
Received: 30 January 2024 - Revised: 3 June 2024 - Accepted: 21 June 2024 - IET Nanodielectrics
DOI: 10.1049/nde2.12088

OR I G INAL RE SEARCH

A combined technique for power transformer fault diagnosis
based on k‐means clustering and support vector machine

Arnaud Nanfak1 | Abdelmoumene Hechifa2 | Samuel Eke1 | Abdelaziz Lakehal3 |
Charles Hubert Kom1 | Sherif S. M. Ghoneim4

1Laboratory of Energy, Materials, Modelling and
Methods, National Higher Polytechnic School of
Douala, University Douala, Douala, Cameroon

2LGMM Laboratory, Faculty of Technology,
University of 20 August 1955‐Skikda, Skikda, Algeria
3Laboratory of Research on Electromechanical and
Dependability, University of Souk Ahras, Souk
Ahras, Algeria

4Electrical Engineering Department, College of
Engineering, Taif University, Taif, Saudi Arabia

Correspondence

Arnaud Nanfak, Laboratory of Energy, Materials,
Modelling and Methods, National Higher
Polytechnic School of Douala, University Douala,
Douala 2701, Cameroon.
Email: nanfak.arnaud@yahoo.fr

Abstract
This contribution presents a two‐step hybrid diagnostic approach, combining k‐means
clustering for subset formation, followed by subset analysis conducted by human experts.
As the feature input vector has a significant influence on the performance of unsuper-
vised machine learning algorithms, seven feature input vectors derived from traditional
methods, including Duval pentagon method, Rogers ratio method, three ratios technique,
Denkyoken method, ensemble gas characteristics method, Duval triangle method, and
Gouda triangle method were explored for the subset formation stage. The seven pro-
posed individual methods, corresponding to the seven feature input vectors, were
implemented using a dataset of 595 DGA samples and tested on an additional 254 DGA
samples. Furthermore, a combined technique based on a support vector machine was
introduced, utilising the diagnostic results of the individual methods as input features.
From training and testing, with diagnostic outcomes of 91.09% and 90.94%, the com-
bined technique demonstrated the highest overall diagnostic accuracies. Using the IEC
TC10 database, the diagnosis accuracies of the proposed diagnostic methods were
compared to existing methods of literature. From the results obtained, the combined
technique outperformed the proposed individual methods and existing methods used for
comparison.
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1 | INTRODUCTION

Power transformers are an important piece of equipment used
to transmit and distribute electrical energy. The failure of these
machines can lead to significant financial lost due to in-
terruptions in the distribution of electricity and costly repairs
or replacements [1]. Therefore, rapid detection and accurate
assessment of emerging or existing internal faults in power
transformers are essential to ensure the efficient and safe
operation of the power system network [2]. In addition, it is
one of the means to increase the operational reliability and the
useful service life of these machines. To achieve this goal,
several diagnostic methods have been proposed in the litera-
ture, such as partial discharge measurement, furans analysis,

frequency response analysis, moisture analysis or dissolved gas
analysis (DGA) [3]. Among the above techniques, DGA is the
most often used to assess transformer conditions. Several
DGA‐based methods have been proposed in the literature and
can be classified into two main categories: traditional and
intelligent methods [4].

Traditional methods are based on rules produced by hu-
man experts. These rules rely on concentration, concentration
ratios and/or percentages of fault‐related gases to the various
faults. In general, three approaches to the synthesis of tradi-
tional methods are used in the literature: The key gas
approach, the gas ratios approach, and the graphical approach.
According to IEEE C57.104‐2019, key gas methods rely on
the correlation between the fault types and the generated key
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gases [5]. Gas ratio methods consider the fault‐related gases
ratios as diagnostic criterion. These include, among others
Rogers ratios method (RRM) [5], IEC 60599 ratios method [6]
or Three Ratios Technique (TRT) [7]. Graphical methods are
based on the projection in a two‐ or three‐dimensional plane
of a point representing the health state of the transformer. The
most common graphical methods are Duval Triangle method
[5], Mansour pentagon method [8] or Gouda Triangle method
[9]. In intelligent methods, DGA data are interpreted using
artificial intelligence (AI) tools. The literature suggests intelli-
gent methods that rely on machine learning [10–12], artificial
neural networks (ANN) [13] or deep learning [14], among
others.

