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Abstract
The conjugate gradient method was an efficient technique for solving optimization 

problems. In this paper, we propose a new efficient (CG) coefficient ,kb  is computed as 
a convex combination of Salleh and Alhawarat algorithm and CG-Descent algorithm. We 
prove the sufficient descent condition and the global convergence of the proposed method. 
It is established that the ka  satisfies the strong Wolfe line search conditions. The numerical 
results indicate that our method is robust and competitive.
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1. Introduction

The Unconstrained Optimization Problem can be formulated as: 

min{ ( ), }. (1)nf x x∈

where : nf →   is continuously differentiable function and its gradient 
is available.

The nonlinear conjugate gradient method is the most famous methods 
for solving (1) and especially for large problems.
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The (CG) method generates a sequence of points { } n
kx ⊂   from an 

initial point 0x  as follows: 

1 = , . (2)k k k kx x d k+ + a e

ka  is the step length gotten by exact or inexact line search, and the kd  
of the (CG) is calculated by the following: 

0

1 1

, for = 0,
= (3)

, for 1.k
k k k

g k
d

g d k− −

−
− + ≥ b

kg = ( )kf x∇  is the gradient of f, k b e  the conjugate gradient 
parameter.

The different value for the kb  parameter correspond to different (CG) 
methods.

Some famoos classical conjugate gradient methods:
Hestenes-Stiefel method [23], Fletcher-Reeves method [20], Polak-

Ribiére-Polyak method [31, 32], CG-Descent method [21], Liu-Storey 
method [28], Dai-Yuan method [10], Salleh-Alhawarat method [33], there 
formulas are given by 

1= . (4)
T

HS k k
k T

k k

g y
y d
+b

2
1

2.
= . (5)kFR

k
k

g

g

+b
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2= . (6)

T
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g y

g
+b
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1= . (7)kCD

k T
k k
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g d
+−b
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1= . (8)kDY
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+−b
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21
1 1: < ,

= (10)
0 otherwise.

T
Tk k

ZA k k kT
k kk

g y
y d

g g g+
+ +






b

Where .  the Euclidean norm and 1= .k k ky g g+ −
It is well known that the hybrid conjugate gradient method plays a 

main role in solving large-scale minimization problems.
Some hybrid conjugate methods are summarized:
See in [22] 

, 0 ,= (11)
, otherwise.

PRP PRP FR
TAS k k k
k FR

k

 ≤ ≤



b b b
b

b

See in [24]

= max{0,min{ , }}. (12)HS DY HS DY
k k k

−b b b

See in [3]

= (1 ) . (13)c HS DY
k k k k k− +b q b q b

See in [7]

= (1 ) . (14)N PRP DY
k k k k k− +b q b q b

See in [9]
2

1

max{ , }
= . (15)kDDF

k T T
k k k k

g

d g d y
+

−
b

See in [12] 

= max{0,min{ , }}. (16)HS DY HS DY
k k k

−b b b

In this paper, we suggest a new hybrid method as a convex combination 
of the (CG) parameters: ZA

kb  and .CD
kb  

2. Algorithm of new hybrid gradient conjugate method

We defined the parameter kb  in the proposed method by 

= (1 ) . (17)hZACD ZA CD
k k k k k− +b q b q b

i.e.
2

11= (1 ) . (18)
T

khZACD k k
k k kT T

k k k k

gg y
y d g d

++

−
− +b q q



1290 A. HALLAL, M. BELLOUFI AND B. SELLAMI

Where [0,1].kq e
The new fomula of the search direction is defined by

0 0 1 1= , = . (19)hZACD
k k k kd g d g d+ +− − + b

The step > 0ka  scalar is determined by the strong Wolfe inexaxt line 
search as following

( ) ( ) , (20)T
k k k k k k kf x d f x g d+ − ≤a da

1 . (21)T T
k k k kg d g d+ ≤ −s

For all 0.k ≥
Where the parameters 0,  de s  and ,1 .  se r

It is obvious that if θk  = 0  then = ,hZACD ZA
k kb b  and if = 1kq  then 

= ,hZACD CD
k kb b  on the other hand if 0 < < 1kq  then 

= (1 ) .hZACD ZA CD
k k k k k− +b q b q b

The parameter kq  is determined in such a way that the search direction 
satisfies the condition Newton direction.this idea has been introduced in 
[3].

