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Abstract
This article proposes a method for designing robust controller laws for a class of
uncertain nonlinear parameter varying (NLPV) descriptor systems under input
saturation and external disturbances. Both static and dynamic output feedback
controllers are proposed. To synthesize the fuzzy controllers, the stability con-
ditions are derived using polytopic parameter-dependent (PD) nonquadratic
Lyapunov functions with respect to the given saturation constraint on the con-
trol input. First, the designed conditions are established in terms of linear matrix
inequalities (LMIs) and 𝔏2 gain performance is used to attenuate the effect of
the external disturbance signals. Then, the estimation of the largest domain of
attraction (DoA) for the system is formulated and solved as an optimization
problem. Two examples are used to illustrate the effectiveness of the proposed
design methods.
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1 INTRODUCTION

In industrial applications, the nonlinear parameter varying (NLPV) systems require obtaining better control performances
such as automotive transmission systems, steeper motor drives, computer disk drives, some robot control systems, net-
work control robotic manipulations, and near-space vehicle control systems.1–3The control performances involve different
operating conditions due to the continuous increase of the productivity of modern industrial systems. However, con-
trolling strategies has become more difficult in recent years, especially when the unknown inputs/uncertainties occur,
whatever the origin of the unknown inputs, that is, external and internal disturbances, saturation of actuator/sensor or
installation, faults, and so on. Furthermore, the system behavior can change in most cases, and this undesirable behavior
may degrade the performances and lead to system instability. Recently, the control design of dynamic nonlinear systems,
particularly the classes of NLPV and Takagi–Sugeno (T-S) models, has attracted a lot of attention. Indeed, output feed-
back stabilization,4,5 input–output-to-state stability problem,6,7 and sliding mode control8–10 have been studied for NLPV
and T-S models. In order to guarantee the stability and improve the performance of NLPV descriptor systems, the tech-
niques of designing control laws have been developed by the scientific community, and have received growing interest.
Moreover, stability analysis and stabilization of NLPV models for the design of observers and control laws are addressed
in many works.11–13 The stabilization technique based on the LMI conditions principle is one of the most commonly used
approaches in control design field.
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Control design for nonlinear T-S systems has been studied using a quadratic Lyapunov functions, where the employed
approaches present different degrees of conservatism since a common Lyapunov matrix should be found for a set of lin-
ear matrix inequalities (LMIs). To overcome this problem, various alternative classes of Lyapunov function candidates
have been suggested such as piecewise Lyapunov function,14 multiple Lyapunov function,15 and parameter-dependent
(PD) Lyapunov Function (see References 16 and 17 for a recent review). Moreover, the effectiveness of PD Lyapunov
functions has been demonstrated for stability analysis, especially for discrete-time T-S systems. Furthermore, a wide
range of T-S fuzzy methods based on observers can be found in the literature, for instance, by considering a sym-
metrical barrier Lyapunov function,18 Lyapunov function based sliding mode,19 and Lyapunov function with young’s
inequality.20

Physical constraints such as control input saturation and state constraints are ubiquitous in real-world applications
due to safety and/or economic reasons. Saturation is a very mutual nonlinear phenomenon encountered in practice.
It is considered as one of the most important nonlinearities that exist, practically, everywhere and in many practi-
cal control systems since the system actuators and sensors cannot provide signals of unlimited amplitude under the
constraints of physics, security, and technology. Usually, it degrades the performance of the closed-loop system and
leads to large overshoot. Consequently, the design of stabilization controllers for a dynamic system under input sat-
uration has attracted the attention of several researchers.21–23 So far, there are two main approaches to deal with the
input saturation problem, the first one is a two-step approach consists of designing a nominal controller with ignor-
ing actuator saturation, meeting the performance specifications, whatever the saturation effect. Then, an additional
anti-windup compensator is introduced in order to minimize the performances of the closed-loop system, as a func-
tion of the difference between the unsaturated and saturated system control signals.24–27 The second approach considers
the saturation from the beginning of the controller design, and then the controller gains are adjusted accordingly to
the saturation levels.28–30 Among these strategies, one can cite the invariant sets framework, which has been signif-
icantly developed in control engineering over the last decades31; the convexity approach is based on the saturation
function that is also dealing with saturated input constraints.12,32 The main idea is to consider a bounded ellipsoidal
symmetric region of stability by solving a set of LMIs constraints, and ensures that every state trajectory initialized
inside a so-called invariant set remains inside this set. An interesting approach of the invariant set framework, applied
in Reference 22, is to determine the largest invariant set by maximizing an estimate of the DoA of the closed-loop
system.31

More recently, it has been shown that employing a descriptor approach to deal with discrete-time input saturated
NLPV systems leads to less computational cost for the LMIs solution as well as less conservatism conditions.30,33 For the
control of real industrial systems, state feedback controls22,23 assume the availability of all system state variables, which is
not always realistic because it may be very expensive or even impossible to measure all process state variables, which, in
most cases, are not directly adapted to output feedback control designs.15 In this case, only partial information from mea-
surable outputs can be considered. Several output feedback control approaches for classical/descriptor systems5,34–38 have
been developed: a first one consists of introducing an observer, making it possible to obtain a complete estimate of the state
vector, based on the input and output signal measurements. An estimated state feedback control law or observer-based
controller can be used as to allow the stabilization of a dynamic system.11 Although this method is interesting in prac-
tice, it leads to an increase in the cost of online calculation due to the presence of the observer. Other types of approaches
consist of synthesizing controllers using only the information available from the output vector. In this framework, two
types of control laws can be considered: static output feedback controller (SOFC) and dynamic output feedback controller
(DOFC).

In a large class of real-world applications, SOFC and DOFC strategies have been used by many authors in dif-
ferent control applications,35,36,39–43 especially for time varying parameter dependency system,41 and linear parameter
varying system.44 Their instability is caused by internal and external disturbances which is a fundamental problem
in control engineering. In this article, the design of a new nonlinear SOFC and DOFC in the context of NLPV sys-
tems is envisaged. Some recent studies32,34–36,40–41,45–46 deal with these controllers, and for a descriptor formulation, see,
for example, References 37, 38 that have obtained research results through the use of these control laws. SOFC rep-
resents the simplest and easiest control structure because it does not require any online differential equation solution
and, thus, reduces the computational cost. It is considered to be one of the easiest approaches to implement in prac-
tice since its earnings are calculated online for practical applications.30,44 Unlike observer based command, DOFC is
one of more convenient and flexible controller used in industrial processes. In fact, the synthesis of this type of con-
troller for robust control framework ensures a reduced cost of online computation. Interesting results can be found
in References 35, 41, 47.
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Besides, external disturbances are often a source of instability and poor performance of nonlinear systems. In partic-
ular, the 𝔏∞ command for fuzzy systems is treated in References 13, 39, 48. The 𝔏2/𝔏∞ approach is used to analyze and
synthesize controllers/observers obtaining an optimal level of disturbance attenuation (see, for example, References 6–8,
and references therein). The results presented are illustrated through several examples.

Motivated by the above discussion, in this article, the output feedback controllers for uncertain NLPV descrip-
tor systems subject to input saturation and external disturbances are designed. The saturation function is treated
through a dead-zone nonlinearity satisfying a modified sector condition, which ensures that the resulting closed-loop
systems are asymptotically stable with an estimation of the DoA described by the level set of the PD non-
quadratic Lyapunov function, and the local stability is handled considering the largest ellipsoidal DoA inside a
given polytopic region in the state space. A novel set of sufficient LMI conditions are developed aiming to design
less conservative output feedback controllers. Two examples are presented showing favorable comparisons with
recently published similar control design methodologies. The main contributions of this article are summarized
as follows:

• For the control design, both SOFC and DOFC configurations are designed for uncertain discrete-time NLPV descrip-
tor system, subject to input saturation and external disturbances. The controls design approach has a novel structure
that depends on parameter-varying nonlinearity. With the use of PD nonquadratic Lyapunov function, the proposed
controller will provide less conservative results such as larger DoA and better disturbance rejection capabilities. Com-
pared to the approach presented in References 28, 38, 44, 47, the proposed controllers design method has the ability to
preserve stability for open-loop unstable systems. Accordingly, a large class of nonlinear constrained systems can be
considered.

• A PD of nonquadratic Lyapunov function is used for stability analysis.
• The 𝕷2-gain is used to attenuate the effect of external disturbances and derived conditions of asymp-

totic stability in the presence of actuators saturation are established and solved by means of LMIs convex
optimization.

• The problem of maximizing the estimate of the DoA is expressed and calculated as an optimization problem.

This article is organized as follows: Section 2 formulates the control problem statement, description of
discrete-time uncertain NLPV descriptor system, and some useful preliminaries are also presented. SOFC and
DOFC design conditions are presented in Sections 3 and 4, respectively. The effectiveness of the proposed
methods is clearly demonstrated by means of examples in Section 5, and finally, Section 6 provides some
conclusions.

2 NOTATION AND PRELIMINARIES

2.1 Notations

Throughout this article, the following notations are adopted to represent conveniently the different expressions,
given a set of nonlinear function:hi(.), v𝓀 (.) , i ∈ {1… .r} ,𝓀 ∈ {1… .re} , are the nonlinear scalar functions. This work
only focuses on measurable premise variables grouped in the vector z(k), whose measurements can be obtained
from the output y(k), which is known and usually depend on the state vector, and can be equivalently repre-
sented by a vector of discrete-time varying parameter, expressed as hi(z(k)) and v𝓀 (z (k)) , satisfying the convex sum
property.

These shorthand notation will be used in the sequel to represent convex sum property of discrete-time varying
matrices expressions: Yh = Yh (z (k)) =

∑r
i=1 hi (z (k))Yi; Yv = Yv (z (k)) =

∑re
𝓀=1 v𝓀 (z (k))Y𝓀, for single convex sum; Yh− =

Yh− (z (k)) =
(∑r

i=1 hi (z (k))Yi
)−1 for the inverse of a convex sum; and Yhh = Yhh (z (k)) =

∑r
i=1

∑r
j=1 hi (z (k)) hj (z (k))Yij

for a doubled rested convex sum. For a vector x and z, xk symbolizes x(k), zk defined by z(k) and xk+ by x(k+ 1). Ir denotes
the set {1, 2, · · ·, r}, and Ire denotes the set {1, 2, · · · , re} ,ℜ+ represents the set of positive real integer.  (A) = A + AT is
the hermitian of matrix A. Z+ (*) denotes Z+ZT . I denotes the identity matrix. An asterisk * symbolizes the symmetric
block matrices.

The convex hull of these vectors is denoted as: co{x, y} = {𝛼1x + 𝛼2y = 1, 𝛼1 + 𝛼2 = 1; 𝛼1 ≥ 0; 𝛼2 ≥ 0}.
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2.2 Preliminaries

This section describes the considered class of uncertain NLPV descriptor system affected by actuator saturation and
external disturbances. The NLPV descriptor system with bounded parameters can be represented as follows:

⎧⎪⎨⎪⎩
re∑

𝓀=1
v𝓀 (zk) (E𝓀 + 𝛿E𝓀) xk+ =

r∑
i=1

hi (zk) ((Ai + 𝛥Ai) xk + (Bi + 𝛥Bi) sat (uk)) + B𝜔𝜔k

yk = Cxk

(1)

where xk ∈ ℜnx , uk ∈ ℜnu , yk ∈ ℜny ,𝜔k ∈ ℜn𝜔 are the state, control input, output vector, and the exogenous disturbances,
respectively. The PD state-space matrices: E𝓀 (zk), Ai(zk), Bi(zk), C, B𝜔 are of the appropriate dimensions, where i∈ Ir
represent the ith linear right hand-side sub-model, 𝓀 ∈ Ire is the 𝓀th linear left-hand side sub-model of NLPV descriptor
model (1). The matrix C involved in Equation (1) is assumed to be a full row rank, k is a current samples. It is assumed
that all parameters zk, where nl is a number of nonlinearities in the left/right hand side of system (1), depend on varying
parameters and/or state variables, which are bounded, measurable, and valued in the domain of an hypercube such
that44: zk ∈ 𝔔 and zimin ≤ zimax are known lower and upper bounds of zk.We assume that Ev, Ah, and Bh of system (1) are
continuous in the hypercube 𝔔 and are in affine parameter dependence, are represented such that, ∀zk ∈ 𝔔:

 (zk) = 0 +
nl∑

i=1
zi (k)i;Where  (zk) = [ Ev,Ah,Bh] (2)

z (k) ∈ ℜnl = {zi| zimin ≤ zi (k) ≤ zimax,∀k > 0} (3)

The NLPV descriptor system (1) with bounded parameter can be represented by a polytopic form; the polytopic
coordinates are denotes hi (zk) , v𝓀 (zk) , and vary within the convex sets Ω1 and Ω2, respectively:

Ω1 =

{
hi (zk) ∈ ℜr; hi (zk) =

[
h1 (zk) , … … ., hr (zk)

]T; hi (zk) ≥ 0;
r∑

i=1
hi (zk) = 1

}
(4)

Ω2 =

{
v𝓀 (zk) ∈ ℜre ; v𝓀 (zk) =

[
v1 (zk) … … ., vre (zk)

]T ; v𝓀 (zk) ≥ 0;
re∑

𝓀=1
v𝓀 (zk) = 1

}
(5)

The uncertain matrices, ΔAi ∈ ℜnx×nx ,ΔBi ∈ ℜnx×nu , 𝛿E𝓀 ∈ ℜnx×nx , corresponding to the i-th and k-th sub-system
contains the bounded uncertain terms which can be rewritten as: 𝛿Ai (k) = Hai𝔇ai (k)Nai; 𝛿Bi (k) = Hbi𝔇bi (k)Nbi and
𝛿E𝓀 = He𝓀𝔇e𝓀 (k)Ne𝓀, with Hai,Hbi,Hek,Nai,Nbi, and Ne𝓀 are known constant matrices and 𝔇ai (k) ,𝔇bi (k), and 𝔇ek (k)
are unknown matrices functions bounded, for all index 𝜀= a, b or e and 𝜃 = i, i∈ Ir and𝓀 ∈ Ire , one has𝔇T

𝜀𝜃
(k) .𝔇𝜀𝜃 (k) ≤ I.