Professionals involved in the maintenance of power
transformers frequently employ traditional methods because
they are straightforward, simple to understand, and easy to
apply. They do, however, have some limits regarding uncer-
tainty and precision. Indeed, the limitations of existing tradi-
tional methods, such as incomplete ratio ranges for gas ratio
methods or misclassification of faults near the boundaries
between adjacent regions for graphical methods, are mainly
due to the strong non‐linearity that exists between the fault
types and fault‐related gases produced [15, 16]. In addition to
this reason, these limitations could also be explained by the
one‐step diagnostic approach and the size of training dataset
size used in the implementation phase. These elements do not
allow the human expert to consider all the characteristics of the
dataset when implementing the diagnostic model. This paper
addresses these issues using a hybrid two‐step diagnostic
approach based on a combination of clustering (k‐means) and
human expert analysis.

The proposed methods create subsets using the k‐means
clustering algorithm, and for each subset, a traditional sub‐
model is produced. The rules of these sub‐models are
based on the links between the different faults related to the
subsets and the concentration ratios of hydrogen, methane,
ethane, ethylene, and acetylene. Given that the feature input
vector affects how well the algorithm finds intriguing and
hidden patterns in unlabelled data [17], seven feature input
vectors from traditional methods are studied for subset for-
mation. For each input vector used, a diagnostic model is
proposed. In addition to seven individual methods related to
seven feature input vectors utilised, a combined technique is
also proposed. This combined technique is based on diag-
nostic results of seven individual models and support vector
machine (SVM) algorithm. Indeed, to integrate all the indi-
vidual methods into the combined technique, an SVM clas-
sifier is trained with the diagnostic results of individual
methods as feature inputs.

A total of eight diagnostic methods was proposed in this
paper. All these methods were carried out using a dataset of
595 samples and tested on a dataset of 254 samples. Another
dataset of 117 samples known as the IEC TC10 database will
be utilised for validation and the diagnostic outcomes are
compared with the DGA‐based methods in the literature. The
following key points characterise the originality of this
contribution:

� This paper presents a two‐step hybrid approach that com-
bines human expertise and k‐means clustering, significantly
improving the accuracy of power transformer fault diagnostic.

� The proposal of a combined technique based on the SVM
algorithm, which integrates the results of seven individual
methods linked to the seven input vectors studied.

The remaining part of this paper is organised as follows:
Section 2 presents the principle and the flow chart of the in-
dividual methods and combined technique that have been
proposed in this paper. This section also introduces the seven
feature input vectors and dataset that were utilised to construct
the seven individual methods. Section 3 presents the evaluation
of the performance and effectiveness of the proposed indi-
vidual methods and combined technique. The metrics used for
the evaluation and the comparison with other methods in the
literature conducting using the IEC TC10 database are also
presented in this section. Section 4 concludes the paper.

2 | MATERIALS AND METHOD

This section presents the principle and the flow chart of
proposed methods. In addition, seven features input vectors
and datasets used in this paper are presented.

2.1 | Principle of the individual methods

The principle of the proposed individual methods is based on
the clustering and human expert analysis. These methods have
two steps: clusters formation and analysis of subsets of dis-
solved gases. In cluster formation step, 120 clusters are
generated using k‐means algorithm. As a cluster may contain
one or more fault types, during the subset's analysis step, hu-
man experts propose a traditional sub‐model based on gas
ratios approach to separate the different fault types associated
with the same cluster. The different sub‐models are combined
to create the final diagnostic model. Figures 1 and 2 show,
respectively, the schematic view of the methodology used to
implement each individual method and the different steps in
the diagnostic procedure once the methods have been imple-
mented. Table 1 presents the ratios used by human expert to
separate the different fault types associated with the same
subset. In general, this approach could be applied to any data‐
based diagnostic system, considering certain system specific
considerations. To this end, the two steps of clustering fol-
lowed by cluster analysis to implement sub‐models should be
applied successively.

