IMAX 
B6 Li-Po balance charger (Figure 1). In addition to 
LabVIEW and an Android OS smartphone equipped with 
the RemoteXY app. However, Section 2 provides a 
detailed guide on how to construct a quadrotor and link its 
components together. Section 3 delves into the control 
equations and how they can be used to control the 
quadrotor's movement. Section 4 explains how to 
implement the control on a LabVIEW environment, while 
Section 5 discusses the use of RemoteXY to control the 
quadrotor. Section 6 presents the results and discusses 
their implications, while the final section, the conclusion, 
summarizes the article's key points and emphasizes the 
significance of the findings.
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Figure 1. The quadcopter and its basic components. 

 
2. CONSTRUCT THE QUADCOPTER AND 

LINK ITS COMPONENTS  
 
The quadcopter will be developed in steps, starting with 
the mechanical assembly and continuing with the 
functional testing of the parts. The quadcopter's whole 
structure will be created by connecting the electrical 
components using connection cables (Jumper-Wire), 
then assembling them onto the frame. Also, to ensure 
that the quadcopter can handle the intended weight or 
achieve the desired thrust, The motors will be selected 
based on their capabilities to provide the necessary 
thrust for the quadcopter's weight and flight 
performance. 
 
Developing an effective command interface in 
LabVIEW or an interface in Android using the 
RemoteXY website, it is imperative to gain a 
comprehensive understanding of the operational and 
connection mechanisms of the various components of 
the quadcopter, including but not limited to Arduino, 
motors, gyroscope, Wi-Fi, and ESC. Only by thoroughly 
comprehending the functioning of these components 
and their interplay can we design and implement a 
robust interface that can cater to the specific needs of the 
quadcopter and enable efficient control and 
maneuverability. 
 
Connecting the fundamental electrical components will 
be established according to the diagram presented in 
Figure 2, which illustrates the optimal way to link the 
Arduino Mega, the four A2212-6T 2200KV motors, the 
MPU-6050 gyroscope, the ESP8266 Wi-Fi module, the 
four 30A electronic speed controllers (ESC), the Li-Pro 
battery (3S, 4000 MAH), and the necessary Jumper-
Wire cables to ensure the proper functioning of the 
quadcopter. 
 

 
Figure 2. Linking the electronic components. 

 
After assembling the quadrotor, it's essential to carry out 
a series of tests on the various components to ensure 
everything is working correctly (Figure 3). This includes 
establishing a stable WiFi connection using the esp8266 
module, initializing the ESC to optimize the 
performance of the brushless motors, and calibrating the 
gyroscope to remove any offsets in the six axes. These 
steps are critical for ensuring a smooth and stable flight, 
and they must be performed carefully and thoroughly to 
minimize the risk of any malfunctions or accidents 
during operation. Once all of these tasks are completed 
successfully, the quadrotor should be ready for 
programming and testing and further optimization. 
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Figure 3. The quadcopter model. 

 
3. CONTROL AND EQUATIONS  
 
Accelerometers and gyroscopes are two commonly used 
sensors in quadrotors to achieve stabilization and 
control. The accelerometer measures the linear 
acceleration of the quadrotor in all three axes. Based on 
this information, the control system can calculate the 
orientation of the quadrotor and adjust the motor thrust 
accordingly to maintain stability. Gyroscopes, on the 
other hand, measure the angular velocity of the 
quadrotor around all three axes. By integrating the 
gyroscopic data, the system can calculate the orientation 
of the quadrotor over time. Combining the 
accelerometer and gyroscope data, the control system 
can achieve accurate attitude estimation of the quadrotor 
and make necessary adjustments to the motor thrust to 
stabilize and control the device. The integration of these 
two sensors provides a robust and reliable control 
system for quadrotors, enabling them to perform 
complex maneuvers and maintain stability in various 
flight conditions. 
 
To comprehensively assess the dynamics and stability of 
a quadcopter, determining the angles of both 
accelerometer and gyroscope is essential. To accurately 
calculate the angles of the gyroscope, employing the 
equations below is crucial. 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = atan � 𝑌𝑌

�𝑋𝑋2+𝑍𝑍2
�  (1) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = atan � 𝑋𝑋
�𝑌𝑌2+𝑍𝑍2

�  (2) 

 
Accelerometer angles: 

𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑥𝑥 =  𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴((𝑎𝑎𝐴𝐴/16384.0)/
𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎(𝑝𝑝𝑝𝑝𝑝𝑝((𝑎𝑎𝐴𝐴/16384.0),2)  +  𝑝𝑝𝑝𝑝𝑝𝑝((𝑎𝑎𝑎𝑎/

16384.0),2))) ∗ 𝑠𝑠𝑎𝑎𝑟𝑟_𝑎𝑎𝑝𝑝_𝑟𝑟𝐴𝐴𝐴𝐴;  (3) 
 

𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑦𝑦 =  𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴(−1 ∗ (𝑎𝑎𝐴𝐴/16384.0)/
𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎(𝑝𝑝𝑝𝑝𝑝𝑝((𝑎𝑎𝐴𝐴/16384.0),2) 𝑝𝑝𝑝𝑝𝑝𝑝((𝑎𝑎𝑎𝑎/