So, assuming that 2 1( )kf x −∇  exists for 0k ≥  such that 

 2 1
1 1 1( ) = .hZACD

k k k k kf x g g d−
+ + +−∇ − + b

Where 1= .k k ks x x+ −
From (18) and (19) we get 

2
12 1 1

1 1 1( ) = (1 ) . (22)
T

kk k
k k k k k k kT T

k k k k

gg y
d y d g

f x g g d d+− +
+ + + −

−∇ − + − +q q

Multiplying (22) by 2
1( ),T

k ks f x +∇  we get 
2 2

1 1 1 1
2

1

= ( ) (1 ) ( )
( ) .

T T ZA T
k k k k k k k k k k

CD T
k k k k k

s g s f x g s f x d
s f x d

+ + + +

+

− − ∇ + − ∇

+ ∇

q b
q b  

We assume that ( , )k ks y  satisfies the secant equation and 
2

1( ) =T
k k ks f x y+∇  then we results that 

2
11

1 1= (1 ) .
T

kT T T Tk k
k k k k k k k k k kT T

k k k k

gg y
d y d g

s g y g y d y d++
+ + −

− − + − +q q
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We obtain in the end 

1
2

1 1

( )( )

( ) ( )( )
= . (23)

T T
k k k k

k T T T
k k k k k k k

d g s g

g y d d g g y
+

+ +

− −

− −
q

Algorithm of hZACD method

Step 1: Initialization
Choose an initial point 0 ,nx ∈  > 0.e
Compute 0 0( ) =f x f  and 0 0( ) = ( ).f x g x∇
Set 0 0= ,d g−  0 = 1.a

Step 2: Stopping criteria
If 

< , (24)kg e

then Stop.

Step 3: Compute ka  by the strong Wolfe line search (20) and (21).

Step 4: Generate the next iterate by 1 = .k k k kx x d+ +a
Compute 1 1= ( ),k kg f x+ +∇  1=k k ky g g+ −  and 1= .k k ks x x+ −

Step 5: Compute kq
If 

2

1 1( ) ( )( ) = 0T T T
k k k k k k kg y d d g g y+ +− −  then = 0,kq  else compute kq  as 

in (23).

Step 6: Compute .hZACD
kb

If 1,k ≥q  compute = ,hZACD CD
k kb b

and if 0,k ≤q  compute = ,hZACD ZA
k kb b

else 0 < < 1,kq  then compute kb  by (18). 

Step 7: Compute kd  by equation (19). 

Step 8: Put = 1k k +  and go to step 2.

3. Suffcient descent condition

Lemma 3.12 [14] : Consider the method (2) and (3) satisfing, with =kb  hZACD
kb  

hold.
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Then 

1 1 1= (1 ) , for all 0. (25)ZA CD
k k k k kd d d k+ + +− + ≥q q

Proof:  From (19) we have 

 1 1= (1 ) .ZA CD
k k k k k k k kd g d d+ +− + − +q b q b

We can write that 

 1 1 1= ((1 ) ) ((1 ) ) .ZA CD
k k k k k k k k k kd g g d+ + +− − + + − +q q q b q b

In the next 

 1 1 1= (1 )( ) ( ).ZA CD
k k k k k k k k kd g d g d+ + +− − + + − +q b q b

Finally, we have 

 1 1 1= (1 ) ,ZA CD
k k k k kd d d+ + +− +q q

which implies the result holds for = 1,k k +  and this implies that the proof 
is finished.  

Theorem 3.3 : Consider the method (2) and (3) with the search direction in (19) 
and ka  is computed by the strong Wolfe line search (20) and (21) then 

2
, for each . (26)T

k k kg d c g k≤ −

Proof 3.4:  We demonstrate by induction.
For = 0k we have

2

0 0 0= < 0,Tg d g−  then (26) hold.
Let kd  descent search direction. Now for = 1.k k +
From Lemma 3.1, we have 

1 1 1= (1 ) . (27)ZA CD
k k k k kd d d+ + +− +q q

Multpliying (27) by 1
T
kg +  from the left, we get 

 1 1 1 1 1 1= (1 ) .T T ZA T CD
k k k k k k k kg d g d g d+ + + + + +− +q q

1) if = 0,kq  then 1 1 1 1= .T hZACD T CD
k k k kg d g d+ + + +

 In this case, we obtained 
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2 1 1
1 1 1

2 1 1

1

( )( )=

.