In the implementation of the individual methods, the
labelled dataset is separated into two groups of data, one for
training and the other for testing. The training dataset, con-
sisting of the absolute values of the fault gas concentrations
associated to fault type, is first pre‐processed. In the data pre‐
processing stage, the absolute concentrations are used to
construct the input feature vector for the clustering algorithm.
Once the training dataset has been pre‐processed, the sample
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labels are removed, and 120 clusters are formed using the k‐
means algorithm. Once the clusters have been formed, the la-
bels are put back in place before being analysed independently
of each other using gas ratios of Table 2. The human expert
proposes a diagnostic sub‐model for each cluster based on these
gas ratios. Once the 120 sub‐models have been proposed, they
are all integrated into the final diagnostic model.

2.2 | Principle of the combined technique

The combined technique is based on the diagnostic results of
seven individual methods constructed from the seven feature
input vectors. To integrate the results of individual methods
together in a unified diagnostic model, an SVM classifier is
trained with as input features, the diagnostic results of individual

methods, and as labels the fault types. Figures 3 and 4 show,
respectively, the methodology used to implement the SVM‐
based combined technique and the different steps in the diag-
nostic procedure once the methods have been implemented.

2.3 | Data pre‐processing and feature input
vectors

During the clustering stage, the training data is pre‐processed
before being used. After this pre‐processing, the gas concen-
tration values are replaced by input feature vectors all inspired
by traditional methods which are among the most significant
and relevant in the literature. Table 2 shows the seven input
feature vectors used in this paper. The significance and role of
each vector are explained as follows:

F I GURE 1 Schematic view of the approach used to implement the suggested individual methods into practice.

F I GURE 2 The various steps in the diagnostic procedure of the individual methods.

TABLE 1 Expressions of gas ratios used by human experts to implement diagnostic sub‐models.

Ratio Expression Ratio Expression Ratio Expression

R1 (CH4 þ C2H6)/THHG R6 C2H2/C2H4 R11 C2H2/(C2H2 þ C2H4 þ CH4)

R2 (C2H4 þ CH4)/THHG R7 (C2H6 þ C2H4)/(C2H2 þ CH4 þ H2) R12 CH4/H2

R3 C2H6/(CH4 þ C2H4) R8 (CH4 þ C2H2)/C2H4 R13 C2H4/C2H6

R4 (CH4 þ H2)/THHG R9 CH4/(C2H4 þ CH4 þ C2H2) R14 (C2H6 þ C2H4)/(C2H2 þ H2)

R5 (C2H4 þ C2H2)/THHG R10 C2H4/(CH4 þ C2H4 þ C2H2) R15 (C2H2 þ C2H6)/C2H4

Note: With THHG: Total hydro hydrocarbon gas THHG = H2 þ C2H6 þ C2H4 þ CH4 þ C2H2.
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� Vector 1: The vector consists of the percentage concen-
trations of the fault‐related gases (H2, CH4, C2H6, C2H4 and
C2H2). This vector eliminates the effect of individual gas
concentration values and ensures that each gas is considered
according to its proportion in the whole.

� Vector 2: The vector consists of the percentages of the three
gas ratios proposed by the RRM.The gas ratios of thismethod
have been used as diagnostic criteria in other methods for

diagnosing faults in power transformers, such as the IEC
60599 ratio method or the SOU‐N EE 46.501:2006 method.

� Vector 3: The vector consists of the percentages of the
three gas ratios proposed by the TRT. This ratio method
uses three new gas ratios selected based on their ability to
distinguish faults according to their severity.

� Vector 4: The vector consists of the percentages of the
relative concentrations of the key gases proposed by the

TABLE 2 Equation of the seven feature input vectors used to form the clusters.

Vector Components Equation and reference

Vector 1 X = [%H2, %CH4, %C2H6, %C2H4, %C2H2] XðiÞ ¼ Ci
P5

j¼1

Cj

Where Ci and Cj: C1 to C5 are the concentrations (in ppm) of H2, CH4, C2H6, C2H4, and C2H2

respectively.

