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A NEW FAMILY OF HYBRID THREE-TERM CONJUGATE GRADIENT

METHOD FOR UNCONSTRAINED OPTIMIZATION AND ITS APPLICATION

TO REGRESSION ANALYSIS

SABRINA BEN HANACHI1, BADREDDINE SELLAMI2 and MOHAMMED
BELLOUFI3

Abstract. We know a large variety of conjugate gradient algorithms (CG) for solving uncon-
strained optimization problems. In this paper, based on the three famous Liu-Storey (LS), Fletcher-
Reeves (FR) and Polak-Ribiére-Polyak (PRP) conjugate gradient methods , a new hybrid CG
projection method is proposed. Furthermore, the search direction satisfies the sufficient descent
condition independent of the line search. Also, under the Wolfe line search we prove the global
convergence of the new method. Numerical experiments are performed and reported, which show
that the proposed method is efficient and promising. The application of the proposed method for
solving regression models of COVID-19 is provided.

Keywords: Unconstrained optimization, hybrid conjugate gradient method, sufficient descent,
convex combination, global convergence.
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1. Introduction

Unconstrained optimization is a branch of optimization in which we minimize an objective function that
depends on real variables with the total absence of restrictions on their values of those variables, we consider
the general unconstrained optimization problems as follows :

min{f(x), x ∈ Rn}, (1)

where f : Rn → R is the continuously differentiable function and its first derivative is represented by g(x) =
∇f(x). Though, many optimization algorithms that are robust with rapid convergence are available to solve
the above nonlinear optimization model, many researchers still refer to the conjugate gradient algorithm (CG)
because it uses low memory and good convergence properties. This method was first established by Hestenes
and Stiefel [15] and is used to solve unconstrained linear optimization problems. Then, in 1964, Fletcher
and Reeves [12] extended the form of the conjugate gradient method to solving unconstrained nonlinear
minimization problems. The results of the expansion inspired researchers to suggest a new conjugate gradient
method which has good computational performance and at the same time good convergence properties
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[5]. Generally, the iterates of the CG methods are usually determined through the following recursive
computational scheme :

xk+1 = xk + αkdk. k = 0, 1, . . . n, (2)

and

dk+1 =

{
−gk+1, if k = 0,

−gk+1 + βkdk, if k ≥ 1,
(3)

where xk is the current iteration, gk is the gradient of f at the point xk, dk is the search direction, βk ∈ R
is the conjugate parameter which characterizes different versions of the CG methods and αk > 0 is the step
size that can be obtained by many line search techniques. Among them, exact line search, weak Wolfe line
search, or strong Wolfe line search but in our research we use strong Wolfe line search which is defined by
the following conditions [22], [23] :

f(xk + αkdk)− f(xk) ≤ δαkgTk dk, (4)

|gTk+1dk| ≤ −σgTk dk, (5)

where scalars δ and σ satisfy 0 < δ ≤ σ < 1.

As we said the CG algorithms differ by the choice of the coefficient βk. The most common standard
CG methods are are the Hestenes-Stiefel (HS) method [15], the Fletcher-Reeves (FR) method [12], the
Conjugate-Descent (CD) method [13], the Dai-Yuan (DY) method [7], the Liu-Storey (LS) method [18] and
the Polak-Ribiére-Polyak (PRP) method [19,20], respectively and are defined as :

βHSk =
gTk+1yk

yTk sk
βFRk = ||gk+1||2

||gk||2 βCDk = ||gk+1||2
−gTk sk

βDYk = ||gk+1||2
yTk sk

βLSk =
gTk+1yk

−dTk gk
βPRPk =

gTk+1yk
||gk||2 ,

where yk = gk+1 − gk, sk = αkdk and ||.|| stands for the Euclidean norm, if f is strictly convex quadratic
function, all the above methods are equivalent, while behaves differently for general non quadratic functions.