T T
T ZA k k k k
k k k

T T
k k k k

k T
k k

g y g d
Ty dkk

g d g d

y d

g d g

g

+ +
+ + +

+ +

+

− +

≤ − +

 We can write 
2

1 1 1 1= ( ) 2 ,T T
k k k k k kg y g g g g+ + + +− ≤  by substituting 

 

2
2 1 1

1 1 1

2
.

T
k k kT ZA

k k k T
k k

g g d

y d
g d g + +

+ + +≤ − +

 Now from (21) we conclude the two next inequality 

1 . (28)T T
k k k kg d g d+ ≤ −s

 Hence 

1= ( ) (1 ) . (29)T T T T T
k k k k k k k k k k ky d g g d g d g d g d+ − ≥ − ≥ − −s s

 Implies 
1 1

(1 )
. (30)TT

k kk k g dy d − −
≤

s

 So, with appliying (28) and (30), we have the following 

 

2 2

1 1 1 1

2

1

2
(1 )

1 3
1

,

T ZA
k k k k

k

g d g g

g

+ + + +

+

−

 −
 − 

≤ − +

≤ −

s
s

s
s

 1
1 3
1

= > 0c −
−

s
s

 where 1
3

0 < < < .d s

 Implies 
2

1 1 1 1 . (31)T ZA
k k kg d c g+ + +≤ −

2) if = 1,kq  then 1 1 1 1=T hZACD T CD
k k k kg d g d+ + + +  

 

2
2 1

1 1 1 1

2
2 1

1 1

= ( ),

.

kT CD T
k k k k kT

k

k T
k k kT

k k

g

g dk

g

g d

g d g g d

g g d

+
+ + + +

+
+ +

−
− +

≤ − +
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 According (28) it holds that 

 

2
2 1

1 1 1

2

1

( )
( )

(1 ) .

kT CD T
k k k k kT

k k

k

g

g d
g d g g d

g

+
+ + +

+

−
≤ − + −

≤ − −

s

s

 In the end we obtain 
2

1 1 2 1 . (32)T CD
k k kg d c g+ + +≤ −

 2 = 1 > 0c −s where 1
3

< .s
 [16] Finally for 0 < < 1kq  there exists 1b and 2b  in wich that

 1 20 < < <kb bq  < 1  and from (31), (32) 

 
2 2

1 1 2 1 1 1 2 1(1 ) .T hZACD
k k k kg d b c g b c g+ + + +≤ − − −

 Implies 

 
2

1 1 2 1 1 2 1((1 ) ) ,T hZACD
k k kg d b c b c g+ + +≤ − − +

2

1 1 1 . (33)T hZACD
k k kg d c g+ + +≤ −

 In which 2 1 1 2= ((1 ) ).c b c b c− +

 The Proof is complete.  

4. Convergence of analysis

In this section we will apply the following assumptions:

Assumption 1: The level set 0= { | ( ) ( )}nx f x f x∈ ≤  is bounded where 
0x  is the starting point.

Assumption 2: In a neighborhood   of   the function f  is continuously 
differentiable and its gradient ( )g x  is Lipschitz continuous.

From assumption 1 and assumption 2, we conclude the next one 
( ) , for all . (34)g x l x≤ ∈ 

[3].

Lemma 4.1 [27] : Suppose the search direction kd  is descent, and assumption 2 
hold, ka  is computed by the strong Wolfe line search, then 
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2

2
(1 ) . (35)k

k
k

g
L d

c −≥  

 

sa

Proof 4.2: From the second strong Wolfe inequality (29) and with using 
assumption 2, we obtain 

 

1
2

( 1) ( )
.