Vector 2 X = [%R1, %R2, %R3]

8
>><

>>:

XðiÞ ¼
Ri

P3

j¼1
Rj

with

R1 ¼ CH4=H2

R2 ¼ C2H2=C2H4

R3 ¼ C2H4=C2H6

Where Ri,Rj:R1 to R3 are the ratios of RRM [5]

Vector 3 X = [%R1, %R2, %R3]

8
>><

>>:

XðiÞ ¼
Ri

P3

j¼1
Rj

with

R1 ¼ C2H2=C2H4

R2 ¼ ðC2H6 þ C2H4Þ=ðH2 þ C2H2Þ

R3 ¼ ðCH4 þ C2H2Þ=C2H4

Where Ri,Rj:R1 to R3 are the ratios of TRT [7].

Vector 4 X = [%R1, %R2, %R3, %R4, %R5]

8
>>>>>>>><

>>>>>>>>:

XðiÞ ¼
Ri

P5

j¼1
Rj

with

R1 ¼H2=H2 lim

R2 ¼ CH4=CH4 lim

R3 ¼ C2H6=C2H6 lim

R4 ¼ C2H4=C2H4 lim

R2 ¼ C2H2=C2H2 lim

Where Ri,Rj:R1 to R5 are relative concentrations of key gases proposed by the EGC method [18].

Vector 5 X = [%R1, %R2, %R3, %R4, %R5]

8
>>>>>>>><

>>>>>>>>:

XðiÞ ¼
Ri

P5

j¼1
Rj

with

R1 ¼H2=Cmax

R2 ¼ CH4=Cmax

R3 ¼ C2H6=Cmax

R4 ¼ C2H4=Cmax

R2 ¼ C2H2=Cmax

Where Cmax = max (H2,CH4,C2H6,C2H4,C2H2) and Ri,Rj:R1 to R5 are relative concentrations of
key gases used in Denkyoken method [19].

Vector 6 X = [%CH4, %C2H4, %C2H2] XðiÞ ¼ Ci
P3

j¼1
Cj

Where Ci and Cj: C1 to C5 are the concentrations (in ppm) of CH4, C2H4 and C2H2 respectively.
This feature vector is based on the Duval triangle method [5].

Vector 7 X = [%R1, %R2, %R3]

8
>><

>>:

XðiÞ ¼
Ri

P3

j¼1
Rj

with

R1 ¼ C2H2=C2H4

R2 ¼ ðC2H6 þ C2H4Þ=ðH2 þ C2H2Þ

R3 ¼ ðCH4 þ C2H2Þ=C2H4

Where Ri,Rj:R1 to R3 are the ratios of Gouda triangle method [9].
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ensemble gas characteristics (EGC) method [18]. As the
relative concentrations are calculated in relation to the
permissible value of each key gas respectively, they allow the
contribution of each gas to be considered in the interpre-
tation of dissolved gases.

� Vector 5: The vector consists of the percentages of the
relative concentrations of the key gases proposed by the
Denkyoken method [19]. The relative concentrations pro-
posed in this method allow the major gas and the pro-
portions of the other gases in relation to the major gas to be
considered in the process of interpreting dissolved gases.

� Vector 6: The vector consists of the percentages of the
three key gases used in the Duval's triangle method.
Although the Duval's triangle method has been criticised in
the literature for not considering all the gases associated
with the fault, the gases selected by Duval in this method
provide sufficient information for the detection and iden-
tification of the six main IEC faults.

� Vector 7: The vector consists of the percentages of the
three gas ratios used in the Gouda's triangle method. As
with TRT, the gas ratios of this graphical method have been
proposed because of their ability to distinguish between
faults according to their severity.

2.4 | Datasets used

The study employed 849 labelled DGA data to evaluate and
apply the suggested diagnostic techniques. Low energy
discharge (D1), high energy discharge (D2), Partial discharge
(PD), low thermal fault (T1), medium thermal fault (T2), and

high thermal fault (T3) are the six main fault types that make
up these DGA data. Table 3 displays the quantity of samples
categorised by fault kind and reference. As indicated in
Table 4, the data collected was randomly divided into two
data sets: a test and a training set with a 70:30 training to test
ratio.