Remark 1. The proposed approach relies on a well-known descriptor formulation which is well known to avoid the cou-
pling terms between the feedback gains and the Lyapunov matrices. As a consequence, the number of LMIs decreases
and relaxed conditions are obtained.

Remark 2. The sector nonlinearity approach29,49 is used in this article to derive an exact polytopic form of general
NLPV descriptor systems. This method can deal with a larger class of parametric dependencies system than, for
example, linear, affine, or rational one. In References 23, 28, 39, for input-saturated control of nonlinear systems, this
approach is exploited to represent the saturated actuators under a T-S form. In this work, the polytopic writing from
an NLPV representation can generally be written equivalently, on a compact set of the state space as a T-S form, and
a T-S system can also be seen as an NLPV system. Indeed, if the parameters vary in a compact set, it is possible
in a direct and systematic way to rewrite these models in T-S form. Controller synthesis exclusively uses the poly-
topic vertices/sub-models, and only the convexity properties of the MFs are retained. The advantage of this method
is that no approximation errors are introduced and the number of local models is reduced, this reduction allows us
to decrease the number of constraints (relating to stability and stabilization), which increases the chances of finding
a solution.

To ease the presentations, we assume that: E = (E𝓀 + 𝛿E𝓀), A = (Ai + 𝛿Ai), B = (Bi + 𝛿Bi).
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In this article, the following assumptions will be considered for the output feedback controller design of uncertain
NLPV descriptor system (1):

Assumption 1. The control input vector uk(l) is subject to symmetric amplitude limitation, that is:

−umax(l) ≤ uk(l) ≤ umax(l); l ∈ Inl . (6)

where the control bound umax(l) > 0 is given, and l represents the lth component of input control.

Loss of performance or even instability may occur, when state trajectories evolve outside the domain of validity of
closed-loop system. In such situations, one of the purposes of the present work is to handle the domain of validity of NLPV
descriptor model into the controller synthesis stage, to ensure local closed-loop stability. In addition, due to the saturation
nonlinearity effect, stability analysis required to be handled in local context. Besides the control input limitations, the
system states are also bounded in engineering applications due to physical and/or safety reasons. The equivalent NLPV
representation of a general nonlinear system obtained with the sector nonlinearity approach49 is generally valid within a
specific bounded set.22 This domain of validity can be represented by a polyhedral set x.

Assumption 2. The state trajectories of NLPV descriptor system are contained within the following polyhedral set
(validity domain), x ∈ ℜnx×nx defined as follows:

x =
{

xk ∈ ℜnx ∶  T
mxk ≤ 1,m ∈ Inq

}
(7)

where the given matrix m ∈ ℜnx represents the state constraints of system (1). Moreover, the control input is subject to
component wise saturation map: sat (.) ∶ ℜnu → ℜnu , defined as:

sat
(

uk(l)
)
= sign

(
uk(l)

)
min

(||uk(l)|| ,umax(l)
)

(8)

Here, we have slightly abused the notation by using sat(.) to denote both the scalar valued and the vector valued
saturation functions. Then, the standard saturation function is written as:

⎧⎪⎨⎪⎩
satl

(
uk(l)

)
=

[
sat1

(
uk(1)

)
… … satl

(
uk(l)

)
… … satnu

(
uk(nu)

)]
satl

(
uk(l)

)
= sign

(
uk(l)

)
min

(||uk(l)|| ,umax(l)
) (9)

and:

sat
(

uk(l)
)
=

{
uk(l) if ||uk(l)|| ≤ umax(l)

umax(l) if ||uk(l)|| > umax(l)
(10)

For l ∈ Inl , umax(l) > 0 represents the maximal saturation level of the lth control component, so:

sat
(

uk(l)
)
= uk(l) − 𝜓

(
uk(l)

)
(11)

where 𝜓(uk(l)) represent the dead-zone nonlinearity, where 𝜓(uk(l)) = [𝜓(uk(1)) … … 𝜓(uk(l))]T .
The lth component of decentralized dead-zone nonlinearity 𝜓(uk(l)) is defined as:

𝜓
(

uk(l)
)
=

{
0 if ||uk(l)|| ≤ umax(l)

uk(l) − sign
(

uk(l)
)
.umax(l) if ||uk(l)|| > umax(l)

(12)

Assumption 3. The disturbance signal 𝜔k is assumed to belong to the following class of function:

2
𝛿
=

{
𝜔k∶𝔑+ −→ 𝔑n𝜔 ,

∞∑
k=1

𝜔T
k𝜔k ≤ 𝛿,∀k > 0, 𝛿 > 0

}
(13)

where the bound 𝛿 is known.
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Using Finsler’s Lemma, a better result have been proposed making it possible to decouple the PD matrices gains
of control law with the Lyapunov matrix system, as well as to introduce free decision variables, helping to reduce the
conservatism, and with progressively more relaxed results via controllers with nested convex sum, so:

Finsler’s Lemma (50). Let 𝜉k ∈ ℜnx ,Φ = ΦT ∈ ℜnx×nx and R ∈ ℜnx such that: ank(R)≤nx; the following expressions
are equivalent: {

a) 𝜉T
k Φ𝜉k < 0 ∶ {∀𝜉k ∈ Rn𝜉 ; 𝜉k ≠ 0;R𝜉k = 0}

b) ∃  ∈ Rnx ∶
{
Φ +R + RTT < 0

} (14)

In order to obtain less conservative stabilization conditions, we introduce free matrices to reduce the conservatism
of the conditions expressed from double or triple sums.51 In this work, we opted for the relaxation lemma of Reference
50, which constitutes a good compromise between complexity and reduction of conservatism, this relaxation scheme is
presented as follows:

Lemma 1. (30) Let  𝓀
ij (zk) be symmetric matrix of appropriate dimensions, and hi, v𝓀, (i, j) ∈ Ir × Ir 𝓀 ∈ Ire be any

families of functions satisfying the property of convex sum.
The condition:

∑r
i=1

∑r
j=1

∑re
𝓀=1 hihjv𝓀 𝓀

ij (zk) < 0, holds if:{
 𝓀

ii (zk) < 0
2

r−1
 𝓀

ii (zk) +  𝓀
ij (zk) +  𝓀

ji (zk) < 0
(i, j) ∈ Ir × Ir,𝓀 ∈ Ire and i ≠ j (15)

Remark 3. In the framework of polytopic systems, many control design conditions can be presented in the following form:

hh (zk) =
r∑

i=1

r∑
j=1

hi (zk) hj (zk) ii < 0 (16a)

 𝓀
hh (zk) =

r∑
i=1

r∑
j=1

hi (zk) hj (zk)
re∑

𝓀=1
 𝓀

ii < 0 (16b)

 is a symmetric matrix of appropriate dimension, are linearly dependent on varying parame-
ter zk ∈ 𝔒, to convert PD condition hh (zk) and  𝓀

hh (zk) into a finite set of LMIs while avoiding
excessive computational burden of parameter-gridding algorithms. Without involving slack variables,
the relaxation lemma mentioned in (15) leads to a good tradeoff between numerical complexity and
conservatism.

Lemma 2. (29) Let 𝔛 = 𝔛T > 0, and 𝔜 matrices of the appropriate dimensions, the following expressions holds:

(𝔜 −𝔛)T𝔛−1 (𝔜 −𝔛) ≥ 0 ↔ 𝔜T𝔛−1𝔜 ≥ 𝔜 +𝔜T −𝔛. (17)

Lemma 3. (14) Let us consider 𝔛 and 𝔜, and 𝔇 (k) be real matrices with appropriate dimensions, where 𝔇 (k)
satisfying: 𝔇T (k)𝔇 (k) ≤ I, one has: {

 (𝔛𝔇 (k)𝔜) < 0; ∀𝔇 (k)
 (𝔛𝔇 (k)𝔜) < 𝔛T𝔜 +𝔜T𝔛

(18)

And for any some scalar: Σ> 0, and 𝜆> 0 such that:{
𝔛T𝔜 +𝔜T𝔛 ≤ 𝔛TΣ𝔛 +𝔜Σ−1𝔜T ,Σ > 0
𝔛T𝔜 +𝔜T𝔛 ≤ 𝜆𝔛T𝔛 + 𝜆−1𝔜𝔜T , 𝜆 > 0

(19)

SOFC and DOFC can be designed using only the available information of the output vector/measured signal.
In the following section, the controllers are derived using the descriptor approach. Sufficient LMI constraints are
derived from Lyapunov’s theory. Compared with Reference 28 in the following section, both SOFC and DOFC are
proposed.
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F I G U R E 1 The proposed SOFC constrained controller
design scheme [Colour figure can be viewed at
wileyonlinelibrary.com]

3 STATIC OUTPUT FEEDBACK CONTROLLER

3.1 Controller design

The main objective is to synthesize a control law for the uncertain discrete-time NLPV descriptor system (1) subject to
input saturation and external disturbances; the following unconstrained SOFC is envisaged:

uk = Fhv (zk)Hhv(zk)−1yk (20)

The PD gain matrices Fij (zk) ∈ ℜnu×nx and Hij (zk) ∈ ℜnx×nx for each (i, j)∈ Ir × Ir are to be determined. The nonsin-
gularity and the inverse of matrix Hhv(zk) in Equation (20) will be examined in Theorem 1.

In order to satisfy the desired performance, an SOFC under input saturation is designed as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

re∑
𝓀=1

v𝓀 (zk)Exk+ =
r∑

i=1
hi (zk) (Axk + Bsat (uk)) + B𝜔𝜔k

yk = Cxk

uk = Fhv (zk)Hhv(zk)−1yk

𝜓 (uk) = uk − sat (uk)

(21a)

The proposed structure is reminiscent of dynamical anti-windup controllers for linear systems.38

Before the analysis of SOFC design problem, the corresponding closed-loop system should be formulated firstly with
combining control law (20) with state-space equations (1). Therefore, the dynamic of closed-loop system is rewritten as:

⎧⎪⎨⎪⎩
re∑

𝓀=1
v𝓀 (zk)Exk+ =

r∑
i=1

r∑
j=1

hi (zk) hj (zk) ((A + BFij (zk)Hij
(

zk )−1C)xk − B𝜓 (uk)
)
+ B𝜔𝜔k

yk = Cxk

(21b)

The architecture of the proposed SOFC scheme is depicted in Figure 1.
Now in order to leave the quadratic framework proposed in Reference 15, we propose a new class of an adequate

polytopic PD Lyapunov function to analyze stability conditions. Let us consider the polytopic PD nonquadratic Lyapunov
function as follows:

V (xk, zk) = xT
k ET

v Ph(zk)−1Evxk;Ph (zk) ∈ ℜnx×nx ,Ph (zk) = Ph(zk)T > 0 (22)

where Ph(zk) and Ev are defined above.

Definition 1. (39,48) Let Ph (zk) ∈ ℜnx×nx be a symmetric PD Lyapunov matrix, and ET
v Ph(zk)−1Ev ≥ 0, let us define the

ellipsoids (Lyapunov surfaces) as parameter dependent level set (PDLS) associated to V(xk, zk) as follows:{
v =

{
xk ∈ ℜnx∶V (xk, zk) = xT

k ET
v Ph(zk)−1Evxk ≤ 𝜌, ∀k > 0

}
v0 =

{
xk ∈ ℜnx∶V (xk, zk) = xT

k ET
v Ph(zk)−1Evxk ≤ 1, for k = 0

} (23)

The PDLS is contractively invariant set; because the estimate ofν is the intersection of the ellipsoids, and is contained
in the DoA which is nonconvex due to its associated nonquadratic Lyapunov function, and is included in x ∩u. PDLS

http://wileyonlinelibrary.com
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based approaches can exploit finite bounds of the rates of the parameter variation and provide less conservative results
than quadratic approaches assuming arbitrary parameter variation.40 This will still lead to an estimate less conservative
than the estimate based on the quadratic Lyapunov function.

Proposition 1. (17,22) A simple estimation of v and v0 are the intersection of the ellipsoids, then:

⎧⎪⎨⎪⎩

(

ET
v Ph(zk)−1Ev, 𝜌

)
=

r⋂
i=1

re⋂
𝓀=1


(

ET
𝓀P−1

i E𝓀, 𝜌
)
⊆ v


(

ET
v Ph(zk)−1Ev, 1

)
=

r⋂
i=1

re⋂
𝓀=1


(

ET
𝓀P−1

i E𝓀, 1
)
⊆ v0

(24)

where the PDLS is contractively invariant set, and is contained in the DoA.

Remark 4. The domain of validity x of NLPV descriptor system is obtained with the sector nonlinearity approach,49 it
can be described by the state constraints, taking this domain into account in the control design is essential to ensure both
suitable closed-loop performance and stability, also v is a subset of the DoA included in the polyhedron set x of the
closed-loop system related to V(xk, zk), the set x represents the state-space region where trajectories are constrained and
evolve within this set, due to both physical limitations and validity region of the NLPV descriptor model (1).

