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Abstract. Conjugate gradient methods are among the most efficient methods
for solving optimization models. In this paper, a newly proposed conjugate

gradient method is proposed for solving optimization problems as a convex

combination of the Harger-Zhan and Dai-Yaun nonlinear conjugate gradient
methods, which is capable of producing the sufficient descent condition with

global convergence properties under the strong Wolfe conditions. The nu-

merical results demonstrate the efficiency of the proposed method with some
benchmark problems.

1. Introduction. In this paper, we consider the unconstrained minimization prob-
lem of the following form:

min {f(x), x ∈ Rn} . (1)

Let the function f : Rn → R be continuously differentiable, we defined the
gradient as gk = ∇f (xk).

The conjugate gradient method is used to solve the iterative procedure (1) pro-
posed by

x0ϵRn, xk+1 = xk + αkdk, kϵN. (2)

αk > 0 is the step size.
The dk search direction is stated by

d0 = −g0, dk+1 = −gk+1 + βkdk. (3)

βkϵR is a scalar parameter known as the conjugate gradient coefficient.
Many formulas have been proposed to calculate the βk. The most well-known are

Hestenes-Stiefel (HS) (Hestenes and Stiefel, 1952), Fletcher-Reeves (FR) (Fletcher
and Reeves, 1964), Polak-Ribiere-Polyak (PRP) (Polak and Ribiere, 1969), Conju-
gate Descent (1987), Liu-Storey (LS) (Liu and Storey, 1991), Dai-Yaun (DY) (Dai
and Yaun, 1999) and Hager-Zhan (HZ) (Hager and Zhan, 2005), see in ([15],[10],[19,
20],[9],[18],[8],[3],[11]). It is all given as follows, respectively:

βHS
k =

gTk+1yk

dTk yk
, (4)
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βFR
k =

∥gk+1∥2

∥gk∥2
, (5)

βPRP
k =

gTk+1yk

∥gk∥2
, (6)

βCD
k = −∥gk+1∥2

dTk gk
, (7)

βLS
k = −

gTk+1yk

dTk gk
, (8)

βDY
k =

∥gk+1∥2

dTk yk
, (9)

βHZ
k =

1

dTk yk

(
yTk − 2dTk

∥yk∥2

dTk yk

)T

gk+1, (10)

where yk = gk+1− gk, ∥.∥ denotes the Euclidean norm.
The conjugate gradient method can be classified into: classical, hybrid, scaled,

modified, parametrized, and accelerated according to formula. The methods men-
tioned above are called “classical CG” due to their simple approaches. Recently,
some hybrid conjugate gradients as the hybrid conjugate gradient methods, which
are a combination of several gradient conjugate algorithms, are more efficient than
the classical conjugate gradient methods. The first hybrid conjugate algorithm was
given by Touati-Ahmed and Storey [22], which is computes βk as

βTS
k =

{
βPRP
k if 0 ≤ βPRP

k ≤ βFR
k ,

βFR
k else.

(11)

Djordjevic proposed a hybrid conjugate gradient algorithm as convex combina-
tions [6], in which

βLSCDCC
k = (1− θk)β

LS
k + θkβ

CD
k , (12)

and proposed another hybrid conjugate gradient algorithm as convex combinations
[5], in which

βHLSFR
k = (1− θk)β

LS
k + θkβ

FR
k . (13)

In this paper, we combine the DY and HZ conjugate gradient algorithms in
this research to create a new hybrid nonlinear CG method. The algorithm of the
suggested method was detailed in section 2. In Section 3, we show that, utilizing the
inexact line search, the proposed approach satisfies the sufficient descent condition
and is globally convergent. In Section 4, we provide some numerical tests compared
with classical formulas of the DY and HZ. Finally, we will give a conclusion.

2. A new CG algorithm. In this paper, we introduce a new conjugate gradient
scalar know as βhHZDY

k (h it mean hybrid) is defined by the next equation

βhHZDY
k = (1− θk)β

HZ
k + θkβ

DY
k , 0 ≤ θk ≤ 1. (14)

The search direction dk is obtained by

d0 = −g0, dk+1 = −gk+1 + βhHZDY
k dk. (15)

The step size αk is determinated according to the following strong Wolfe condi-
tions

f (xk + αkdk)− f (xk) ≤ δαk∇f(xk)
T dk. (16)
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σ∇f(xk)
T dk ≤ ∇f(x+ αkdk)

T dk ≤ −σ∇f(xk)
T dk. (17)

Here θk is determined in such a way that the search direction satisfies the con-
jugacy condition

dhHZDY
k+1 yk = 0. (18)

Substituting (15) in (18) we get

−gk+1 + (1− θk)
(

1
dT
k yk

(
yTk − 2dTk

∥yk∥2

dT
k yk

)
gk+1

)
dk + θk

∥gk+1∥2

dT
k yk

dk = 0.