To verify the efficacy of the suggested fault diagnosis
models, a new dataset, not part of the implementation stage,
was used. This is the IEC TC10 database containing 117
labelled DGA data [27]. Tables 5 and 6 show the abbreviations
of different equipment and data composition of IEC TC10
database respectively.

A total of two databases are used in this article. One for the
implementation and evaluation of the individual and combined
methods. Another for comparison with several methods of the
literature.

3 | RESULTS AND DISCUSSION

3.1 | Metrics for model evaluation

Table 7 presents the metrics used to evaluate the performance
of the proposed methods. These metrics include accuracy,
sensitivity, precision, specificity, and F1 score. They are
calculated based on the number of true positive (TP), false
positive (FP), true negative (TN), and false negative (FN)
obtained from the confusion matrix as shown in Figure 5. The
sensitivity refers to model's ability to discern the true fault. The
precision returns the truly positive individual proportion within
a population predicted as positive. The specificity refers to

F I GURE 3 Schematic view of the approach
used to implement the suggested combined
technique into practice.

F I GURE 4 The various steps in the diagnostic procedure of the combined technique.

NANFAK ET AL. - 5
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model's ability to discern the negative population [29]. The
macro average metrics are used to evaluate the method on all
class while the other metrics to evaluate the method on one
class.

3.2 | Implementation results and discussion

The algorithmwas designed in .m codes, andMATLAB software
was used to carry out the implementation. The MATLAB codes
of the proposed methods and datasets used are available online

in a repository hosted in Github [30]. Table 8 and Figure 6
present the method and fault diagnostic accuracies obtained for
the training and testing datasets respectively.

TABLE 5 Composition of validating dataset.

Abbreviations Equipment
Number of
samples

P Power transformer without communication OLTC 36

U Power transformer with communication OLTC 22

R Reactor 32

S / 7

I Instrument transformer 12

B Bushing 5

C Cable 2

TABLE 4 The training and testing dataset's composition.

Dataset

Fault types

D1 D2 PD T3 T2 T1 Total

Training 106 113 58 117 95 106 595

Testing 45 48 25 50 40 46 254

TABLE 3 Distribution of the collected data.

References

Fault types

D1 D2 PD T3 T2 T1 Total

[20] 127 141 55 90 65 114 592

[21] 4 3 2 2 3 3 17

[16] 0 1 0 7 14 1 23

[22] 0 0 0 0 32 27 59

[23] 0 7 1 5 5 0 18

[24] 14 3 19 50 8 0 94

[25] 3 4 3 8 6 4 28

[26] 3 2 3 5 2 3 18

Total 151 161 83 167 135 152 849

TABLE 6 Composition of IEC TC10 database.

Fault types

D1 D2 PD T1/T2 T3 Total

Number of samples 26 48 9 16 18 117

TABLE 7 Metrics used for model evaluation [28].

Metric Formula

Accuracy Acc¼

PN

i¼1
TPðCiÞ

PN

i¼1

PN

j¼1
Ci;j

Sensitivity of class TPRðCiÞ ¼
TPðCiÞ

TPðCiÞþFNðCiÞ

Precision of class PPVðCiÞ ¼
TPðCiÞ

TPðCiÞþFPðCiÞ

Specificity of class TNRðCiÞ ¼
TNðCiÞ

TNðCiÞþFPðCiÞ

F1‐score of class F1ðCiÞ ¼ 2 · TPRðCiÞ·PPVðCiÞ

TPRðCiÞþPPVðCiÞ

Sensitivity macro average TPRðmacroÞ ¼ 1
N
PN

i¼1
TPRðCiÞ

Precision macro average PPVðmacroÞ ¼ 1
N
PN

i¼1
PPVðCiÞ

Specificity macro average TNRðmacroÞ ¼ 1
N
PN

i¼1
TNRðCiÞ

F1‐score macro average F1ðmacroÞ ¼ 2 · TPRðmacroÞ·PPVðmacroÞ
TPRðmacroÞþPPVðmacroÞ

F I GURE 5 TP, FP, TN and FN identification from the confusion
matrix of a multiclass classification problem [28]. FN, false negative; FP,
false positive; TN, true negative; TP, true positive.