One of the important classes of CG methods is the hybrid conjugate gradient algorithms. The hybrid
computational schemes perform have better computational performances and strong convergence properties
better than conventional CG methods because they take the advantages of the two parameters that were
used to build it. Thus, for this reason many researchers carred about the hybrid or mixed conjugate gradient

methods. Djordjevic’ [9], proposed the following hybrid method: βhybk = θkβ
FR
k + (1 − θk)βHSk , Andrei [4],

proposed the following hybrid method: βck = θkβ
DY
k + (1− θk)βHSk , Li and Sun [16], proposed the following

hybrid method: βNk = θkβ
MMWU
k + (1 − θk)βFRk , Liu, J.K. and Li, Sij [17], proposed the following hybrid

method: βhybk = θkβ
DY
k + (1 − θk)βLSk . In addition, Sabrina and al [14] propose a new hybrid CG method

based on combination of FR, PRP and DY conjugate gradient algorithms in which

βhybk = δkβ
FR
K + γkβ

PRP
K + (1− δk − γk)βDYK ,

where

γk = −g
T
k gk+1||gk||2 + δk(yTk sk − ||gk||2)||gk+1||2

(gTk+1yk)(yTk sk)− ||gk+1||2||gk||2
, where, 0 < δk < 1.

Inspired by this research, in this study we propose a new hybrid CG method based on combination of LS,
FR and PRP conjugate gradient algorithms for solving unconstrained optimization problems. In addition,
in this study, we also apply the new method for solving a model of COVID-19 outbreak around the globe in
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which the data is taken from January to September 2020.

The paper is structured as follows. In Section 2, we will describe the proposed method with its corre-
sponding algorithm, and further established the descent condition and convergence under inexact line search.
In Section 3, we present the numerical experiments to show the efficiency of our new method in Section 4.
Finally, a breif conclusion is drawn in section 5.

2. Proposed method, algorithm

In this paper we propose another combination of LS, FR and PRP conjugate gradient algorithms. We
use the following conjugate gradient parameter:

βNewk = δkβ
LS
k + γkβ

FR
k + (1− δk − γk)βPRPk (6)

As a consequence, the direction dk is given by :

dk+1 = −gk+1 + βNewk dk. (7)

The parameters δk, γk in (6) satisfying 0 ≤ δk, γk ≤ 1 which will be determined in a particular way that will
be described later. It should be noted that :

• If δk = 1 and γk = 0, then βNewk = βLSk .
• If δk = 0 and γk = 1, then βNewk = βFRk .
• If δk = 0 and γk = 0, then βNewk = βPRPk .
• If δk = 0 and 0 < γk < 1, then βNewk = γkβ

FR
k + (1− γk)βPRPk i.e βNewk is a convex combination of

βFRk and βPRPk . see. [8]
• If γk = 0 and 0 < δk < 1, then βNewk = δkβ

LS
k + (1 − δk)βPRPk i.e βNewk is a convex combination

between βLSK and βPRPK . see [1].
• If 1− δk − γk = 0, 0 < δk, γk < 1, then γk = 1− δk. Then βNewk = δkβ

LS
k + (1− δk)βFRk i.e βNewK is

a convex combination between βLSk and βFRk . see. [10]

Finally, if δk ∈]0, 1[, γk ∈]0, 1[ and 0 < δk + γk < 1, then we have a new hybrid CG method as a
convex combination of three methods ”LS, FR and PRP”. From (6) and (7), it is clear that:

dk+1 =


−gk+1, k = 1

−gk+1 + δk
gTk+1yk

−dTk gk
dk + γk

||gk+1||2
||gk||2 dk + (1− δk − γk)

gTk+1yk
||gk||2 dk, k > 1.

(8)

To select the parameters δk and γk we use the traditional conjugacy condition i.e. (dTk+1yk = 0), so we
have the following Lemma.