Multiplying both sides of the above equation by yk, we obtain

−gTk+1yk + (1− θk)
(
yTk gk+1 − 2dTk gk+1

∥yk∥2

dT
k yk

)
+ θk ∥gk+1∥2 = 0. (19)

Solving (19) implies that

θk =
2dTk gk+1

∥yk∥2

dT
k yk(

∥gk+1∥2 − yTk gk+1 + 2dTk gk+1
∥yk∥2

dT
k yk

) . (20)

We can conclude that

θk =


0 if θk ≤ 0,
1 if θk ≥ 1,

2dT
k gk+1

∥yk∥2

dT
k

yk(
∥gk+1∥2−yT

k gk+1+2dT
k gk+1

∥yk∥2

dT
k

yk

) if 0 < θk < 1,
(21)

and

βk =

 βHZ
k if θk = 0,

βDY
k if θk = 1,

(1− θk)β
HZ
k + θkβ

DY
k if 0 < θk < 1.

Next, we give the algorithm of (14) as follows
Algorithm (hHZDY method)

Step 1. Starting Given x0 ∈ Rn. Set d0 = −g0, α0 = 1
∥g0∥ .

Step 2. Calculate xk+1 = xk + αkdk , compute yk = gk+1 − gk.
Step 3. Stopping criteria

Compute ∥gk∥ , if ∥gk∥ < 10−4 then Stop else go to the next step.
Step 4. Compute αk by (16) and (17).

Step 5. If
(
∥gk+1∥2 − yTk gk+1 + 2dTk gk+1

∥yk∥2

dT
k yk

)
= 0 then put θk = 0 or compute

θk as in (21).
Step 6.Compute βk by (14).
Step 7. Compute dk by equation (15) .
Step 8. Put k = k + 1 and go to step 2.

3. Convergent analysis.

3.1. Sufficient descent condition. To be converged, an algorithm must have
sufficient descent conditions as well as global convergent properties. The sufficient
descent condition is satisfied by the hHZDY algorithm, as shown by the following
theorem.

Theorem 3.1. Consider a CG method (1) and (3), βk given by (14) and αk be
generated with (16) and (17) then

gTk dk ≤ −c ∥gk∥2 , c > 0, for all k. (22)
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Proof. We use mathematical induction.
It obvious that (22) hold for k = 0.

Assume that gTk dk ≤ −c ∥gk∥2 .
Now for k = k + 1.
From the idea in [11]

dhHZDY
k+1 = −gk+1 + βhHZDY

k dk

= − (1− θk) gk+1 − θkgk+1 + (1− θk)β
HZ
k dk + θkβ

DY
k dk.

Implies

dhHZDY
k+1 = (1− θk)d

HZ
k+1 + θkd

DY
k+1. (23)

With multiplying (23) by gTk+1 we get

gTk+1d
hHZDY
k+1 = (1− θk)g

T
k+1d

HZ
k+1 + θkg

T
k+1d

DY
k+1. (24)

We have 3 cases:
If θk = 0 then

gTk+1d
hHZDY
k+1 = gTk+1d

HZ
k+1. (25)

W.W. Hager and H. Zhang proved in [18] that dHZ
k+1 satisfies the suffcient descent

condition i.e, ∃m1 = 7
8 > 0

gTk+1d
HZ
k+1 ≤ −m1 ∥gk+1∥2 . (26)

If θk = 1 then

gTk+1d
hHZDY
k+1 = gTk+1d

DY
k+1. (27)

Clearly from (17) that

(−σ − 1) dTk gk ≥ dTk yk = dTk (gk+1 − gk)
≥ (σ − 1) dTk gk.

(28)

With substiting we have

gTk+1d
DY
k+1 = −∥gk+1∥2 +

∥gk+1 ∥2

dTk yk
(gTk+1dk)

≤ −∥gk+1∥2 +
∥gk+1 ∥2

(σ − 1) dTk gk

∣∣gTk+1dk
∣∣ .

Now by using (17) again and (28) it results that

gTk+1d
DY
k+1 ≤ −∥gk+1∥2 +

∥gk+1 ∥2

(σ − 1) dTk gk

(
−σgTk dk

)
≤ −

(
1− σ

1− σ

)
∥gk+1 ∥2 .

Hence

gTk+1d
DY
k+1 ≤ −m2 ∥gk+1∥2 . (29)

Where σ < 1
2 .

Finaly for 0 < θk < 1
From (24), (25) and (29)

gTk+1d
hHZDY
k+1 = (1− θk) g

T
k+1d

HZ
k+1 + θkg

T
k+1d

DY
k+1

≤ − (m1 (1− θk) +m2θk) ∥gk+1∥2 .
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[5] There exists µ, λ ∈ R where 0 < µ < θk < λ < 1 that give

gTk+1d
hHZDY
k+1 ≤ − (m1 (1− λ) +m2µ) ∥gk+1∥2 ,

where m = (m1 (1− λ) +m2µ) > 0.

3.2. Global convergence properties. The following basic assumptions about
the objective function are very important in the convergence analysis of the CG
method.
Assumption 1. The level set S = {x ∈ Rn | f(x) ≤ f (x0)} is bounded where x0

is the starting point.
Assumption 2. In some neighborhood N of S the function f is continuously
differentiable and its gradient is Lipschitz continuous i.e. ∃L > 0

∥∇f(xk+1)−∇f(xk)∥ ≤ L ∥xk+1 − xk∥ , (30)

which can results

∥∇f(x)∥ ≤ r, for allx ∈ S. (31)

[2].