3.2 LMI-based design conditions of constrained NLPV descriptor systems

In the light of the previous discussions, this work is concerned with proposing a systematic method to design a controller
such that the closed-loop system satisfies the following properties, besides a sufficient condition to solve the following
control problem:

Property 1. (Local stabilization) Then exist a positive definite function V(xk, zk) such that all closed-loop trajectories
starting from the set v0, converge asymptotically to the origin in the absence of disturbance or the disturbances are
vanishing (𝜔k = 0), for an arbitrary parameter zk provided that the initial states belong to a specific set in the state-space.
In the presence of disturbances satisfying Assumption 3, the controller guarantees that the trajectories of Equation (21b)
are bounded.

Property 2. (Output to state stability and disturbances attenuation) Given vector m defined in Assumption 2 and
a positive scalar 𝛿 depending in the type of disturbances involved in the dynamics of system (1). We distinguish two
following control problems:

Control problem 1: when 𝜔k ≠ 0 and 𝜔k ∈ 2
𝛿

. There exist positive scalar 𝜌 and 𝛾 such that ∀xk ∈ v∖ {0}, the cor-
responding closed-loop trajectory (21b) remains inside the validity domain x defined in Equation (7). Moreover, the
𝕷2-gain of the output vector yk is bounded as follows:

‖yk‖2
2 < 𝛾

2 ‖𝜔k‖2
2 + 𝜌,∀k > 0 (25)

Control problem 2: Consider the NLPV descriptor model (1) design a nonlinear controller (20) such that: v ⊆

x ∩u is as large as possible, and is a contractively invariant set with respect to the closed-loop system (21)
with zk ∈ 𝔔.

Assumption 4. 

(
ij,umax(l)

)
denotes the polyhedral region associated with a matrix ij ∈ ℜnu×nx and a vector

umax(l) ∈ ℜnu defined by:



(
ij,umax(l)

)
=

{
xk ∈ ℜnx∶|ij(l)xk| ≤ umax(l); ∀l ∈ Inl

}
(26)

ij(l) is a component of vector ij and 

(
ij,umax(l)

)
is polyhedral set consisting of states for which saturation does

not occur, and it is worth noticing that inside this admissible set the control input do not saturate and therefore, the
evolution of the closed-loop system trajectories defined in Equation (21b) remains inside the validity domain x defined
in Equation (7).

Remark 5. A certain degree of freedom is guaranteed when the system operates inside the region 

(
ij,umax(l)

)
.
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Saturation Lemma (21). Given matrices, Hij (zk) ∈ ℜnx×nx and Wij (zk) ∈ ℜnu×nx for ( i, j)∈ Ir × Ir, let us define the
following set, where:

u =
{

xk ∈ ℜnx∶|uk(l) − vk(l)| ≤ umax(l); l ∈ Inl

}
(27)

If xk,uk(l) and vk(l) ∈ u, then the inequality of the dead-zone nonlinearity 𝜓(uk(l)), where uk(l) is defined in Equation
(20) satisfy the following PD generalized sector condition:

𝜓
(

uk(l)
)TSij(l)(zk)−1 [𝜓 (

uk(l)
)
− vk(l)

]
≤ 0 (28)

Holds for any diagonal matrix Sij ∈ ℜnu×nu , and for any scalar function: hi(zk) satisfying the convex sum property, and
vk(l) = (W ij(zk)Hij(zk)−1)(l)xk.

Proof of Saturation Lemma. If xk ∈ u, it can be deduced:

−umax(l) ≤ uk(l) − vk(l) ≤ umax(l) (29)

Notice that we have to show this:

𝜓
(

uk(l)
)

Sij(l)(zk)−1
[
𝜓

(
uk(l)

)
−

(
Wij (zk)Hij(zk)−1)

(l)xk

]
≤ 0; l ∈ Inl (30)

To this end, three possible cases according to the value of uk(l) that may occur. It follows that:
umax(l) −uk(l) +W ij(zk)Hij(zk)−1xk ≥ 0 and −umax(l) −uk(l) +W ij(zk)Hij(zk)−1xk ≤ 0.

Case 1: −umax(l) ≤uk(l) ≤umax(l).
It follows that: 𝜓(uk(l)) = 0 and 𝜓(uk(l))Sij(l,l)(zk)−1[𝜓(uk(l))− (W ij(zk)Hij(zk)−1)(l)xk] = 0, ∀Sij > 0.
Case 2: uk(l) ≥umax(l), Then: 𝜓(uk(l)) = uk(l) −umax(l) > 0
and uk(l) − (W ij(zk)Hij(zk)−1)(l)xk ≤umax(l)
Hence, 𝜓(uk(l))− (W ij(zk)Hij(zk)−1)(l)xk = uk(l) − umax(l) + (W ij(zk)Hij(zk)−1)(l)xk ≤ 0.
Since 𝜓(uk(l))> 0; and (uk(l))Sij(l,l)(zk)−1[𝜓(uk(l))− (W ij(zk)Hij(zk)−1)(l)xk]≥ 0, provided that Sij(l,l) ≥ 0.
Case 3: uk(l) ≤ − umax(l),
then: 𝜓(uk(l)) = uk(l) +umax(l) < 0 and uk(l) − (W ij(zk)Hij(zk)−1)(l)xk ≥ − umax(l).
Combining the fact that: 𝜓(uk(l))< 0 and:
𝜓(uk(l))− (W ij(zk)Hij(zk)−1)(l)xk = uk(l) − (W ij(zk)Hij(zk)−1)(l)xk +umax(l) ≥ 0.
Result in: 𝜓(uk(l))Sij(l,l)(zk)−1[𝜓(uk(l))− (W ij(zk)Hij(zk)−1)(l)xk]≤ 0, for Sij(l,l) ≥ 0.

▪

Remark 6. Saturation lemma plays a key role in decreasing the conservatism, it is motivated by the results of PD version
of a modified sector condition,44 this new version is especially appropriate for SOFC/DOFC context, and presents a tool to
deal with the dead-zone nonlinearity 𝜓(uk(l)), and this powerful tool provides a local characterization of NLPV descriptor
system (1) by means of an extension of the absolute stability theory.

Inside the region 

(
ij,umax(l)

)
, the control input does not saturate, and therefore the evolution of the closed-loop

system is described by the following model:

⎧⎪⎨⎪⎩
re∑

𝓀=1
v𝓀 (zk)Exk+ =

r∑
i=1

r∑
j=1

hi (zk) hj (zk) (A (zk) + B (zk)Fij (zk)Hij
(

zk )−1C)xk
)
+ B𝜔𝜔k

yk = Cxk

(31)

remain inside the domainx.Nevertheless outside the region 

(
ij,umax(l)

)
, the control input saturate and the stability

of the saturated system must be analyzed.
In this section, an SOFC is designed; a solution of the stability analysis for uncertain and saturated discrete-time NLPV

descriptor system with additive disturbances is given using a polytopic PD nonquadratic Lyapunov function. In order to
obtain relaxed LMI constraints, the saturation bounds are taken into account. In the other hand, the estimation of the
DoA is obtained by considering a bounded invariant set of initial system states, included in the validity domain x. The
following theorem summarized the obtained results:
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Theorem 1. For a given the discrete-time uncertain NLPV descriptor system (1) with a parameter zk ∈ 𝔒, under input
saturation defined as (8), with the proposed controller (20), whose validity domain is defined by x, is locally asymp-
totically stable if there exist a gain matrices: Pi = PT

i > 0, where Pi ∈ ℜnx×nx ; Xi = XT
i > 0,where Xi ∈ ℜnx×nx and Xi =

P−1
i ;Wij ∈ ℜnu×nx ; Fij ∈ ℜnu×nx ; Hij ∈ ℜnx×nx , for any positive diagonal gain matrix Sij ∈ ℜnu×nu , (i, j) ∈ Ir × Ir, a positive

scalars 𝜀1, 𝜀2, 𝜀3, 𝛾 =
√
𝛾;

(
𝛾2 = 𝛾

)
, 𝜌 and 𝛿 satisfying condition (15), such that the following inequalities holds:{

min 𝛾
ET
𝓀XiE𝓀 > 0

(32)

𝜌 + 𝛾𝛿 < 1 (33)[
−ET

𝓀XiE𝓀 ∗
 T

m − 1
𝜌

]
< 0 (34)

⎡⎢⎢⎣
−E𝓀Hij − HT

ij ET
𝓀 + Pi ∗

Fij(l) − Wij(l)
−
(

umax
(l)

)2

𝜌

⎤⎥⎥⎦ < 0 (35)

 𝓀
ij =

[
𝛱𝓀

ij ∗
𝛶ij 𝜁

]
< 0 (36a)

Π𝓀
ij =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−E𝓀Hij − HT
ij ET

𝓀 + Pi ∗ ∗ ∗ ∗
CHij −I ∗ ∗ ∗(

AiHij + BiFijC
)

0
−Pi(

𝜀1HaiHT
ai + (𝜀1 + 𝜀3)HbiHT

bi + 𝜀2He𝓀HT
e𝓀

) ∗ ∗

Wij 0 −ST
ij Bi

T −2ST
ij ∗

0 0 B𝜔T 0 −𝛾I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(36b)

Υij =

⎡⎢⎢⎢⎢⎢⎣

NaiHij 0 0 0 0
NbiFijC 0 0 0 0

0 0 Ne𝓀Pi 0 0
0 0 0 NbiSij 0

⎤⎥⎥⎥⎥⎥⎦
(36c)

𝜁 =

⎡⎢⎢⎢⎢⎢⎣

−𝜀1 ∗ ∗ ∗
0 −𝜀1 ∗ ∗
0 0 −𝜀2 ∗
0 0 0 −𝜀3

⎤⎥⎥⎥⎥⎥⎦
(36d)

Then, the SOFC (20) solves the control problem defined for the closed-loop NLPV descriptor system (21b).

Proof. Note that inequality (36.b) implies that: HT
ij ET

𝓀P−1
i E𝓀Hij ≥ E𝓀Hij + HT

ij ET
𝓀 − Pi.

The same set of variables xk can be represented as the feasible set of different LMIs. For instance, P−1
i is positive definite

matrix and P−1
i = P−T

i , then P−1
i subject to a congruence transformation, is also positive definite:

P−1
i > 0 ↔ ET

𝓀P−1
i E𝓀 > 0, ∀E𝓀 ≠ 0

ET
𝓀P−1

i E𝓀 ↔ HT
ij ET

𝓀P−1
i E𝓀Hij; ∀Hij ≠ 0, E𝓀 is nonsingular.

P−1
i ↔ HT

ij ET
𝓀P−1

i E𝓀Hij

Also: P−1
i > 0 ↔ HT

ij P−1
i Hij > 0, ∀Hij ≠ 0 from Reference 29. The above inequality holds: HT

ij P−1
i Hij ≥ Hij + HT

ij − Pi,
Pi > 0 then: Hij + HT

ij > 0, this guarantees that Hij is nonsingular, there is the existence of H−1
ij .

To study the local asymptotic stability of the closed-loop system (21b), the polytopic PD nonquadratic Lyapunov func-
tion defined in Equation (22) is considered, and a new LMI conditions for the design of SOFC to maintain stability
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performance with disturbance attenuation are designed. Specifically, the following definition will have to be satisfied for
xk ∈ x, and ∀xk ∈ v∖{0}, it comes easily that any solution of the closed-loop system (21b), remains in the admissible set
x defined in Equation (7) if:

ΔV (xk, zk) + yT
k yk − 𝛾2𝜔T

k𝜔k − 2𝜓(uk)TShv(zk)−1 [𝜓 (uk) − Whv (zk)Hhv(zk)−1xk
]
< 0 (37)

With: ΔV(xk, zk) = V(xk+, zk+)−V(xk, zk) and zk+ = z(k+ 1).
According to Equation (21b), we can give the following statement can be given by:

−E (zk) xk+ +
(
A (zk) + B (zk)Fhv (zk)Hhv(zk)−1C

)
xk − B (zk)𝜓 (uk) + B𝜔𝜔k = 0 (38)

This Equation (38) can be expressed by the following form:

[(
A (zk) + B (zk)Fhv (zk)Hhv(zk)−1C

)
−E (zk) −B (zk) B𝜔

] ⎡⎢⎢⎢⎢⎢⎣

xk

xk+

𝜓 (uk)
𝜔k

⎤⎥⎥⎥⎥⎥⎦
= 0 (39)

The inequality (37) can be written in the following form:

⎡⎢⎢⎢⎢⎢⎣

xk

xk+

𝜓 (uk)
𝜔k

⎤⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎣

−ET
v Ph(zk)−1Ev + CTC 0 0 0

0 ET
v Ph(zk)−1Ev 0 0

Shv(zk)−1Whv (zk)Hhv(zk)−1 0 −2Shv(zk)−1 0
0 0 0 −𝛾2I

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

xk

xk+

𝜓 (uk)
𝜔k

⎤⎥⎥⎥⎥⎥⎦
< 0 (40)

Via equality (39), inequality (40), and Finsler’s lemma,  is chosen as follows:  =
[
M N 0 0

]T , and we get:

⎡⎢⎢⎢⎢⎢⎣

−ET
v Ph(zk)−1Ev + CTC 0 0 0

0 ET
v Ph(zk)−1Ev 0 0

Shv(zk)−1Whv (zk)Hhv(zk)−1 0 −2Shv(zk)−1 0
0 0 0 −𝛾2I

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

M
N
0
0

⎤⎥⎥⎥⎥⎥⎦[ (
A (zk) + B (zk)Fhv (zk)Hhv(zk)−1C

)
−E (zk) −B (zk) B𝜔

]
+ (∗) < 0 (41)

In order to obtain an LMIs problem, a good choice may consider M = 0 and N =Ph(zk)−1, and after some manipulations,
we have:

⎡⎢⎢⎢⎢⎢⎣

−ET
v Ph(zk)−1Ev + CTC ∗ 0 0

N
(
A (zk) + B (zk)Fhv (zk)Hhv(zk)−1C

)
ET

v Ph(zk)−1Ev − (NE) ∗ ∗
Shv(zk)−1Whv (zk)Hhv(zk)−1 −B(zk)TNT −2Shv(zk)−1 0

0 B𝜔TNT 0 −𝛾2I

⎤⎥⎥⎥⎥⎥⎦
< 0 (42)

Applying the congruence transformation property, pre and post multiplying (42) by diag
[
Hhv(zk)T Shv(zk)T I I

]
in the left hand-side and by diag

[
Hhv (zk) Shv (zk) I I

]
in the right hand-side, after some calculations the previous

inequality leads to:

𝛹 l
hv + 𝛿𝛹

l
hv =

⎡⎢⎢⎢⎢⎢⎣

−Hhv(zk)TET
v Ph(zk)−1EvHhv (zk) + Hhv(zk)TCTCHhv (zk) ∗ 0 0
(A (zk)Hhv (zk) + B (zk)Fhv (zk)C) −Ph (zk) ∗ ∗

Whv (zk) −Shv(zk)T
B(zk)T −2Shv (zk) ∗

0 B𝜔T 0 −𝛾2I

⎤⎥⎥⎥⎥⎥⎦
(43)
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with:

𝛹 l
hv =

⎡⎢⎢⎢⎢⎢⎣

−Hhv(zk)TET
v Ph(zk)−1EvHhv (zk) + Hhv(zk)TCTCHhv (zk) ∗ 0 0

(A (zk)Hhv (zk) + B (zk)Fhv (zk)C)) −Ph (zk) ∗ ∗
Whv (zk) −Shv(zk)T

B(zk)T −2Shv (zk) ∗
0 B𝜔T 0 −𝛾2I

⎤⎥⎥⎥⎥⎥⎦
(44)

𝛿𝛹 l
hv =

⎡⎢⎢⎢⎢⎢⎣

0
(

Hhv(zk)T𝛿Ah(zk)T + CTFhv(zk)T𝛿BT
h

)
0 0

(𝛿Ah (zk)Hhv (zk) + 𝛿Bh (zk)Fhv (zk)C) −𝛿EvPh (zk) − Ph(zk)T𝛿ET
v −𝛿BhShv (zk) 0

0 −Shv(zk)T𝛿BT
h 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
= 𝒮 +𝒮 T

(45)
with

𝒮 =

⎡⎢⎢⎢⎢⎢⎣

0 0 0 0
(𝛿Ah (zk)Hhv (zk) + 𝛿Bh (zk)Fhv (zk)C) −𝛿EvPh (zk) −𝛿BhShv (zk) 0

0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
Hai𝔇ai (k)NaiHhv (zk) +
Hbi𝔇bi (k)NbiFhv (zk)C

−Hei𝓀𝔇e𝓀 (k)Ne𝓀Ph (zk) −Hbi𝔇bi (k)NbiShv (zk) 0

0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Then, applying condition (19), with Σ = diag [𝜀1 𝜀2 𝜀3 𝜀4] and Σ−1 = diag
[
𝜀−1

1 𝜀−1
2 𝜀−1

3 𝜀−1
4
]
, we have:

𝛿𝛹 l
hv =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
𝜀−1

1 (NaiHhv (zk)Hhv(zk)TNT
ai+

NbiFhv (zk)CCTFhv(zk)TNT
bi)

)
0 0 0

0

(
𝜀−1

2
(

Ne𝓀Ph (zk)Ph(zk)TNT
e𝓀

)
+(

𝜀1HaiHT
ai + (𝜀1 + 𝜀3)HbiHT

bi + 𝜀2He𝓀HT
e𝓀

)) 0 0

0 0 𝜀−1
3

(
NbiShv (zk) Shv(zk)TNT

bi

)
0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Then

Ψl
hv + 𝛿Ψ

l
hv =

⎡⎢⎢⎢⎢⎢⎣

χ(1,1)hv ∗ 0 0
(A (zk)Hhv (zk) + B (zk)Fhv (zk)C) χ(2,2)h ∗ ∗

Whv (zk) −Shv(zk)T
B(zk)T χ(3,3)hv ∗

0 B𝜔T 0 −𝛾2I

⎤⎥⎥⎥⎥⎥⎦
< 0 (46)

χ(1,1)hv = −Hhv(zk)TET
v Ph(zk)−1EvHhv (zk) + Hhv(zk)TCTCHhv (zk)

+𝜀−1
1

(
NaiHhv (zk)Hhv(zk)TNT

ai + NbiFhv (zk)CCTFhv(zk)TNT
bi
)

χ(2,2)h = −Ph (zk) + 𝜀−1
2

(
Ne𝓀Ph (zk)Ph(zk)TNT

e𝓀
)
+

(
𝜀1HaiHT

ai + (𝜀1 + 𝜀3)HbiHT
bi + 𝜀2He𝓀HT

e𝓀
)

χ(3,3)hv = −2Shv (zk) + 𝜀−1
3

(
NbiShv (zk) Shv(zk)TNT

bi
)
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Applying the property of Schur complement51 to dissociate this terms {𝜀−1
1 (NaiHhv (zk)Hhv(zk)TNT

ai +
NbiFhv (zk)CCTFhv(zk)TNT

bi)}, {𝜀−1
2

(
Ne𝓀Ph (zk)Ph(zk)TNT

e𝓀

)
}, and {𝜀−1

3
(

NbiShv (zk) Shv(zk)TNT
bi

)
}, and according to the

notations defined in precedent section, the conditions of Theorem 1 hold.
In order to ensure that 𝜀

(
ET

v Ph(zk)−1Ev, 1
)

is a subset of x, we need to enforce an inequality condition. In this regard,
the polytopic set of states x can be alternatively rewritten as:

−2 + T
mxk + xT

k m < 0 (47a)

According to the polytopic PD nonquadartic lyapunov function with considering the disturbances, the ellipsoidal DoA
v = ε

(
ET

v Ph(zk)−1Ev, 𝜌
)

is always a subset of x, if and only if the following inequality is satisfied:

−1
𝜌
+ T

mxk + xT
k m − xT

k ET
𝓀P−1

i E𝓀xk < 0 (47b)

The above inequality can be rewritten as:[
xk

1

]T [
−ET

𝓀P−1
i E𝓀 ∗

 T
m − 1

𝜌

][
xk

1

]
< 0 ↔

[
−ET

𝓀P−1
i E𝓀 ∗

 T
m − 1

𝜌

]
< 0 (48)

Taking into account the ellipsoid: ε
(

ET
v Ph(zk)−1Ev, 1

)
⊆ ε

(
ET

v Ph(zk)−1Ev, 𝜌
)
, and for all xk ∈ v∖ {0} which implies

that T
mxk < 1, this proves the inclusionv ⊆ x. Theorem 1 gives an LMI conditions for the ellipsoid

(
ET

v Ph(zk)−1Ev, 𝜌
)
,

to be inside the validity domain x, for the closed-loop system under SOFC, so 
(

ET
v Ph(zk)−1Ev, 1

)
can solve an esti-

mation of the DoA for the control system, if and only if 
(

ET
v Ph(zk)−1Ev, 1

)
⊆ x and for all ellipsoids satisfying the

set invariance condition of Theorem 1, we would choose the largest one to obtain the least conservative estimate of
the DoA.

Inequality (35) implies clearly that: −E𝓀Hij − HT
ij ET

𝓀 > Pi > 0. This in its turn implies that Hij is regular and invertible;
since: −HT

ij ET
𝓀P−1

i E𝓀Hij > −E𝓀Hij − HT
ij ET

𝓀 + Pi, inequality (35), yields:

⎡⎢⎢⎣
−HT

ij ET
𝓀P−T

i E𝓀Hij ∗

Fij(l) − Wij(l)
−
(

umax
(l)

)2

𝜌

⎤⎥⎥⎦ < 0 (49)

We multiply (49) by: diag[Hij(zk)−T 1] in the left and by its transpose in the right-hand side, we get:

⎡⎢⎢⎢⎣
−ET

𝓀P−T
i E𝓀 H−T

ij

(
W T

ij(l) − FT
ij(l)

)
(

Fij(l) − Wij(l)
)

H−1
ij

−
(

umax
(l)

)2

𝜌

⎤⎥⎥⎥⎦ < 0 (50)

with: ϑ = (Fij(l) −W ij(l) )Hij(zk)−1 and Pi = PT
i .

Pre and post multiplying (50) by diag
[
xT

k 1
]
, and its transpose, applying Schur complement,51 with taking into

consideration the 𝕷2 gain defined in Equation (25), we have: −xT
k ET

𝓀P−1
i E𝓀xk + 𝜌

u2
max

xT
k 𝜗

T𝜗xk ≤ 0: ∀xk ∈ v∖{0}, then;

xT
k ET

v P−T
h Evxk ⊆ ε

(
ET

v Ph(zk)−1Ev, 𝜌
)
≤ 𝜌; xT

k 𝜗
T𝜗xk ≤

(
umax
(l)

)2
→|𝜗xk| ≤ umax

(l) , from that we can conclude that: v ⊆ u.
Since S−1 > 0, by property of the Saturation Lemma, it follows that ΔV(xk, zk)< 0, for ∀xk ∈ v ⊆ x ∩u, this guar-

antee that the origin of the closed-loop system (21b) is locally asymptotically stable and v ⊆ x ∩u is contractively
invariant set with respect to the system (1), this completes the proof and proves control Problem 1. ▪

Since v ⊆ x ∩u, by the Saturation Lemma, it follows from (38) that:

ΔV (xk, zk) + yT
k yk − 𝛾2𝜔T

k𝜔k < 0 (51)

From now, two cases can be distinguished:
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Case 1: If𝜔k = 0, it follows that:ΔV(xk, zk)< 0, ∀xk ⊆ 
(

ET
v Ph(zk)−1Ev, 1

)
, where ΔV(xk, zk) is defined above. Consider

that (51) ensures that: ∀x (0) ∈ 
(

ET
v Ph(zk)−1Ev, 1

)
, the corresponding closed-loop trajectories converge asymptotically to

the origin.
Case 2: If 𝜔k ≠ 0, and 𝜔k ∈ 2

𝛿
, summing both sides of inequality (51) from 0 to k-tf instant, yields:

V (xk+, zk+) − V (xk, zk) + yT
k yk − 𝛾2𝜔T

k𝜔k < 0, therefore k-tf →∞, we have:

V (x (∞)) − V (x (0)) +
∞∑

k=0
yT

k yk − 𝛾2
∞∑

k=0
𝜔T

k𝜔k < 0,∀xk ∈ v (52)

With the zero condition: V(x(∞))≤ 𝜌 and V(x(0)) = 0, and from (52), we obtain:

∞∑
k=0

yT
k yk < V (x (∞)) − V (x (0)) + 𝛾2

∞∑
k=0
𝜔T

k𝜔k (53)

This latter is equivalent to ∶
∞∑

k=0
yT

k yk < 𝜌 + 𝛾2
∞∑

k=0
𝜔T

k𝜔k < 1 (54)

Which means that the 𝕷2-gain of output signal yk is bounded, that: ‖yk‖2
2 < 𝛾

2 ‖𝜔k‖2
2 + 𝜌,∀k > 0. Then, the control

problem 2 was solved.
Since local control context is considered for the design method in this article, it is therefore desirable to achieve

the largest DoA in many cases, and the domain of attraction (DoA) in this article is nonconvex due to its associated
nonquadratic Lyapunov function. The following optimization problem is proposed to achieve the control goal.

3.3 Optimization of the domain of attraction

In this section, the design method will be formulated as a multi-objective optimization problem. Two objec-
tives are considered: the first one is maximization of the disturbance rejection by augmenting the level ampli-
tude/energy disturbances 𝛿, and/or minimizing the 𝕷2 attenuation level 𝛾 , the second is the estimation of the size
of the DoA 𝛼. In fact, both objectives could be unified by minimizing 𝛼−2 + 𝛾2.39 The domain of initial condition

(

ET
v Ph(zk)−1Ev, 1

)
is included in the DoA 

(
ET

v Ph(zk)−1Ev, 𝜌
)
, we can maximize the latter by optimizing the set


(

ET
v Ph(zk)−1Ev, 1

)
. In order to obtain a sufficiently large estimated DoA, two typical types of the reference shape  are

considered.
Consider an ellipsoid  =

{
xk ∈ ℜnx ∶ xT

k xk ≤ 1
}

, where  ⊆ ℜ2nx is a prescribed bounded convex ellipsoid set
containing the origin, and  > 0 is the diagonal matrix with compatible dimension. The following optimization problem
gives:

⎧⎪⎨⎪⎩
a) sup 𝛼

b)𝛼 ⊆
r⋂

i=1

re⋂
𝓀=1


(

ET
𝓀P−1

i E𝓀, 1
) (55)

Constraint (b) is equivalent to:
(
𝛼xT

k

)
ET
𝓀P−1

i E𝓀 (𝛼xk) ≤ xT
k xk and 𝛼−2 − ET

𝓀P−1
i E𝓀 ≥ 0, setting 𝛼−2 = 𝜂, the follow-

ing LMIs constraints give sufficient condition: [
−𝜂 ∗
E𝓀 −Pi

]
< 0 (56)

In the other hand, consider a polyhedron set that:  = co
{

x1
0 , x

2
0 , … .., xl

0
}

, with x1
0 , x

2
0 , … .., xl

0, are a priori

points given in ℜnx , or states for the vertex of the bounded polyhedral set . Thus 𝛼 ⊆
r⋂

i=1

re⋂
𝓀=1


(

ET
𝓀P−1

i E𝓀, 1
)

is
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equivalent to: 𝛼
(

xi
0
)TET

𝓀P−1
i E𝓀𝛼

(
xi

0
)
≤ 1; ∀i∈ Ir,𝛼−2 = 𝜂, with using a Schur complement,51 gives directly sufficient LMIs

constraints: [
−𝜂I ∗

E𝓀xi
0 −Pi

]
< 0 (57)

Theorem 2. For the given the uncertain NLPV descriptor system (1) under input saturation defined as (8),with a param-
eter zk ∈ 𝔒, and the proposed controller (21), whose validity domain is defined in x, is locally asymptotically stable
and the estimation of DoA is maximized, if there exist gain matrices: Pi = PT

i > 0, where Pi ∈ ℜnx×nx ; Wij ∈ ℜnu×nx ;
Fij ∈ ℜnu×nx ; and Hij ∈ ℜnx×nx , for any positive diagonal gain matrix Sij ∈ ℜnu×nu , a positive scalars 𝜀1, 𝜀2, 𝜀3, 𝛾 , 𝜌, 𝛿, and
𝜂 satisfying condition (11), solution of the following optimization problem:

s.t.