Lemma 1. If the conjugacy condition dTk+1yk = 0 is satisfied at every iteration, we get

δk =

(
gTk+1yk(||gk||2 − dTk yk)− γk(gTk+1gk)(dTk yk)

)
(||gk||2 + dTk gk)(−gTk+1yk)(dTk yk)

dTk gk, where 0 < γk < 1 (9)

Proof. multiplying (8) by yk from the left and using the conjugacy condition, we obtain

0 = −gTk+1yk + δkβ
LS
k dTk yk + γkβ

FR
k dTk yk + (1− δk − γk)βPRPk dTk yk,

gTk+1yk = δk

(
gTk+1yk

−gTk dk

)
dTk yk + γk

(
||gk+1||2

||gk||2

)
dTk yk + (1− δk − γk)

(
gTk+1yk

||gk||2

)
dTk yk.
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Finally, after some algebra we have:

δk =

(
gTk+1yk(||gk||2 − dTk yk)− γk(gTk+1gk)(dTk yk)

)
(||gk||2 + dTk gk)(−gTk+1yk)(dTk yk)

dTk gk, where 0 < γk < 1.

�

Next, we give the algorithm of our proposed method below

Algorithm (SCH)

Step1.: Initialization. Given x0 ∈ Rn and the parameters 0 < δ ≤ σ < 1. Set k = 0. Compute f(x0),
g0 = ∇f(x0). Consider d0 = −g0, set the initial guess: α0 = 0 and γk = 0.5.

Step 2.: Test a criterion for stopping iterations, if ||gk|| < 10−6, then stop. Else continue with Step 3.

Step 3.: Line search. Compute αk > 0 by the strong Wolfe line search, i.e., αk satisfies (4), (5).

Step 4.: Generate. xk+1 = xk + αkdk. Compute f(xk+1), gk+1 = ∇f(xk+1) and yk = gk+1 − gk.

Step 5.: Compute δk as in E.q (9).

Step 6.: Calculate βNewk by E.q (6).

Step 7.: Computation of the search direction. Compute d = −gk+1 + βNewk dk. If the restart criterion
of Powell

|gTk+1gk| ≥ 0.2||gk+1||2,

is satisfied, then dk+1 = −gk+1. Otherwise define dk+1 = d.

Step 8.: Put k = k + 1 and continue with Step 2.

2.1. The Sufficient Descent Condition

In this study, we will etablish the sufficient descent of our new method which plays an important role in
the global convergence analysis. Thus, we need the following assumptions,

Assumption 2. The level set S = {x ∈ Rn|f(x) ≤ f(x0)} is bounded, i.e. there exists a constant B > 0,
such that

||x|| ≤ B, for all x ∈ S. (10)

Assumption 3. In a neighborhood N of S the function f is continuously differentiable and its gradient
∇f(x) is Lipschitz continuous, i.e. there exists a constant 0 < L <∞ such that

||∇f(x)−∇f(y)|| ≤ L||x− y||, for all x, y ∈ N . (11)

Under Assumptions (2) and (3) on f , there exists a constant Γ ≥ 0, such that

||∇f(x)|| ≤ Γ, (12)

for all x ∈ S [3].

The following Theorem proves that the search direction obtained by the new method satisfies the sufficient
descent condition.
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Theorem 4. Let generated sequences {gk} and {dk} by a SCH algorithm and let (gTk+1yk)(gTk+1dk) < 0.
Also let {||sk||} tend to zero, and let there exist some constants δ1, δ2 > 0, such that

||gk||2 ≥ δ1||dk||2, (13)

||gk+1||2 ≤ δ2||dk||, (14)

and if 0 < δk, γk < 1, then dk satisfies the sufficient descent condition for all k.