16384.0),2))) ∗ 𝑠𝑠𝑎𝑎𝑟𝑟_𝑎𝑎𝑝𝑝_𝑟𝑟𝐴𝐴𝐴𝐴;  (4) 
𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑧𝑧 =  𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴(𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎(𝑝𝑝𝑝𝑝𝑝𝑝((𝑎𝑎𝐴𝐴/

16384.0),2)  +  𝑝𝑝𝑝𝑝𝑝𝑝((𝑎𝑎𝐴𝐴/16384.0),2))/
 (𝑎𝑎𝑎𝑎16384.0)) ∗ 𝑠𝑠𝑎𝑎𝑟𝑟_𝑎𝑎𝑝𝑝_𝑟𝑟𝐴𝐴𝐴𝐴;   

   (5) 
 

Gyroscope Angles: 
𝐺𝐺𝑦𝑦𝑠𝑠𝑝𝑝_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑥𝑥 =  𝐴𝐴𝐴𝐴/131.0;   (6) 
𝐺𝐺𝑦𝑦𝑠𝑠𝑝𝑝_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑦𝑦 =  𝐴𝐴𝐴𝐴/131.0;    (7) 
𝐺𝐺𝑦𝑦𝑠𝑠𝑝𝑝_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑧𝑧 =  𝐴𝐴𝐴𝐴/131.0; (8) 

 
Total Angles: 

𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝐴𝐴𝐴𝐴_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑥𝑥 =  0.98 ∗ (𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝐴𝐴_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑥𝑥 +
𝐺𝐺𝑦𝑦𝑠𝑠𝑝𝑝_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑥𝑥 ∗ 𝐴𝐴𝐴𝐴𝑎𝑎𝑝𝑝𝑠𝑠𝐴𝐴𝑟𝑟𝑎𝑎𝑒𝑒𝑒𝑒𝐴𝐴) + 0.02 ∗

𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑥𝑥;                  
(9) 

𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝐴𝐴𝐴𝐴_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑦𝑦 =  0.98 ∗ (𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝐴𝐴_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑦𝑦 +
𝐺𝐺𝑦𝑦𝑠𝑠𝑝𝑝_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑦𝑦 ∗ 𝐴𝐴𝐴𝐴𝑎𝑎𝑝𝑝𝑠𝑠𝐴𝐴𝑟𝑟𝑎𝑎𝑒𝑒𝑒𝑒𝐴𝐴) + 0.02 ∗

𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑦𝑦;                  
(10) 

 
𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝐴𝐴𝐴𝐴_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑧𝑧 =  𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝐴𝐴𝐴𝐴_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑧𝑧 +

 𝐺𝐺𝑦𝑦𝑠𝑠𝑝𝑝_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑧𝑧 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑝𝑝𝑠𝑠𝐴𝐴𝑟𝑟𝑎𝑎𝑒𝑒𝑒𝑒𝐴𝐴   
              (11) 

 
Error calculation: 

𝐴𝐴𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠_𝑥𝑥 =  𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝐴𝐴𝐴𝐴_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑥𝑥 –  𝑟𝑟𝐴𝐴𝑠𝑠𝑒𝑒𝑠𝑠𝐴𝐴𝑟𝑟_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑥𝑥     
(12) 

𝐴𝐴𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠_𝑦𝑦 =  𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝐴𝐴𝐴𝐴_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑦𝑦 –  𝑟𝑟𝐴𝐴𝑠𝑠𝑒𝑒𝑠𝑠𝐴𝐴𝑟𝑟_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑦𝑦     
(13) 

𝐴𝐴𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠_𝑧𝑧 =  𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝐴𝐴𝐴𝐴_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑧𝑧 –  𝑟𝑟𝐴𝐴𝑠𝑠𝑒𝑒𝑠𝑠𝐴𝐴𝑟𝑟_𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑧𝑧      
(14) 

 
PID equations:  
𝑝𝑝𝑒𝑒𝑟𝑟_𝑝𝑝 =  𝑘𝑘𝑝𝑝 ∗ 𝐴𝐴𝑠𝑠𝑠𝑠𝐴𝐴𝑒𝑒𝑠𝑠;                
(15) 
𝑝𝑝𝑒𝑒𝑟𝑟_𝑟𝑟 =  𝑘𝑘𝑟𝑟 ∗ ((𝐴𝐴𝑠𝑠𝑠𝑠𝐴𝐴𝑒𝑒𝑠𝑠 –  𝐴𝐴𝑠𝑠𝑠𝑠𝐴𝐴𝑒𝑒𝑠𝑠_𝑝𝑝𝑠𝑠é𝑎𝑎é𝑟𝑟𝐴𝐴𝐴𝐴𝑎𝑎)/
𝑎𝑎𝐴𝐴𝑒𝑒𝑝𝑝𝑠𝑠_é𝑎𝑎𝑝𝑝𝑒𝑒𝐴𝐴é);                 
(16) 
𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑝𝑝𝑒𝑒𝑟𝑟_𝑝𝑝 +  𝑝𝑝𝑒𝑒𝑟𝑟_𝑒𝑒 +  𝑝𝑝𝑒𝑒𝑟𝑟_𝑟𝑟;               
(17) 
 