⎧⎪⎪⎨⎪⎪⎩
min
,Pi>0

𝜂

LMIs (29) ∼ (36)
LMI (56) or (57)

(58)

Moreover, the attenuation level 𝛾 is guaranteed to be the minimum possible, and the DoA is maximized, with its size
represented by 𝛼.

4 DYNAMIC OUTPUT FEEDBACK CONTROLLER

4.1 Control problem

The objective now is to design a stabilizing DOFC for the proposed constrained system. As previously, the development is
obtained by representing the saturation function as a modified sector condition of dead-zone nonlinearity, and by solving
an optimization problem under LMI constraints. Let us consider the following nth order DOFC defined by:{

xF (k + 1) = AF
hv (zk)P−1

h2 (zk) xF (k) + BF
hv (zk)P−1

h1 (zk) y (k)
uk = CF

hv (zk)P−1
h2 (zk) xF (k) + DF

hv (zk)P−1
h1 (zk) y (k)

(59)

where xF (k) ∈ ℜnx is the controller state vector, AF
hv (zk) ∈ ℜnx×nx , BF

hv (zk) ∈ ℜnu×nx , CF
hv (zk) ∈ ℜnx×nx , DF

hv (zk) ∈ ℜnu×nx

are the PD controller gain matrices; Ph1 (zk) ∈ ℜnx×nx and Ph2 (zk) ∈ ℜnx×nx are PD symmetric matrices to be determined,
to guarantee the stability of the uncertain discrete-time NLPV descriptor system (1).

Controller order (59) can be adapted according to the system dynamics of the control objectives, and then has to be
designed to guarantee the local stability and some performance requirements for the closed-loop system. Because of the
input limitation, the actual control signal injected into the system is subject to the saturation effect. The closed-loop system
defined from combining (1) and (59) is written under the descriptor form, introducing the augmented state variable:
xk =

[
xk xF (k)

]T , is described as follows:

Ex (k + 1) = Ax (k) + B𝜓 (uk) + B𝜔𝜔k (60)

and the controller output is rewritten as:

uk = Khv (zk) xk (61)

Then

⎧⎪⎪⎨⎪⎪⎩

Ex (k + 1) = Ax (k) + B𝜓 (uk) + B𝜔𝜔k

yk = Cxk

uk = Khv (zk) xk

𝜓 (uk) = uk − sat (uk)

(62)
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F I G U R E 2 DOFC constrained controller design scheme
[Colour figure can be viewed at wileyonlinelibrary.com]

with
E =

[
E (zk) 0

0 I

]
; A =

[
A (zk) + B (zk)DF

hv (zk)P−1
h1 (zk)C B (zk)CF

hv (zk)P−1
h2 (zk)

BF
hv (zk)P−1

h1 (zk)C AF
hv (zk)P−1

h2 (zk)

]
; B =

[
−B (zk)

0

]
;

Khv (zk) =
[
DF

hv (zk)P−1
h1 (zk)C CF

hv (zk)P−1
h2 (zk)

]
; W hv =

[
W1

ij (zk) W2
ij (zk)

]
; C =

[
C 0

]
;

B𝜔 =
[

B𝜔
0

]
;E (zk) ,A (zk) ,B (zk) are defined above.

The architecture of the proposed DOFC conception is based on the scheme depicted in Figure 2.

4.2 LMI-based design conditions of constrained NLPV system

Local stability performance specifications of the closed-loop system (62) will be presented in terms of Lyapunov analysis
tools. Our goal is to propose a systematic method to design a DOFC, such that the closed-loop system satisfies the following
properties and assumptions:

Assumption 4. (State constraint) For any initial augmented state: x (0) ∈ 
(

E
T
v Ph(zk)−1Ev, 1

)
⊆ 

(
E

T
v Ph(zk)−1Ev, 𝜌

)
and for any disturbance signal 𝜔k belongs to 2

𝛿
, the trajectories of the closed-loop system (63) remains in the polyhedral

region described by this linear inequalities:

̄xk
=

{
xk ∈ ℜ2nx ∶ ̄

T
mxk ≤ 1; ∀k ∈ Ir;m ∈ Inq

}
(63)

where ̄m =
[
m 0

]T ; implying that the system state xk remains in the validity domain x of system (1).

Assumption 5. Let us define the set 
𝓀

(
ij,umax(l)

)
which denotes the polyhedral region associated with a matrix

ij ∈ ℜnu×nx and a vector umax(l) ∈ ℜnu defined by:


𝓀

(
ij,umax(l)

)
=

{
xk ∈ ℜ2nx ∶ |̄ij(l)xk| ≤ umax(l); ∀l ∈ Inl

}
(64)

ij(l) is a component of vector ij and 
𝓀

(
ij,umax(l)

)
is polyhedral set consisting of states, for which saturation

does not occur, it is worth noticing that inside this admissible set the control input do not saturate and therefore, the
evolution of the closed-loop system trajectories defined in Equation (62) remains inside the domain of validityxk

defined
in Equation (64).

A certain degree of freedom is guaranteed when the system operates inside the region 


(
ij,umax(l)

)
.

Property 3. (Finite 𝔏2-norm performance) For any 𝜔k ∈ 2
𝛿

such that no saturation occur, there exists a positive real
number 𝛾 such that: ‖yk‖2

2 < 𝛾
2 ‖𝜔k‖2

2 + 𝜌, for all k> 0. This inequality is provided to attenuate the effect of 𝜔k on the
output of system yk, where 𝛾 is the attenuation level to be determined.

The proof of the 𝔏2-norm performance is similar of the case of SOFC.

The main goal now is to provide LMIs stability conditions allowing to find PD gain matrices: AF
hv (zk), BF

hv (zk),
CF

hv (zk) ,DF
hv (zk) ,Ph1 (zk), and Ph2(zk) ensuring the stability of Equation (62) under DOFC, then some important lemmas

results are needed for design problem in Section 4.1 will be presented, is based on the use of the sector bounded condition
from Reference 24, then:

http://wileyonlinelibrary.com
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Saturation Lemma (Sector bound condition for input saturation). Let us consider: W ij (zk) ∈ ℜnu×2nx , Kij ∈ ℜnu×2nx ,
with W ij (zk) =

[
W1

ij (zk) W2
ij (zk)

]
and Kij (zk) =

[
DF

ij (zk)P−1
i1 (zk)C CF

ij (zk)P−1
i2 (zk)

]
; W1

ij (zk) ∈ ℜnu×nx ;W2
ij (zk) ∈

ℜnu×nx ; (i, j) ∈ Ir × Ir, we define the following polyhedral set ̄uk as follows:

̄uk =
{

xk ∈ ℜ2nx∶|(Kij(l) (zk) − W ij(l) (zk)
)
(l)

xk| ≤ umax(l)

}
(65)

Consider the function: 𝜓(uk)(l) = uk(l) − sat(uk(l)), with uk(l) defined in Equation (61):
If xk ∈ ℜ2nx and xk ∈ ̄xk

∩ ̄uk , then the following condition is verified:

𝜓T (
uk(l)

)
Sij(l)(zk)−1

[
𝜓 (uk) −

(
W ij (zk) xk

)
(l)

]
≤ 0 (66)

For any positive diagonal matrix Sij(l) ∈ ℜnu×nu is a positive diagonal matrix, and for any scalar function hi(zk), ∈Ir,
satisfying the convex sum property.

Proof. Assume that xk ∈ ̄xk
it follows that xk ∈ ̄uk , since scalar function hi(zk) ∀i∈ Ir satisfy the convex sum property,

hence it follows that:
−umax(l) ≤

(
Kij (zk) − W ij (zk)

)
(l)

xk ≤ umax(l) ∀(i, j)∈ Ir × Ir, l∈ Inl

Let Sij(l) > 0 is lth element of the ith row and jth column of diagonal matrix S.
Consider three cases as follow:

Case 1: −umax(l) ≤
(

Kij (zk) − W ij (zk)
)
(l)

xk ≤ umax(l), in this case 𝜓(uk(l)) = 0, and then:

𝜓T (
uk(l)

)
Sij(l)(zk)−1

[
𝜓

(
uk(l)

)
− W ij (zk) xk

]
= 0.

Case 2: uk(l) >umax(l), in this case 𝜓(uk(l)) = uk(l) −umax(l). If xk ∈ ̄uk , it follows that:
Khv (zk) xk − W ij (zk) xk ≤ umax(l), hence it follows that:

𝜓
(

uk(l)
)
− W ij (zk) xk =

(
Kij (zk) − W ij (zk)

)
xk − umax(l) ≤ 0

And since in this case: 𝜓(uk(l))> 0, one gets: 𝜓T (
uk(l)

)
Sij(l)(zk)−1

[
𝜓

(
uk(l)

)
− W ij (zk) xk

]
≥ 0, ∀Sij(l) > 0.

Case 3: uk(l) < − umax(l). In this case 𝜓(uk(l)) = uk(l) +umax(l). If xk ∈ ̄uk , if that:

𝜓
(

uk(l)
)
− W ij (zk) xk =

(
Kij (zk) − W ij (zk)

)
xk + umax(l) ≥ 0.

And since in this case: 𝜓(uk(l))< 0, one gets: 𝜓T (
uk(l)

)
Sij(l)(zk)−1

[
𝜓 (uk (l)) − W ij (zk) xk

]
≤ 0, ∀Sij(l) > 0

From these three cases, provided that xk ∈ ̄uk , we can conclude that:
𝜓T (

uk(l)
)

Sij(l)(zk)−1
[
𝜓 (uk (l)) − W ij (zk) xk

]
≤ 0 from where follows (66). ▪

Lemma 5. The ellipsoid 
(

E
T
v Ph(zk)−1Ev, 1

)
⊆ 

(
E

T
v Ph(zk)−1Ev, 𝜌

)
is included in the polyhedral set ̄xk

defined in (64)
if and only if:

If 𝜔k = 0
⎡⎢⎢⎢⎣
−ET

𝓀Xi1E𝓀 ∗ ∗
0 −Xi2 ∗

 T
m 0 −1

⎤⎥⎥⎥⎦ < 0; ∀m ∈ Iq (67a)

If 𝜔k ≠ 0
⎡⎢⎢⎢⎣
−ET

𝓀Xi1E𝓀 ∗ ∗
0 −Xi2 ∗

 T
m 0 − 1

𝜌

⎤⎥⎥⎥⎦ < 0; ∀m ∈ Iq (67b)
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Lemma 6. The ellipsoid 
(

E
T
v Ph(zk)−1Ev, 1

)
⊆ 

(
E

T
v Ph(zk)−1Ev, 𝜌

)
is included in the polyhedral set ̄uk defined in

Equation (64):

if 𝜔k = 0
(

Khv(l) (zk) − W hv(l) (zk)
)T(

E
T
v Ph(zk)−1Ev

)−1 (
Khv(l) (zk) − W hv(l) (zk)

)
< u2

max(l) (68a)

If 𝜔k ≠ 0
(

Khv(l) (zk) − W hv(l) (zk)
)T(

E
T
v Ph(zk)−1Ev

)−1 (
Khv(l) (zk) − W hv(l) (zk)

)
<

u2
max(l)

𝜌
(68b)

where Kij(l) (zk) and W ij(l) (zk) are, respectively, the lth rows of the gain matrices Kij (zk) and W ij (zk).

Proof. It is required to consider a control limit condition for the inputs uk(l) and vk(l), denoting the maximal available
control norm as umax(l), it follows that: ‖‖‖‖ (

Khv(l) (zk) − W hv(l) (zk)
)

xk
‖‖‖‖2

2
< u2

max(l) (69)

we obtain:

xT
k

(
Khv(l) (zk) − W hv(l) (zk)

)T (
Khv(l) (zk) − W hv(l) (zk)

)
xk < u2

max(l) (70)

or equivalently:

xT
k

(
Khv(l) (zk) − W hv(l) (zk)

)T (
Khv(l) (zk) − W hv(l) (zk)

)
xk

u2
max(l)

< 1 (71)

Since we are investing conditions and invariant ellipsoidal region satisfying: xT
k E

T
v Ph(zk)−1Evxk < 𝜌, (𝜔k ∈ 2

𝛿
), we

can ensure that Equation (71) is satisfied by imposing (sufficient condition):

xT
k

(
Khv(l) (zk) − W hv(l) (zk)

)T (
Khv(l) (zk) − W hv(l) (zk)

)
xk

u2
max(l)

< xT
k E

T
v Ph(zk)−1Evxk < 𝜌 (72)

So, we have:(
Khv(l) (zk) − W hv(l) (zk)

)T (
Khv(l) (zk) − W hv(l) (zk)

)
u2

max(l)

< E
T
v Ph(zk)−1Ev ↔ −E

T
v Ph(zk)−1Ev + 𝜌(

Khv(l) (zk) − W hv(l) (zk)
)T (

Khv(l) (zk) − W hv(l) (zk)
)

u2
max(l)

(73)

Therefore, by taking Schur complement on the above inequality, we achieve the following LMI that imposes a
saturation limit on the control input.