Proof. We will show that dk satisfies the sufficient descent condition for k = 0, the proof is trivial one, i.e.
d0 = −g0, it holds gT0 d0 = −||g0||2. Next, we need to show that for all k ≥ 1, dk satisfies the sufficient
descent condition, we have

dk+1 = −gk+1 + δk
gTk+1yk

−dTk gk
dk + γk

||gk+1||2

||gk||2
dk + (1− δk − γk)

gTk+1yk

||gk||2
dk. (15)

Multiplying the above equation by gTk+1 from the left, we get

gTk+1dk+1 = −||gk+1||2 + δk
gTk+1yk

−dTk gk
gTk+1dk + γk

||gk+1||2

||gk||2
gTk+1dk + (1− δk − γk)

gTk+1yk

||gk||2
gTk+1dk,

since 0 < δk, γk < 1 and (gTk+1yk)(gTk+1dk) < 0, we obtain

gTk+1dk+1 ≤ −||gk+1||2 +
||gk+1||2

||gk||2
gTk+1dk.

Observe that, since gTk+1dk = yTk dk + gTk dk and since gTk dk < 0, then gTk+1dk < yTk dk, so the last relation
becomes

gTk+1dk+1 ≤ −||gk+1||2 +
||gk+1||2

||gk||2
yTk dk.

≤ −||gk+1||2 +
||gk+1||2

||gk||2
||yk|| ||dk||,

in the other hand, according to (11), we get

||yk|| = ||gk+1 − gk|| ≤ L||sk||,

by using the above equation, (13) and (14), we get

gTk+1dk+1 ≤ −||gk+1||2 +
δ2
δ1
||dk||,

≤ −||gk+1||2 +
δ2
δ1
α||sk||.

Due to the assumption that ||sk|| → 0, so δ2
δ1
α||sk|| → 0, so there exists ω such that 0 < ω ≤ 1. Therefore

δ2
δ1
α||sk|| ≤ ω||gk+1||2.

This gives,
gTk+1dk+1 ≤ −||gk+1||2 + ω||gk+1||2,

i.e.
gTk+1dk+1 ≤ −(1− ω) ||gk+1||2. (16)

So, it is proved that dk+1 satisfied the sufficient descent condition. �
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2.2. Convergence analysis

In the analysis below, we will establish the global convergence properties of the proposed method. First,
we need the following Proposition and Zoutendijk conditions.

Proposition 5. [17] Suppose that Assumptions (2) and (3) hold, if dk is a descent direction and αk satisfies

gTk+1dk ≥ σgTk dk, 0 < σ < 1. (17)

Then,

αk ≥
(1− σ)

L

|dTk gk|
||dk||2

. (18)

Proof. It follows (17), the Lipschitz condition, the Cauchy-Bunyakovsky-Schwartz inequality, it holds that

−(1− σ)dTk gk ≤ σdTk gk − dTk gk ≤ dTk (gk+1 − gk) ≤ dTk Lαkdk ≤ Lαk||dk||2. (19)

Since dk is a descent direction and σ < 1, formula (18) holds immediately. �

According to the Proposition (5), Assumptions (2) and (3), the strong Wolfe conditions and (16), we con-
clude that αk which obtained in our new method is not equal to zero i.e there exists a constant λ > 0 such that

αk ≥ λ, for all k ≥ 0. (20)

The Zoutendijk condition [27] is often utilized to prove the global convergence of the CG method. The
following Lemma shows that Zoutendijk condition holds for the proposed method under the strong Wolfe
conditions of formulas (4) and (5).

Lemma 6. Suppose that Assumptions (2) and (3) hold. Consider common iterate (2), where dk is a descent
direction and αk is determined by the Wolfe line search (4) and (5). Then the Zoutendijk condition

∑
k≥1

(gTk dk)2

||dk||2
<∞. (21)

The following Theorem gives the global convergence of SCH method.