With:  
aX, aY, aZ: accelerometer variables (axes) 
gZ, gY, gZ: gyroscope variables (axes) 
kp, ki, kd: PID parameters 
 
4. CONTROL ON LABVIEW ENVIRONMENT  
 
The implementation of a command interface utilizing 
LabVIEW has facilitated the study of the quadcopter's 
distinct movements in real-life scenarios. The 
simulation results derived from this analysis have 
enabled us to accurately maintain the speed and stability 
of the quadcopter, thus ensuring optimal flight 
conditions. The successful integration of these findings 
led to the development of an ideal interface under the 
Android platform, allowing for remote control of the 
quadcopter with unparalleled precision and reliability. 
 
The implementation of the LabVIEW interface was 
executed through a systematic construction of the block 
diagram, which was employed to configure all essential 
functions required for the comprehensive control of the 
quadcopter's various components, including the 
Arduino, motors, and MPU6050 (Figure 4). Beginning 
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with the development of the PIDs diagram, algorithm 
mixer diagram, and followed by the motors and 
MPU6050 diagrams, the block diagram that based on 
the equations above enablees the creation of a seamless 
control interface, which represented in Figure 5. 
 

 
Figure 4. Brushless Motors and gyroscope control 

diagram (MPU-6050). 
 

 
Figure 5. The Control graphical interface on LabVIEW. 

 
5. CONTROL USING ROMOTXY  
 
In order to program and establish a connection between 
the Arduino and the website (remotexy.com) and its 
corresponding phone application (Figure 6). A Wi-Fi 
connection was selected along with an Arduino Mega 
device, Wifi-ESP8266 connection module, and the 
Arduino IDE development environment. To enable 
communication between the smartphone and the 
controller (Arduino Mega), it was necessary to connect 
it to the Wi-Fi-ESP8266 module via the UART inputs 
(Rx, Tx). The ESP8266 module was then configured as 
a standalone Wi-Fi access point, requiring no 
connection with an existing Wi-Fi network for 
operation. The smartphone must be connected to the 
access point created to establish a connection. When 
programming the controller, the equations and variables 
mentioned about will be utilized to calculate the PID 
values and the appropriate pulse width modulation 
(PWM) to enable precise control over each movement. 
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Figure 6. RemoteXY Command interface on smartphone. 

 
6. RESULTS AND DISCUSSION  
 
The analysis of the quadcopter and its real-time 
movements, while similar to its simulation counterpart 
under MATLAB, presents variations due to the potential 
for measurement inaccuracies and manufacturing 
discrepancies. As such, the current study employed the 
LabVIEW environment to investigate the movement of 
the quadcopter and derive precise values for the 
essential PIDs parameters, which are crucial for 
subsequent programming of the controller (Table 1). 
 

Table 1. PID regulator parameters 

 
The simulation results for the quadrotor system using 
the PID regulator on LabVIEW were highly successful. 
The altitude results demonstrated consistent and stable 
flight at the desired height, with minimal oscillations 
and deviations from the setpoint (Figure 7). The roll and 
pitch results were also impressive, with the quadrotor 
maintaining a level and balanced flight despite varying 
wind conditions and disturbances (Figure 8 and 9). The 
yaw results were equally noteworthy, showcasing the 
system's ability to maintain a stable heading and respond 
quickly to changes in orientation (Figure 10). Overall, 
the simulation demonstrated the effectiveness of the PID 
regulator in controlling the quadrotor's movements and 
ensuring smooth, stable flight performance. These 
results provide valuable insights for further 
development and optimization of quadrotor systems for 
a variety of applications 
 
 
 
 
 

 
Figure 7. System response for Altitude movement 

 

 
Figure 8. System response for Roll movement 

 

 
Figure 9. System response for Pitch movement 

 
 
 

PID_Roll PID_Pitch PID_Yaw PID_Altitude 

Param Value Param Value Param Value Param Value 

Kp 0.2 Kp 0.6 Kp 0.5 Kp 2 

Ki 0.1 Ki 0.8 Ki 0.1 Ki 1.8 

Kd 0.3 Kd 0.5 Kd 0.4 Kd 1.5 
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Figure 10. System response for Yaw movement 

 
7. CONCLUSION  
 
This study has successfully presented a system for 
controlling the various movements of the quadcopter 
and analyzed the stability of each motion using a PID 
regulator in the LabVIEW environment. The 
experimental results demonstrated that the stability of 
each movement is closely correlated with the speed of 
the motors. The practical study conducted on LabVIEW 
enabled us to establish appropriate PID parameters for 
subsequent controller programming. The IMU sensor 
(Inertial Measurement Unit, MPU-6050) was identified 
as a key component for quadcopter controller 
programming since it can accurately measure all the 
basic movements of the quadcopter. By utilizing these 
measurements, we can effectively control and stabilize 
the quadcopter with remarkable efficiency using 
Smartphone (RemotXY). 
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