⎡⎢⎢⎣
−E

T
v Ph(zk)−1Ev ∗

Khv(l) (zk) − W hv(l) (zk)
u2

max(l)

𝜌

⎤⎥⎥⎦ < 0 (74)

▪

Proof. Let us consider the following proposed polytopic PD non quadratic Lyapunov function given with the following
expression:

V
(

xk, zk
)
= xT

k E
T
v Ph(zk)−1Evxk (75)

With: Ph (zk) = Ph(zk)T > 0,Ph (zk) = diag
[
Ph1 Ph2

]
, Ev = diag

[
Ev I

]
.
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Another PD nonquadratic Lyapunov function is rewritten by:

V
(

xk, zk
)
= xT

k ET
v P−1

h1 Evxk + xT
F (k)P−1

h2 xF (k) (76)

Let us define the Lyapunov surface as:

⎧⎪⎨⎪⎩
̄v = {xk ∈ ℜ2nx∶V

(
xk, zk

)
= xT

k E
T
v Ph

(
zk )−1Evxk ≤ 𝜌,∀k > 0

}
̄v0 =

{
xk ∈ ℜ2nx∶V

(
xk, zk

)
= xT

k E
T
v Ph(zk)−1Evxk ≤ 1,∀x (0) = 0

} (77)

A simple estimation of ̄v0 and ̄v is the intersection of the ellipsoids:

⎧⎪⎨⎪⎩

(

E
T
v Ph(zk)−1Ev, 1

)
=

r⋂
i=1

re⋂
𝓀=1


(

E
T
𝓀P

−1
i E𝓀, 1

)
⊆ ̄v0


(

E
T
v Ph(zk)−1Ev, 𝜌

)
=

r⋂
i=1

re⋂
𝓀=1


(

E
T
𝓀P

−1
i E𝓀, 𝜌

)
⊆ ̄v

(78)

The theorem below provides LMI conditions to design the DOFC together with the control problem were:
̄v ⊆ ̄xk

⋂
̄uk . ▪

Theorem 3. For the given uncertain NLPV descriptor system (1), with a parameter zk ∈ 𝔒, under input saturation (8),
and the proposed controller (59), whose validity domain is defined in ̄xk

, is locally asymptotically stable if there exist
symmetric matrices: Pi1 = PT

i1 > 0, Pi2 = PT
i2 > 0,where {Pi1,Pi2} ∈ ℜnx×nx ; Xi1 = XT

i1 > 0, Xi2 = XT
i2 > 0 where {Xi1,Xi2} ∈

ℜnx×nx , a controller gain matrices: W1
ij ∈ ℜnu×nx ; W2

ij ∈ ℜnu×nx , Lij ∈ ℜnx×nx , Rij ∈ ℜnx×nx , Nij ∈ ℜnu×nx , and Mij ∈ ℜnu×nx ,

for any positive diagonal gain matrix Sij, a positive scalars 𝜕1, 𝜕2, 𝜕3, 𝜕5, 𝛾 =
√
𝛾; 𝛾2 = 𝛾 , 𝛿 and 𝜌, such that condition (15)

as satisfied, the following inequalities hold:

⎧⎪⎨⎪⎩
min 𝛾[

ET
𝓀Xi1E𝓀 0

0 Xi2

]
> 0

(79)

𝜌 + 𝛾𝛿 < 1 (80)

ℑ𝓀
ij =

[
∅𝓀ij (∗)
Γij 𝜑

]
< 0 (81)

∅𝓀ij =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− (E𝓀) + Pi1 0 ∗ ∗ ∗ ∗ ∗
0 Pi2 − 2I ∗ ∗ ∗ ∗ ∗

Ai + BiMijC BiNij
−Pi1+(

𝜕1HaiHT
ai + (𝜕1 + 𝜕2 + 𝜕5)HbiHT

bi + 𝜕3He𝓀HT
e𝓀

) ∗ ∗ ∗ ∗

RijC Lij 0 −Pi2 ∗ ∗ ∗
W1

ij W2
ij −BT

i ST
i 0 −2Sij ∗ ∗

0 0 BT
𝜔 0 0 −𝛾I ∗

C 0 0 0 0 0 −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(82a)

Γij =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Nai 0 0 0 0 0 0
NbiMijC 0 0 0 0 0 0

0 NbiNij 0 0 0 0 0
0 0 0 Ne𝓀 0 0 0
0 0 0 0 NbiSij 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(82b)
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𝜑 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−𝜕1I ∗ ∗ ∗ ∗
0 −𝜕1I ∗ ∗ ∗
0 0 −𝜕2I ∗ ∗
0 0 0 −𝜕3I ∗
0 0 0 0 −𝜕5I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(82c)

⎡⎢⎢⎢⎣
−ET

𝓀Xi1E𝓀 ∗ ∗
0 −Xi2 ∗

 T
m 0 − 1

𝜌

⎤⎥⎥⎥⎦ < 0 (83)

⎡⎢⎢⎢⎢⎣
−ET

𝓀Xi1E𝓀 ∗ ∗
0 −Xi2 ∗

MijC − W1
ij Nij − W2

ij −
(

umax
(l)

)2

𝜌

⎤⎥⎥⎥⎥⎦
< 0 (84)

Then, the modified control law (59) solves the control problem defined for the closed-loop NLPV descriptor system
(62). With the gain matrices: AF

ij , BF
ij ,C

F
ij , and DF

ij were obtained with the bijective transformations as follows: Lij = AF
ij P

−1
i2 ;

Rij = BF
ij P

−1
i1 ;Nij = CF

ij P
−1
i2 ; and Mij = DF

ij P
−1
i1 , where: AF

ij = LijPi2;BF
ij = RijPi1; CF

ij (zk) = NijPi2; DF
ij = MijPi1; Xi1 = P−1

i1 ; Xi2 =
P−1

i2 .

Proof. Considering the augmented PD nonquadratic Lyapunov function presented in (75), a saturation control, we end
up with:

𝛿V
(

xk
)
+ xT

k C
T

Cxk − 𝛾2𝜔T
k𝜔k − 2𝜓T (uk) Shv(zk)−1

[
𝜓 (uk) − W hv (zk) xk

]
< 0 (85)

From Equation (60), we have:

−Ex (k + 1) + Ax (k) + B𝜓 (uk) + B𝜔𝜔k = 0 (86)

Then inequality (85) can be rewritten as a form:

⎡⎢⎢⎢⎢⎢⎣

xk

xk+

𝜓 (uk)
𝜔k

⎤⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎣

−E
T
v Ph(zk)−1Ev + C

T
C ∗ ∗ ∗

0 E
T
v Ph(zk)−1Ev ∗ ∗

Shv(zk)−1W hv (zk) 0 −2Shv(zk)−1 ∗
0 0 0 −𝛾2I

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

xk

xk+

𝜓 (uk)
𝜔k

⎤⎥⎥⎥⎥⎥⎦
< 0 (87)

Then expression (86) can rewritten as:

[
A −E B Bω

] ⎡⎢⎢⎢⎢⎢⎣

xk

xk+

𝜓 (uk)
𝜔k

⎤⎥⎥⎥⎥⎥⎦
= 0 (88)

Through Finsler’s lemma, inequality (87), and equality (88), with  =
[
M N 0 0

]T
, result in:

⎡⎢⎢⎢⎢⎢⎣

−E
T
v Ph(zk)−1Ev + C

T
C ∗ ∗ ∗

0 E
T
v Ph(zk)−1Ev ∗ ∗

Shv(zk)−1W hv (zk) 0 −2Shv(zk)−1 ∗
0 0 0 −𝛾2I

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

M
N
0
0

⎤⎥⎥⎥⎥⎥⎦
[
A −E B Bω

]
+ (∗) < 0 (89)
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Following the same steps for the development of SOFC, with congruence transformation by diag
[
I I Shv(zk)T I

]
,

and in order to obtain an LMI problem and a good choice is: M =
[

0 0
0 0

]
and N = diag

[
I I

]
, we have the previous

results.
According to the polytopic PD nonquadartic Lyapunov function, the ellipsoidal DoA 

(
E

T
v Ph(zk)−1Ev, 1

)
⊆


(

E
T
v Ph(zk)−1Ev, 𝜌

)
is always a subset of the polyhedron set ̄xk

, if and only if the following inequalities are satisfied:

−1 + ̄
T
mxk + xT

k ̄m − xT
k E

T
v Ph(zk)−1Evxk < 0 (90a)

−1
𝜌
+ ̄

T
mxk + xT

k ̄m − xT
k E

T
v Ph(zk)−1Evxk < 0 (90b)

and [
xk

1

]T [
−E

T
v Ph(zk)−1Ev ∗
̄

T
m −1

][
xk

1

]
< 0 ↔

[
−E

T
v Ph(zk)−1Ev ∗
̄

T
m −1

]
< 0 (91a)[

xk

1

]T [
−E

T
v Ph(zk)−1Ev ∗
̄

T
m − 1

𝜌

][
xk

1

]
< 0 ↔

[
−E

T
v Ph(zk)−1Ev ∗
̄

T
m − 1

𝜌

]
< 0 (91b)

From Equation (91b), we obtain ⎡⎢⎢⎢⎣
−ET

𝓀Xi1 (zk)E𝓀 ∗ ∗
0 Xi1 (zk) ∗

 T
m 0 − 1

𝜌

⎤⎥⎥⎥⎦ < 0 (92)

Taking into account the ellipsoid: ε
(

E
T
v Ph(zk)−1Ev, 𝜌

)
, and for all xk ∈ ̄v∖{0} which implies that ̄

T
mxk < 1 ↔

 T
mxk < 1, this proves the inclusion ̄v

(
xk
)
⊆ ̄xk

, that is proof of Lemma 5.

We multiply
⎡⎢⎢⎣

−E
T
v Ph(zk)−1Ev ∗(

Kij (zk) − W ij (zk)
)
(l)

− (umax(l))2

𝜌

⎤⎥⎥⎦ by diag
[
xk 1

]
in the left and by its transpose in the right:

⎡⎢⎢⎣
−xT

k E
T
v Ph(zk)−1Evxk ∗(

Kij (zk) − W ij (zk)
)
(l)

xk −(umax(l))2

𝜌

⎤⎥⎥⎦ < 0 (93)

Then: xT
k E

T
v Ph(zk)−1Evxk ≤ 𝜌 and

(
Kij (zk) − W ij (zk)

)
(l)

xk ≤ umax(l).

Applying a Schur complement, inequality (84) holds, from Equation (93), we conclude that: ̄v
(

xk
)
⊆ ̄uk .

Since S−1 > 0, by property of the Saturation Lemma, it follows that: 𝛿V
(

xk, zk
)
< 0, for ∀xk ⊆ ̄xk

⋂
̄uk . This guar-

antees that the origin of the closed-loop system (60) is asymptotically stable, and ̄v
(

xk
)
⊆ ̄xk

⋂
̄uk is a contractively

invariant set with respect to the NLPV descriptor system (1). This ends the proof. ▪

4.3 Optimization of the domain of attraction

The preceding results allow the conception of a robust DOFC for NLPV constrained descriptor system (1). An opti-
mization problem design leads to a closed-loop system with a small DoA. In order to maximize the size of the
estimate of the DoA, the reference set method proposed in Reference 25, which will be included. The domain
of initial condition 

(
E

T
v Ph(zk)−1Ev, 1

)
is included in the DoA 

(
E

T
v Ph(zk)−1Ev, 𝜌

)
. This means that the latter

can be maximized by optimizing the set of initial condition 
(

E
T
v Ph(zk)−1Ev, 1

)
. Very often, the initial condition

xF(0) = 0 of the output feedback controller is set to 0. This information can be utilized in choosing the shape
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reference set to reduce the conservatism of the estimation for DOFC. In order to obtain a sufficient large
estimated DoA, two typical types of  are considered. Consider an ellipsoid  =

{
xk ∈ ℜ2nx ∶ xT

kxk ≤ 1
}

,
where  ⊆ ℜ2nx , is a prescribed bounded convex ellipsoid set containing the origin, and  > 0 with compatible
dimension.

We note ∶ 
(

E
T
v Ph(zk)−1Ev, 𝜌

)
=

{
xk ∈ ℜ2nx ∶ V

(
xk, zk

)
= xT

k E
T
v Ph(zk)−1Evxk < 𝜌

}
(94)

And an ellipsoid ∶ 
(

ET
v P−1

h Ev, 𝜌
)
=

{
xk ∈ ℜnx ∶ V (xk, zk) = xT

k ET
v P−1

h1 Evxk < 𝜌
}

(95)

Lemma 7. xk ∈ 
(

E
T
v Ph(zk)−1Ev, 𝜌

)
if and only if xk ∈ 

(
ET

v P−1
h1 Ev, 𝜌

)
.