Theorem 7. Suppose that Assumption (2) and (3) hold, let {xk} be generated by SCH Algrithm. Then

lim
k→∞

inf ||gk|| = 0. (22)

Proof. We prove this theorem by contradiction. Suppose that formula (22) is not true. Then there exists a
constant c > 0 in which

||gk|| ≥ c, ∀k ≥ 1. (23)

From theorem (4) it follows that

gTk dk ≤ −K||gk||2, for all K, (24)

in the other hand, according to (11), we get

||yk|| = ||gk+1 − gk|| ≤ L||sk|| ≤ LD, (25)

where D = max{||x− y||, x, y ∈ N} is the diameter of N and sk = xk+1 − xk.
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We have

dk+1 = −gk+1 + βNewK dk.

||dk+1|| ≤ ||gk+1||+ |βNewK |||dk||. (26)

From (6), we obtain

|βNewK | ≤ |βLSK |+ |βFRK |+ |βPRPK |,

=
|gTk+1yk|
|dTk gk|

+
||gk+1||2

||gk||2
+
|gTk+1yk|
||gk||2

.

≤ ||gk+1|| ||yk||
K||gk||2

+
||gk+1||2

||gk||2
+
||gk+1|| ||yk||
||gk||2

.

≤ ΓLD

Kc2
+

Γ2

c2
+

ΓLD

c2
= M,

where the first inequality follows from 0 < δk, γk < 1 and 1− δk − γk < 1, the second inequality applies the
Cauchy Schwarz inequality and (24), the last inequality uses (12), (23) and (25).
Thus, it follows from (3) and (20) that

||dk+1|| ≤ ||gk+1||+ |βNewK | ||dk|| ≤ ||gk+1||+
|βNewK |||sk||

αk
≤ Γ +

MD

λ
= W,

which implies that

||dk+1|| ≤W =⇒
∑
k≥1

1

||dk||2
= +∞

=⇒
∑
k≥1

(gTk dk)2

||dk||2
= +∞.

Which contradicts Lemma (6), hence, (23) does not hold, and the claim (22) is proved. �

3. Numericals Analysis

This section is devoted to test the implementation of the new method. Basing on this, we compare the
computational performance of the prorposed method with some known algorithms such as the LS, FR and
PRP. For this comparisons, we consider 400 unconstrained optimization test problems from CUTE library [6]
along with other large-scale optimization problems presented in [2]. We selected 30 large-scale unconstrained
optimization problems in extended or generalized form. What is more, each problem is tested for a number
of variables: n = 2, 4, . . . , 25000. The analysis was based on the number of iterations and central processing
unit CPU time. For the numerical tests, the iterations are terminated when ||gk||∞ < 10−6, where ||.||∞ is
the maximum absolute component of a vector, the parameters in the strong Wolfe line searches are chosen
to be δ = 10−3 and σ = 10−4 and the hybridization parameter γk = 0.5. All programs are written in Matlab
and compiler settings on the PC machine with Intel(R) Core(TM) i3- 4030U CPU @ 1.90 GHz 1.90 GHz
processor and 4GB RAM memory and windows 7 professional system.

The comparisons of these methods are given in the following two sides. On the first side, for the ith
problem, let fM1

i and fM2
i be the optimal value found by M1 method and M2 method, respectively. We

say that, for the praticular problem ith, the performance of M1 method was better than the performance
of M2 method if

|fM1
i − fM2

i | < 10−3, (27)
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and number of iterations, or CPU time of M1 method is less than those of M2 method, respectively. In the
other side, in order to obtain complete comparisons in CPU time, we used the profile of Dolan and Moré [11]
to evaluate and compare the performance of the set of methods S on a test set P . Assume that S consists
of ns methods, P consists of np problems. For each problem p ∈ P and method s ∈ S, denote tp,s be the
computing time required to solve problem p by method s, and the comparison between different methods is
based on the performance ratio deffined by rp,s := tp,s|mins∈S tp,s. Then the performance profile is given by

ρs(τ) =
1

np
size{p ∈ P : log2 rp,s ≤ τ}, ∀τ ∈ R+,

where ρ : R→ [0, 1] and 1 ≤ s ≤ ns. The function ρs is the distribution function for the performance ratio.
Moreover, ρs for a method is a nondecreasing, piecewise constant function, continuous from the right at each
breakpoint. Note that ρs(τ) is the probability for method s ∈ S that log2 rp,s is within a factor τ ∈ R+ of the
best possible ratio. Obviously, when τ takes certain value, a method with high value of ρs(τ) is preferable
or represent the best method.