T T
k k k k k

k k

g d g g d
L d

+− ≤ −

≤  

s
a

In which kd  is a descent direction < 1,s it follows that 

 

2

2
(1 ) .k

k
k

g
L d

c −≥  

 

sa

This lemma indicate that ∃  > 0g  where 
. (36)k ≥a g

Lemma 4.3 : [12] Let Assumption 1 et 2 holds. Consider the iterative method 
(2) and (3), with kd  satisfies < 0T

k kg d  and the step size ka  is received from the 
strong Wolfe line search

If 

2
=1

1 = . (37)
k kd

∞

∞∑

Then 

lim inf = 0. (38)kk
g

→∞

Theorem 4.4 : Suppose that the Assumption 1 and 2 holds. Consider the 
algorithm hZACD, with the search direction kd  is descent. ka  is obtained by the 
strong Wolfe line search then 

lim inf = 0. (39)kk
g

→∞

Proof 4.5: We proved the theorem by contradiction.
It meant we suppose that (39) doesn’t hold.
We know if 0kg ≠  ∀  k   there exists a constant 

_

> 0,l  in which 
_

for all 0. (40)kg l k≥ ≥
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Since D =max { , , }x y x y− e  is the diameter of .
From assumption 2 > 0L∃  

1 1= = . (41)k k k k k ky g g L x x L s LD+ +− ≤ − ≤

From (19) we obtain 

 1 1 .hZACD
k k k kd g d+ +≤ +   b

In which 

 
= (1 ) .hZACD ZA CD ZA CD

k k k k k k k− + ≤ +b q b q b b b

Using Cauchy Schwartz inequality, (26), (30), (34), (40) and (41), we 
have that 

1

1

2 2

( )

(1 )

(1 )

=

.

TZA k k
k T

k k

k k
T
k k

k

g y
y g

g y

g d
lLD LlD

mlc g

+

+

− −

−

≤

≤ ≤

s

s

b

On the other hand, 
2 21

2= .kCD
k T

k k

g l
g d cl
+

−
≤b

Now we find that 
2

2 2 .hZACD
k

LlD l
ml cl

≤ +b

Here we can write 

1 1 (42)

. (43)

hZACD
k k k k

k

k

A s

d g d

l

+ +≤ +

≤ +  

   

a

b

According to (34), (36) and (41) we have 

1 .k
LDd l A+ ≤ +
g

Hence 
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 ( )2 2

1

1 1 .
k

LDd l A+

≥
+

g

Therfore

2
=0

1

1 = . (44)
k

kd

∞

+

∞∑

By applyinge lemma 4.3 is a contradiction.
So we have prove (39), and we get finaly the convergence of our 

method.  

5. Numerical Result

In this section, we choose some of the test functions from [4], [25]. 
We analyzed the performance of the new algorithm with the ZA and CD 
algorithms with different initial points and dimensions range from small 
scale to large scale. For the numerical tests, all codes were written or a PC 
computer with a CPU 1.60 GHz and 2.00GB of RAM, and the parameters 
in the strong Wolfe line searches are chosen to be = 1,a  3= 10 ,−s  4= 10 .−d  
We stop if 6( ) 10kg x −≤  is satisfied.

In particular, the following result is established in [8], [19].
This is done based on the number of iterations and CPU time, which 

were evaluated using the profiles of Dolan and Moré [18]. Benchmark 
results are generated by running a solver on a set P of problems. Let S 
consists of sn  problems, P consists of pn  problems. For each problem 
p P∈  and solver ,s S∈  denote ,p st  be the executing time (or the number of 
iterations) required to solve problem p P∈  by solver .s S∈  The is formed 
as follows: 

,
, ,min{ : }

= .p s
p s p s

t
t s S

r
∈  

Assuming that a scalar , .M p sr r≥  for all ,p s  is chosen, if and only if 
solvers s does not solver problem ,p  we have: 

,

1( ) = { : }.logs p p sn
size p P r T∈ ≤r t

 

Then ( )sr t  is the probability for solver s S∈  that a performance 
ratio ,p sr  is within a factor .nT ∈  The sr  is the cumulative distribution 
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function for the performance ratio. The value of (1)sr  is the probability 
that the solver will win over the rest of the solvers. 

Figures 1, 2 exhibit the performance of the hZACD method versus 
ZA and CD methods, which show that our method better than the other.

Figure 1
Performance profile based on the CPU time (inexact).

Figure 2
Performance profile based on the number of iterations (inexact).
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6. Conclusion

In this work, a new form of conjugate gradient parametre has been 
suggested to solve an unconstrained problem. We have also demonstrated 
that this new method converges globally with strong Wolfe inexact line 
search. The presented numerical results show the robustness of our 
proposed method.
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