The transformation exploits the fact that the condition Ph(zk)−1 > 0 ↔ ET
v P−1

h1 (zk)Ev > 0 if Ev is invertible.
Then:


(

ET
v P−1

i1 (zk)Ev, 𝜌
)
= 

(
P−1

i1 (zk) , 𝜌
)

(96)

Proof. Note that:

xk ∈ 
(

E
T
v Ph(zk)−1Ev, 𝜌

)
↔ xk ∈ 

(
E

T
v

(
Ph(zk)−1

𝜌

)
Ev, 1

)
(97)

Assume that: xk ∈ 
(

E
T
v Ph(zk)−1Ev, 𝜌

)
then xk ∈ 

(
ET

v P−1
i1 (zk)Ev, 𝜌

)
by the inequality:

∣ xT
k E

T
v Ph(zk)−1Evxk ∣ = ∣ xT

k ET
v P−1

h1 (zk)Evxk ∣ < 𝜌 (98)

|||xT
k ET

v P−1
h1 (zk)Evxk

||| = ∣xT
k P−1

h1 (zk) xk ∣ < 𝜌 (99)

We can determine the largest ellipsoid 
(

ET
v P−1

h1 Ev, 𝜌
)

from the following optimization problem:

⎧⎪⎨⎪⎩
a) sup 𝛼

b)𝛼 ⊆
r⋂

i=1

re⋂
𝓀=1


(

ET
𝓀P−1

i1 E𝓀, 1
) (100)

Constraint (b) is equivalent to: 𝛼−2 − ET
𝓀P−1

i1 E𝓀 ≥ 0; setting 𝛼−2 = 𝜎, using Schur complement,51 this last inequality
is equivalent to: [

−𝜎 ∗
E𝓀 −Pi1

]
< 0 (101)

▪

Theorem 4. For the given the uncertain NLPV descriptor system (1) under input saturation (8), with a param-
eter zk ∈ 𝔒, and the proposed controller (59), whose validity domain is defined in ̄xk

, is locally asymp-
totically stable in a DoA to be maximized if there exist matrices: Pi1 = PT

i1 > 0, Pi2 = PT
i2 > 0 where Pi1 ∈

ℜnx×nx and Pi2 ∈ ℜnx×nx Xi1 = XT
i1 > 0, Xi2 = XT

i2 > 0 where Xi1 ∈ ℜnx×nx and Xi2 ∈ ℜnx×nx ; a gain matrices W1
ij ∈ ℜnu×nx ;

W2
ij ∈ ℜnu×nx ;AF

ij ∈ ℜnx×nx ; BF
ij ∈ ℜnx×nx , CF

ij ∈ ℜnu×nx , and DF
ij ∈ ℜnu×nx for any positive diagonal varying gain matrix

Sij ∈ ℜnu×nu , a positive scalars 𝜕1, 𝜕2, 𝜕3, 𝜕5, 𝜆, 𝜌, 𝛾 , and 𝜎 such that the following LMIs optimization problem
are feasible:

s.t.
⎧⎪⎨⎪⎩

min
R,Ph1>0

𝜎

LMI {(79) ∼ (84) and (101)}
(102)
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F I G U R E 3 Cart-pendulum system [Colour figure can be viewed at
wileyonlinelibrary.com]

5 ILLUSTRATIVE EXAMPLE

Example 1. (28) In order to illustrate the effectiveness of the proposed approach of the design of SOFC, con-
sider the stabilization problem of the unstable nonlinear cart-pendulum system consisting of an inverted pen-
dulum, rotating in a vertical plan around an axis located on a cart moving along the x-axis as shown in
Figure 3. Note that the example is used for comparison with other methods proposed in recent published
papers.

By using the Euler–Lagrange formulation, the equations of motion of the cart-pendulum system are:{
4
3

mL2�̈� + mLq̈ cos (𝜃) + bp�̇� − mgLsin (𝜃) = 0.1𝜔 (t)
mL�̈� cos (𝜃) + (M + m) q̈ + bcq̇ − mL�̇�2 sin (𝜃) = F = satu

(103)

where q is the cart position, 𝜃 is the pendulum angle, and F is the force applied to the cart. By denoting the state variable
x =

[
𝜃 q �̇� q̇

]T and the saturated control input: satu = F, the nonlinearities as follows:

z1 = mL cos (x1) , z2 = mgLsinc (x1) and z3 = mLx3 sin (x1) (104)

Then,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = x3
4
3

mL2ẋ3 + z1ẋ4 + bpx4 − z2x1 = 0.1𝜔 (t)
z1ẋ3 + (M + m) ẋ4 + bcx4 − z3x3 = F = satu
yk = Cxk

(105)

Using Euler’s method, system (105) becomes:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x1 (k + 1) = x1 (k) + Tex2 (k)
x2 (k + 1) = x2 (k) + Tex3 (k)
4
3

mL2x3 (k + 1) + z1x4 (k + 1) = 4
3

mL2x3 (k) +
(

z1 − Tebp
)

x4 (k) + Tez2x1 (k) + 0.1Te𝜔 (k)
z1x3 (k + 1) + (M + m) x4 (k + 1) = (z1 + z3Te) x3 (k) + (M + m − bcTe) x4 (k) + Tesatu (k)
yk = Cxk

(106)

http://wileyonlinelibrary.com
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Making use of the descriptor polytopic form, the nonlinear dynamic model of the cart-pendulum system can be
rewritten as:⎡⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 4

3
mL2 z1

0 0 z1 (M + m)

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x1 (k + 1)
x2 (k + 1)
x3 (k + 1)
x4 (k + 1)

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

1 Te 0 0
0 1 Te 0

Tez2 0 4
3

mL2 z1 − Tebp

0 0 (z1 + z3Te) (M + m − bcTe)

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x1 (k)
x2 (k)
x3 (k)
x4 (k)

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

0
0
0

Te

⎤⎥⎥⎥⎥⎥⎦
satu (k) +

⎡⎢⎢⎢⎢⎢⎣

0
0

0.1Te

0

⎤⎥⎥⎥⎥⎥⎦
𝜔 (k)

(107)
Where:

E𝓀 (z1) =
⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 4

3
mL2 z1

0 0 z1 (M + m)

⎤⎥⎥⎥⎦; Ah (z1, z2, z3) =
⎡⎢⎢⎢⎣

1 Te 0 0
0 1 Te 0

Tez2 0 4
3

mL2 z1 − Tebp
0 0 (z1 + z3Te) (M + m − bcTe)

⎤⎥⎥⎥⎦;

Bh =
⎡⎢⎢⎢⎣

0
0
0

Te

⎤⎥⎥⎥⎦ and B𝜔 =
⎡⎢⎢⎢⎣

0
0

0.1Te
0

⎤⎥⎥⎥⎦.

By using the sector nonlinearity approach,49 the nonlinear system (105) can be expressed based on the uncertain
NLPV descriptor form (1), where the premise variables are chosen as (104).

In order to simplify the model, the terms weighted by: mLcos(x1) and z3k = mLx3ksin(x1k) will be considered as uncer-
tainties. Their maximal magnitudes taken on the domain x are, respectively: z1max = 0.0394 and z3max = 0.1968, then we
define:

E1 = E2 =
⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 4

3
mL2 0

0 0 0 (M + m)

⎤⎥⎥⎥⎦; A1 (z2min) =
⎡⎢⎢⎢⎣

1 Te 0 0
0 1 Te 0

Tez2min 0 4
3

mL2 −Tebp
0 0 0 (M + m − bcTe)

⎤⎥⎥⎥⎦;

A2 (z2max) =
⎡⎢⎢⎢⎣

1 Te 0 0
0 1 Te 0

Tez2max 0 4
3

mL2 −Tebp
0 0 0 (M + m − bcTe)

⎤⎥⎥⎥⎦; B1 = B2 =
⎡⎢⎢⎢⎣

0
0
0

Te

⎤⎥⎥⎥⎦; B𝜔 =
⎡⎢⎢⎢⎣

0
0

0.1Te
0

⎤⎥⎥⎥⎦; and C =
⎡⎢⎢⎢⎣
1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦.

Therefore, the polytopic coordinates are defined as:

⎧⎪⎨⎪⎩
h1 (z2k) =

z2k−z2kmin
z2kmax−z2kmin

h2 (z2k) = 1 − h1 (z2k)

and

Ha1 = Ha2 =
⎡⎢⎢⎢⎣

0
0
0

Te

⎤⎥⎥⎥⎦; Na1 =
⎡⎢⎢⎢⎣

0
0
0

z1max

⎤⎥⎥⎥⎦
T

; Na2 =
⎡⎢⎢⎢⎣

0
0

z1max + Tez3max
0

⎤⎥⎥⎥⎦
T

;He1 = He2 =
⎡⎢⎢⎢⎣

0
0
0

Te

⎤⎥⎥⎥⎦ ;

Ne1 =

⎡⎢⎢⎢⎢⎢⎣

0
0
0

z1max

⎤⎥⎥⎥⎥⎥⎦

T

;Ne2 =

⎡⎢⎢⎢⎢⎢⎣

0
0

z1max

0

⎤⎥⎥⎥⎥⎥⎦

T

.

Now, using physical parameters reported in Table 1, with chosen bounds as:x =
{|𝜃| ≤ 41𝜋

180

[
rad

]
; ||�̇�|| ≤ 5

[
rad.s−1]},

m =
{

N1 =
[

180
41𝜋

0 0 0
]
,N2 =

[
0 0 1

5
0
]}

, the maximal saturation level defined as: |umax(l)|≤ 1, the initial con-

dition x (0) =
[

30𝜋
180

0 0 0
]
, the persistent disturbance signal bounded in amplitude is: 𝜔(k) = sin(20k), sampling time

is Te = 0.8[s], and a maximal level of the disturbances given as: 𝛿 = 0.2.
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T A B L E 1 Physical parameters of the cart-Pendulum system Mass of cart M 0.5 (kg)

Mass of the pendulum m 0.2 (kg)

Length to the pendulum center of mass L 0.3 (m)

Length to the pendulum center of mass bp 0.01 (kg)

Viscous friction coefficient of the cart bc 0.1 (Nsm−1)

Gravity g 9.81 (ms−2)

The goal of the first example is to compare the presented results with respect to those given in Reference 26. To show
the validity of our approach, first we solve the optimization problem in Theorem 1, by solving the LMIs conditions. All
computations are carried out under MATLAB software with the LMI solver of the robust control Toolbox, resulting in
feasible solutions. The following matrices are obtained using Theorem 1:

P1 =

⎡⎢⎢⎢⎢⎢⎣

0.5435 −0.0016 −0.0751 0.0097
−0.0016 0.6179 −0.0003 0.0373
−0.0751 −0.0003 0.1481 0.0047
0.0097 0.0373 0.0047 0.3552

⎤⎥⎥⎥⎥⎥⎦
;P2 =

⎡⎢⎢⎢⎢⎢⎣

0.5404 −0.0013 −0.0683 0.0067
−0.0013 0.6179 −0.0003 0.0371
−0.0683 −0.0003 0.1472 0.0029
0.0067 0.0371 0.0029 0.3577

⎤⎥⎥⎥⎥⎥⎦
.

The obtained feedback gains of SOFC are obtained as follows:

F11 = F21 =
[
0.0141 −0.0195 −0.0118 0.0416

]
; F12 = F22 =

[
0.0129 −0.0195 −0.0085 0.0413

]
.

H11 = H21 =

⎡⎢⎢⎢⎢⎢⎣

−0.0066 −0.008 −0.0318 0.0217
−0.0021 0.0179 −0.0008 0.0244
0.0025 0.0004 0.0075 −0.0107
−0.0066 0.0053 0.0134 −0.0858

⎤⎥⎥⎥⎥⎥⎦
;

H12 = H22 =

⎡⎢⎢⎢⎢⎢⎣

−0.0067 −0.0007 −0.0228 0.0165
−0.0020 0.0180 −0.0005 0.0241
0.0046 0.0005 0.0117 −0.0157
−0.0055 0.0053 0.0094 −0.0836

⎤⎥⎥⎥⎥⎥⎦
.

and the scalars: 𝜀1 = 0.8871; 𝜀2 = 0.6989; 𝜀3 = 0.8872; 𝛾 = 0.9419; and 𝜌 = 0.3790.

5.1 Discussion

The obtained simulation results, reported in Figures 4 to 6, show the closed-loop behavior using the proposed controller.
From the plotted graphs, the following observations are drawn:

• The SOF saturated control in this work is robust, because it tends toward zero after t = 7[s]with respect to the variables
disturbances; the control trajectories are depicted in Figure 4.

• The curves of the state responses of xk are shown in Figures 5 and 6, which indicate that the inverted pendulum system
is stable under saturation input and disturbances, and then the desired algorithm is feasible.

• According to the previous results, it can be stipulated that the addition of the variable disturbance to nonlinear system
never influences the performance of the closed-loop system.

• Also, it is noteworthy that, despite both the saturation actuators and the noises at the beginning of simulation, the
nonlinear controller guarantees an asymptotic stability of the closed-loop system. This demonstrates the effectiveness
of the proposed control approach in dealing with complex constrained nonlinear systems in real word applications.
Moreover, it is important to highlight that the proposed approach ensures the stability of nonlinear system, that may be
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F I G U R E 7 Projection of DoA onto x1 − x2 plan [Colour
figure can be viewed at wileyonlinelibrary.com]
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destabilized by the control saturation, when the last, is not taken into account in the control synthesis. It can clearly be
concluded that our developed method is correct and robust, and constitutes a very good property for inverted pendulum
with a good disturbance reject.

Next, we solve the optimization problem in Theorem 2 with:  = I. The following figure depicts the projection of the
DoA onto the x1 − x2 plan (x3 = 0, x4 = 0). The closed-loop trajectories for various initial condition are depicted inside the
validity domain (dashed line).