Figures 1 and 2 represent the performance profiles of the new method versus LS, FR and PRP based on
the CPU time and number of iterations ,respectively. From the two figures, we can see that the new method
is superior to the other conjugate gradient methods on the testing problems.
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Figure 1. Performance Profile
based on the iteration number.
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Figure 2. Performance Profile
based on the CPU time.

4. Application of the New CG method to Regression Analysis

Novel coronavirus-19 (COVID-19) is a new chain of corona group viruses that had not been recognized in
human history earlier than December 2019. It was first discovered in Wuhan, China [25] and has spread to
various urban areas in China as well as approximately 196 different countries of the world. It has since been
declared an outbreak by World Health Organization (WHO). It is difficult to take a single point of view on
this virus’s origin. It can be due to a seafood market exchange, or the people’s migration from one location
to another, or the transmission from animals to humans. Most people infected by the virus will develop
mild to moderate symptoms, such as mild fever, cold, difficulty in breathing, and recover without special
treatment. According to data reported by the WHO, on 20 October 2020, the laboratory declared that the
number of confirmed cases is over 40 million with more than one million deaths recorded in 215 regions and
countries around the world since the disease was first reported in Wuhan.
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Mathematical modeling plays an important role in describing the epidemic of infectious diseases and thus
overcome it at an early stage. Recently, numerous studies modeled various aspects of the coronavirus out-
break, and application of numerical methods on some COVID-19 models was also studied [21, 26]. This
paper aims to investigate the performance of the proposed method on a parameterized COVID-19 regression
model. For deriving the COVID-19 regression model, the study will consider the total confirmed cases of
the infection from january 2020 until september 2020. The obtained data would be transformed into an
unconstrained optimization problem which would later be solved using the proposed method.

Regression analysis is one of the most effective statistical modeling tools for modeling problems in the
applied sciences, physical sciences, management, and many others. Based on the previous description, we can
describe regression analysis as a statistical technique used to estimate the relationship between a dependent
variable and one or more independent variables. The function of regression analysis is defined as follows :

y = h(x1, x2, . . . , xp + ε), (28)

where xi, i = 1, 2, . . . , p, p > 0 is the predictor, y is the response variable, and ε is the error. For any problem
related to regression analysis the linear regression function can be derived by computing y such that:

y = a0 + a1x1 + a2x2 + · · ·+ apxp + ε. (29)

with a0, . . . , ap representing the regression parameters, these parameters are estimated to minimize the error
ε value. This scheme is often used when the relationship between x and y is approximated by a straight
line. However, this cases rarely occur because most problems are often nonlinear in nature. Therefore, the
nonlinear regression scheme is frequently used. In this paper, we considered the nonlinear regression one.

To derive the approximate function, we consider the data from the global confirmed cases of COVID-19
from January to September, 2020. Table 1 shows the description of the process that is considered from the
statistics obtained from the World Health Organization [24]. We have data for nine months (Jan–Sept), the
months of data collection would be denoted by x- variable and the confirmed cases corresponding to these
months would be denoted by the y-variable. However, the data of eight months (Jan to Aug ) would be
considered for fitting the data, while the data for September 2020 would be reserved for error analysis.