Lemma 3.2. [17] Assume that dk is descent, and assumption 2 satisfies, αk is
determinated by the strong Wolfe inexact line search, then

αk ≥ c
(1− σ) ∥ gk ∥2

L ∥ dk ∥2
. (32)

Proof. With appliying (17) and the second assumption, we get

(σ − 1)gTk dk ≤ (gk+1 − gk)
T dk

≤ Lαk ∥ dk ∥2,

where dk is a descent direction σ < 1, then we have the next

αk ≥ c
(1− σ) ∥ gk ∥2

L ∥ dk ∥2
.

Lemma 3.3. [15] Assume that Assumptions 1 and 2 hold. Consider the algorithm
of the new method with dk satisfying the suffiicient descent condition and αk being
obtained by the strong Wolfe line search then

If ∑
k≥1

∥gk∥4

∥dk∥2
= ∞. (33)

Then

lim
k→∞

inf ∥gk∥ = 0. (34)

Now we give our convergence theorem

Theorem 3.4. Assume that the Assumptions 1and 2 satisfies. Consider the Al-
gorithm with dk descent and αk is determinated by (16) , (17) where 0 < σ < 1

2
then

lim
k→∞

inf ∥gk∥ = 0. (35)
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Proof. The proof would be by contradiction.
Suppose that gk ̸= 0 ∀ k, then there exists ∃η > 0 such that

∥gk∥ ≥ η , k ≥ 0, (36)

where D the diameter of S, and xk+1 − xk = sk.
Hence

∥yk∥ = ∥gk+1 − gk∥ ≤ L ∥sk∥ ≤ LD.

From(15) we obtain

∥dk+1∥ ≤∥ gk+1 ∥ +
∣∣βhHZDY

k

∣∣ ∥ dk ∥ .

After some algebra∣∣βhHZDY
k

∣∣ ≤
∣∣βHZ

k

∣∣+ ∣∣βDY
k

∣∣
≤ 1

− (1− σ) dTk gk

(∣∣yTk gk+1

∣∣+ 2

∣∣∣∣dTk gk+1

dTk yk

∣∣∣∣ ∥yk∥2 + ∥gk+1∥2
)

≤ 1

(1− σ) c ∥gk∥2

(
∥yk∥ ∥gk+1∥+ 2

σ

(1− σ)
∥yk∥2 + ∥gk+1∥2

)
≤ 1

(1− σ) cη2

((
rLD + 2

σ

(1− σ)
(LD)

2

)
+ r2

)
≤ ϑ.

From Lemma 3.2, we conclude that ∃ν > 0 : αk > ν.
Finally, we results

∥dk+1∥ ≤ ∥gk+1∥+
∣∣βhHZDY

k

∣∣ ∥dk∥ ≤ ∥gk+1∥+
∣∣βhHZDY

k

∣∣ ∥sk∥
αk

,

≤ r + ϑ
D

ν
,

and we can conclude that

1

∥dk+1∥2
≥ 1(

r + ϑD
ν

)2 ,
and

∥gk+1∥4

∥dk+1∥2
≥ η4(

r + ϑD
ν

)2 .
Implies ∑

k≥0

∥gk+1∥4

∥dk+1∥2
≥ η4(

r + ϑLD
ν

)2∑
k≥0

1 = ∞.

It implies ∑
k≥0

∥gk+1∥4

∥dk+1∥2
= ∞,

with Lemma 3.3 applied, we have a contradiction.
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4. Numerical result. In this section, we present numerical experiment results
obtained by testing our new algorithm with HZ and DY CG algorithms on a set
of unconstrained optimization test problems picked from [1], [16]. We use different
starting points and different dimensions. The code for the proposed method was
written using Matlab R2013a and run on a personal computer with a 1.60 GHz
CPU processor and 2GB of RAM memory. The used line search conditions are the
strong Wolfe conditions with α = 1, σ = 0.01, δ = 0.0001 and we set ε = 10−4.
This is done based on the number of iterations and CPU time. The iterations fail if
the number of iterations exceeds 2000. The comparison of the performance profile
curve results between the methods was presented using the profiles of Dolan and
Moré [8], CPU denotes the total CPU time (seconds).

It is seen from Figures 1,2 that the “hHZDY” method is better than the “HZ”
and “DY” methods.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance profile relative to the number of iterations.

f

 

 

hHZDY

HZ

DY
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5. Conclusion. The hybrid gradient conjugate method is an iterative method, and
this method can be used to search for solutions for optimization problems without
constraints in large-scale cases. This paper presents a new hybrid CG method,
which is the convex combination of HZ and DY, named the hHZDY method. We
demonstrated that the proposed method guarantees the sufficient descent and global
convergence conditions under the strong Wolfe inexact line search. The numerical
results are accurate.

Acknowledgments. The authors would like to thank the editor and the referees
for their useful comments, which greatly improved this paper.
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