This figure shows the guaranteed region of attraction 
(

ET
𝓀P−1

i E𝓀, 1
)

of the closed-loop system which is maximized
inside x, by means of simulation it can be checked that the corresponding SOFC provides stable closed-loop behavior
for ∀x (0) ∈ x. The size of 

(
ET
𝓀P−1

i E𝓀, 1
)

is maximized because the intersection size of all ellipsoids 
(

ET
v P−1

h Ev, 1
)

is
maximized by solving LMIs (58).

We observe that the closed-loop system is stabilized and the disturbance is well attenuated. By
means of simulation, it can be also checked that the obtained controller provides stable behaviors for
all closed-loop trajectories initialized in x and these trajectories remain inside this validity domain
(Figure 7).

Note that the DoA involving with P* (P optimal) is obtained by solving LMIS (58). It can be easily seen that the system
states initialized in this maximal DoA will convergence to the origin and their trajectories never escape this domain, the
minimal value of 𝜂 = 2.0455, was obtained for:

P∗
1 =

⎡⎢⎢⎢⎢⎢⎣

2.1937 −0.0035 −0.3381 0.0296
−0.0035 2.1951 −0.0004 0.0149
−0.3381 −0.0004 0.2026 0.0133
0.0296 0.0149 0.0133 1.5867

⎤⎥⎥⎥⎥⎥⎦
;P∗

2 =

⎡⎢⎢⎢⎢⎢⎣

2.1783 −0.0045 −0.3054 0.0113
−0.0045 2.4249 −0.0016 0.1049
−0.3054 −0.0016 0.1973 0.0056
0.0113 0.1049 0.0056 1.6379

⎤⎥⎥⎥⎥⎥⎦
.

It can also be observed in Figures 4 to 6 that the simulated closed-loop trajectories with initial states taken on the
boundary of x and converge to the origin.

Example 2. (48) For DOFC, we consider a nonlinear descriptor system, as shown in Figure 8, where the model
describes a disk rolling on a surface without slipping. The disk is connected to a fixed wall via a nonlinear spring
and a linear damper, where x1(t)is represents the position of the disk center, x2(t) is the speed of translation of
the disk, x3(t) is the angular speed of the disk, and x4(t) represents the contact force between the disk and the
surface.

http://wileyonlinelibrary.com
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,

,

F I G U R E 8 A roller disk

This nonlinear model can be approximated by a multi-model, composed of local models. Hence, the multi-model
rolling disk representation can be given by the following state space:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẋ1 (t) = x2 (t)
ẋ2 (t) = z1x1 (t) − b

m
x2 (t) + 1

m
x4 (t) + satu (t) + 𝜔 (t)

0 = x2 (t) − rx3 (t)
0 = − b

m
x2 (t) − z2x3 (t) +

(
r2

J
+ 1

m

)
x4 (t) − r

J
satu (t)

y1 (t) = x1 (t) + x3 (t)
y2 (t) = x3 (t)
y3 (t) = x2 (t) + x4 (t)
y4 (t) = x3 (t)

(108)

By denoting the state variable vector: x =
[
x1 x2 x3 x4

]T , let us define the nonlinearities as follows:

z1 = K
m

(
1 + x2

1
) , z2 = K

m
(
1 + x2

3
) (109)

Using Euler’s method, the equations of roller disk system are defined by:

⎡⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x1 (k + 1)
x2 (k + 1)
x3(k + 1

x4 (k + 1)

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

1 Te 0 0
Tez1 1 −

(
bTe
m

)
0 Te

m

0 1 −r 0
0 − b

m
−z2

(
r2

J
+ 1

m

)
⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x1 (k)
x2 (k)
x3 (k)
x4 (k)

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

0
Te

0
− r

J

⎤⎥⎥⎥⎥⎥⎦
satu (k) +

⎡⎢⎢⎢⎢⎢⎣

0
Te

0
0

⎤⎥⎥⎥⎥⎥⎦
𝜔 (k) (110)

and

⎡⎢⎢⎢⎢⎢⎣

y1 (k)
y2 (k)
y3 (k)
y4 (k)

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

1 0 1 0
0 0 1 0
0 1 0 1
0 0 1 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x1 (k)
x2 (k)
x3 (k)
x4 (k)

⎤⎥⎥⎥⎥⎥⎦
(111)

Using the sector nonlinearity approach,49 the nonlinear system (110) and (111) can be expressed
base on the uncertain NLPV descriptor form (1), where the polytopic coordinates are chosen
as (109).

In order to simplify the model, the term weighted by: z1k = K
m(1+x2

1)
,will be considered as uncertainties. Their maximal

magnitudes taken on the domain ̄xk
is: z1max = 1, then:
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T A B L E 2 Physical parameter of roller disk
A spring coefficient of roller disk K 100 (N. m−1)

A damping coefficient of roller disk b 30

Mass of disk m 40 (kg)

The disk radius r 0.4 (m)

We define: E1 = E2 =
⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦ ;A1 (z2min) =

⎡⎢⎢⎢⎢⎣
1 Te 0 0
0 1 −

(
bTe
m

)
0 Te

m
0 1 −r 0
0 − b

m
−z2min

(
r2

J
+ 1

m

)
⎤⎥⎥⎥⎥⎦
;

A2 (z2max) =

⎡⎢⎢⎢⎢⎣
1 Te 0 0
0 1 −

(
bTe
m

)
0 Te

m
0 1 −r 0
0 − b

m
−z2max

(
r2

J
+ 1

m

)
⎤⎥⎥⎥⎥⎦
; B1 = B2 =

⎡⎢⎢⎢⎣
0

Te
0
− r

J

⎤⎥⎥⎥⎦; B𝜔 =
⎡⎢⎢⎢⎣

0
Te
0
0

⎤⎥⎥⎥⎦; and C =
⎡⎢⎢⎢⎣
1 0 1 0
0 0 1 0
0 1 0 1
0 0 1 0

⎤⎥⎥⎥⎦.

Therefore, the membership functions and the known constant matrices are defined as:

⎧⎪⎨⎪⎩
h1 (z2) =

z2−z2min
z2max−z2min

h2 (z2) = 1 − h1 (z2)
;Ha1 = Ha2 =

⎡⎢⎢⎢⎢⎢⎣

0
Te

0
− r

J

⎤⎥⎥⎥⎥⎥⎦
;Na1 = Na2 =

⎡⎢⎢⎢⎢⎢⎣

−Tez1max

0
0
0

⎤⎥⎥⎥⎥⎥⎦

T

.

By using physical parameters given in Table 2, with chosen bounds as: ̄xk
=

{|x1k| ≤ 𝜋
[
rad

]
; |x2k| ≤ 𝜋

2

[
rad.s−1]},

the maximal saturation level defined as: |umax(l)|≤ 1, the sampling time is Te = 0.25 [s].
The main advantage of the proposed approach is to synthesize the control law by considering the saturation limits.

Then the goal of this example aims at designing a robust 𝕷2 controller that guarantee the attenuation of the external
disturbances 𝜔k affecting the system output and state vector. The DOFC gain matrices, ensuring a minimized 𝕷2 atten-
uation level value 𝛾 , are obtained by solving an optimization problem under LMI constraints using the Matlab LMI
Toolbox through Theorem 3. This solution could be improved since the nonquadratic LMI conditions, are reputed of less
conservatism.25

For simulation realization, the system is energy bounded disturbance signal 𝜔k and of the following form:

𝜔k =
⎧⎪⎨⎪⎩
−15 ∗ cos

(
k − 𝜋

3

)
; for k ∈ [30 36]

0 ; elsewhere
(112)

Also, the corresponding energy-bounded disturbance of 𝜔k is selected as:𝛿 = 0.2 happening at t = 7.5[s] with
duration 1.25 [s]. This provides the DOFC gain matrices given by:

AF
11 = AF

21 =

⎡⎢⎢⎢⎢⎢⎣

0.2132 −0.5270 −0.0491 0.0528
−0.3321 0.8295 0.0755 −0.0997
−0.0948 0.2425 0.0221 −0.0381
−0.3283 0.8229 0.0747 −0.1022

⎤⎥⎥⎥⎥⎥⎦
;

AF
12 = AF

22 =

⎡⎢⎢⎢⎢⎢⎣

0.2087 −0.5678 −0.0501 0.0825
−0.3264 0.8866 0.0771 −0.1410
−0.0930 0.2591 0.0226 −0.0502
−0.3227 0.8790 0.0763 −0.1428

⎤⎥⎥⎥⎥⎥⎦
;
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BF
11 = BF

21 =

⎡⎢⎢⎢⎢⎢⎣

0.0987 −0.0911 −0.8000 0.0054
0.0321 −0.0238 0.0090 −0.1050
−0.0765 −0.8030 0.0006 −0.1209
0.0321 0.0238 −0.0090 0.1050

⎤⎥⎥⎥⎥⎥⎦
;

BF
12 = BF

22 =

⎡⎢⎢⎢⎢⎢⎣

0.3206 0.0106 0.0804 0.0021
0.0471 0.0021 −0.0139 0.0720
0.0985 0.1026 0.0432 0.0406
−0.0471 −0.0021 0.0139 −0.0720

⎤⎥⎥⎥⎥⎥⎦
;

CF
11 = CF

12 = CF
21 = CF

22 = [0.0115 −0.0040 −0.0112 −0.0008] ;

DF
11 = DF

21 = [0.2400 −5.5365 0.0431 5.2464] ;DF
12 = DF

22 = [−0.3520 4.1104 0.0995 −3.6694] .

P1 =

⎡⎢⎢⎢⎢⎢⎣

0.0715 −0.0028 0.0015 −0.0004
−0.0028 0.0951 0.0034 −0.0221
0.0015 0.0034 0.0494 −0.0028
−0.0004 −0.0221 −0.0028 0.0590

⎤⎥⎥⎥⎥⎥⎦
;P2 =

⎡⎢⎢⎢⎢⎢⎣

−1.4574 0.0010 0.3190 0.0212
0.0010 −1.4574 1.3098 0.0003
0.3190 1.3098 −1.4574 1.0020
0.0212 0.0002 1.0020 −1.4574

⎤⎥⎥⎥⎥⎥⎦
𝜕1 = 1.0319; 𝜕2 = 1.1228; 𝜕3 = 0.8935; 𝜕5 = 0.0319; 𝛾 = 0.9801; and 𝜌 = 0.2672.

Applying the controller gain matrices given previously, Figure 9 shows the control input signal and Figure 10 depicts
the closed-loop response from an initial state fixed at x (0) =

[
1 − 𝜋

3
0 0

]T , with the controller being designed using
the optimization approach. It can be seen that the system is stable even in the presence of control input saturation, where
two phases can be distinguished. For the first phase from t = 0[s] to t = 7.5 [s], the disturbance is not involved in the
dynamics of the roller disk system, and all four state variables converge to the origin. The second phase is from t = 7.5 [s]
until the end of the simulation. It can be observed that at t = 7.5 [s], the considered disturbance 𝜔k begins to act on the
system dynamics for duration of 1.25 [s], perturbing, therefore, the system state variables. However, the proposed robust
controller is able to reject the disturbance effect and all states converge again to the origin at the end of the simulation
(Figure 11).

Now, by solving an optimization problem under LMI constraints using Theorem 4, chosen  = I.
The set 

(
ET

v P−1
h1 Ev, 1

)
is always contained in 

(
E

T
v P

−1
h Ev, 1

)
, assuming that x (0) ∈ 

(
E

T
v P

−1
h Ev, 1

)
if x (0) ∈


(

ET
v P−1

h1 Ev, 1
)
. In the absence of disturbances, the set 

(
ET

v P−1
h1 Ev, 1

)
is positively invariant and so x (k) ∈
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(

E
T
v P

−1
h Ev, 1

)
, for all k ≥ 0, therefore, xk will never escape the projection of 

(
E

T
v P

−1
h Ev, 1

)
onto the plane defined by

xF = 0.
Observe that, simulation of several trajectories initialized on the boundary of the corresponding set 

(
E

T
v P

−1
h Ev, 1

)
,

has been depicted with various initial condition in Figure 12. Thus, the obtained results confirm that these set are pos-
itively invariant with respect to the closed-loop dynamics and contained in the validity domain (dashed line) of the
equilibrium state xk = xF = 0, with 𝜎 = 0.7975, with:

P∗
1 =

⎡⎢⎢⎢⎢⎢⎣

0.9715 −0.1028 0.3315 −0.0422
−0.1028 0.2951 0.0034 −0.3221
0.3315 0.0034 0.6494 −0.9928
−0.0422 −0.3221 −0.9928 0.2590

⎤⎥⎥⎥⎥⎥⎦
;P∗

2 =

⎡⎢⎢⎢⎢⎢⎣

−3.5580 0.0010 0.3190 0.9212
0.0010 −3.5580 2.3098 0.0067
0.3190 2.3098 −3.5580 1.0220
0.9212 0.0067 1.0220 −3.5580

⎤⎥⎥⎥⎥⎥⎦
.

6 CONCLUSION

In this article, the problem of output feedback stabilization of uncertain discrete-time NLPV descriptor systems sub-
ject to actuator saturation and external disturbances has been tackled. Both SOFC and DOFC have been developed.
𝕷2 criterion has been employed to ensure a minimal attenuation level of external disturbances. The estimation
of the largest DoA has been formulated and solved as a LMIs convex optimization problem. Relaxed LMI condi-
tions for the defined problem have been easily obtained, and the controller gains are efficiently computed with
programming solvers. Finally, two examples have been used to show the performance of the proposed approaches.
As future works, we will focus on observer-based control design for fuzzy/NLPV descriptor systems under state,
input constraints, and exogenous disturbance. The case of system with unmeasurable premise variables will be
treated. A second interesting perspective will be to apply the obtained results to a practical constrained plant in
order to maintain stability, acceptable dynamic performance, and steady state of the system despite input system
constraints.
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