Table 1. Statistics of confirmed cases of COVID-19, Jan–Sept, 2020

Monthly data (Jan–Sept) (x) Data of confirmed COVID-19 cases (y) Statistics of COVID-19 in %

1 2010 0.16
2 1852 0.14
3 58,863 4.7
4 74,019 6.0
5 115,577 9.3
6 172,158 13.9
7 293,238 23.6
8 269,338 21.7
9 254,423 20.5

From the above data, the approximate function for the nonlinear least square method is defined by

f(x) = −25932 + 14512x+ 3294.5x2. (30)

The above function (30) will be utilized when approximating the y data values based on x data values
from Jan - Aug. Let xj denotes number of months and yj be the the confirmed cases for that month. Based
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on this information, the above least squares method (30) is transformed into the following unconstrained
minimization problems

min
x∈Rn

f(x) =

n∑
j=1

((u0 + u1xj + u2x
2
j )− yj)2. (31)

The data of the first eight months from the table 1 are utilized to formulate the nonlinear quadratic
model for the least square method, which is further used to derive the unconstrained optimization model.
On the basis of the above discussion, it is obvious that there exist some parabolic relations between the data
xj and the value of yj with the regression function defined by (30) and the regression parameters u0, u1 and u2

min
x∈R2

n∑
j=1

E2
j =

n∑
j=1

((u0 + u1xj + u2x
2
j )− yj)2. (32)

Next, using the data of Table 1, we transform (32) to obtain our nonlinear quadratic unconstrained mini-
mization model as follows:

8u21+72u1u2+408u1u3−1974110u1+204u22+2592u2u3−12593164u2+8772u23−84833792u3+210479037915.
(33)

The above nonlinear quadratic model was constructed using data from Jan– Aug. While the data for Sept
is reserved for relative error analysis of the predicted data. Now, we can apply the SCH, LS, FR and PRP
methods for solving the model (33) under the strong Wolfe line search conditions (4, 5), we obtain the
performance results based on iteration numbers and CPU time presented in Table 2.

Table 2. Test results for optimization of quadratic model for SCH, LS, FR and PRP.

Initial points SCH LS FR PRP

NOI CPU NOI CPU NOI CPU NOI CPU

(2, 2, 2) 244 2.0670 408 2.3450 F F F F
(3, 3, 3) 471 2.9430 519 3.1970 F F 252 1.4530

(10, 10, 10) 410 2.7200 429 2.5140 F F F F
(13, 13, 13) 632 4.4500 691 4.2880 F F F F
(30, 30, 30) 344 2.1830 457 2.7360 F F F F

To overcome the difficulty of computing the values of u0, u1, u2 using matrix inverse, we implement the
previously mentioned methods using different initial points. We terminate the computation if:

• The defined stopping criteria is satisfied. This is based on value defined for each function.
• The method is unable to solve the model.

4.1. Trend line method

In this subsection, we tend to estimate the confirmed cases of COVID-19 for a period of eight (8) months,
using the proposed SCH, some known CG and least square methods. From the actual data obtained from
Table 2, we use Microsoft Excel software to plot the trend line as shown in Figure (3). Furthermore, to
show the efficiency of the proposed method, we compare the approximation functions of the SCH method,
with the functions of the LS, FR, PRP and trend line methods. Based on the results presented in Table
2, it is obvious that the suggested SCH method is faster and more efficient compared to the used methods.
On the other hand, from the plot, it is clear that the trend line equation obtained is in the form of a
nonlinear quadratic equation. The ideal purpose of the regression analysis is to estimate a0, a1, . . . , ap where
the error ε is minimized. From the above discussion, we can conclude that the SCH method can be used
as an alternative to the trend line method and the least squares method, which implies that the method is
applicable to real-world situations.



TITLE WILL BE SET BY THE PUBLISHER 11

Figure 3. Nonlinear quadratic trend line for confirmed cases of COVID-19.

5. Conclusion

The hybrid CG methods are usually obtained based on the classical CG methods by integrating their
advantages. In this paper we proposed a new hybrid conjugate gradient algorithms in which the famous
parameter βk is computed as a convex combination of βLSk , βFRk and βPRPk algorithms. Based on some
conditions, we show that The proposed algorithm enjoys the sufficient descent condition and converge globally
under strong Wolfe line search. A numerical experiments are considered to illustrate the performance of the
proposed method. The obtained results show that the new method is effective with better convergence rate
compare to the methods of LS, FR and PRP. Moreover, our proposed method can solve the COVID-19 case
model.
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