TABLE 8 Method diagnostic accuracies obtained for training and
testing datasets.

Methods

Diagnosis accuracies (%)

Training dataset Testing dataset

Individual method 1 89.92 88.98

Individual method 2 87.90 87.01

Individual method 3 87.73 84.25

Individual method 4 90.08 87.40

Individual method 5 88.40 88.19

Individual method 6 88.74 87.80

Individual method 7 85.88 83.07

Combined technique 91.09 90.94

6 - NANFAK ET AL.
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From the fault diagnostic outcomes shown in Figure 6, for
D1 fault, the individual method 2 has the best performance
with a diagnostic accuracy of 93.33%. With a diagnostic ac-
curacy of 97.92%, the individual method 6 performed the best
for D2 fault. For PD fault, the best performance is achieving by
the individual methods 5 and 6. For T1 fault, the individual
methods 2 and 5 have the best performance with a diagnostic
accuracy of 93.48%. For T2 fault it's the combined technique
that performed the best with a diagnostic accuracy of 87.50%.
For T3 fault, the best performance is achieving by the indi-
vidual methods 1 and 4. From these results, the feature vector
used for cluster formation impacts the performance of the
returned diagnostic method. The feature input vector used has
an impact on the quality of the clusters formed, and therefore
on the performance of the human expert in separating the
different fault types associated with the same cluster.

From the fault diagnostic outcomes shown in Table 8,
among the individual methods, methods 1 and 4 with the diag-
nostic accuracies of 89.92% and 90.08% respectively have the
best performance on the training dataset. With a diagnostic

accuracy of 91.09%, the combined technique performed the best
of all the proposed methods. Individual method 7 based on
vector 7, which consists of the percentage ratios of the Gouda
triangle method, is the least effective method with a diagnostic
accuracy of 85.88%. The diagnostic accuracies obtained with the
seven individual methods, on the testing dataset, are close to
those obtained on the training dataset. Like on the training
dataset, the methods 1 and 4 performed the best. With a diag-
nostic accuracy of 90.94%, the best performance on the testing
dataset was achieved by combined technique.

Based on the diagnostic results obtained on the testing
dataset, the statistical performance metrics of the proposed
methods were calculated and are presented in Table 9. The
results of the macro average metrics for evaluating the pro-
posed methods across all classes are presented in Figure 7.
Regarding the results in Figure 7, the combined technique
outperforms the other methods. In fact, it presents the best
results in terms of sensitivity, precision, specificity and F1
score. This can be explained by the complementary nature of
the latter, which incorporates all the advantages of each indi-
vidual method. In fact, the analysis of the results in Table 9
shows that no individual method performs well on all classes
(faults) at once. For example, individual method 2 tends to
identify and classify the D2 fault well, while it performs less
well for the PD fault.

3.3 | Sensitivity and significance difference
analysis of the proposed methods

Sensitivity analysis is a valuable technique for assessing the
impact of variations in input parameters or model configu-
rations on diagnostic outcomes. In other words, it quantifies
how the uncertainty in a model's results is related to the
uncertainty in its input data. One‐at‐A‐Time analysis, where
one input parameter is changed while the others are held
constant, is used in this study to perform the sensitivity
analysis. In this experiment, the concentration of one of the
gases is changed before the DGA sample is submitted to the
diagnostic method for interpretation. This experiment is
performed on all test data and the results obtained are
summarised in Table 10. Table 11 shows the descriptive
statistical results of sensitivity analysis. From these results, it
can be concluded that individual methods 1, 4, and 5 are the
least sensitive to variations in gas concentration values.
However, this is not true for methods 2, 4, 6, and 7, as they
are highly sensitive to these variations. This could be
explained by the nature of the input feature vectors.

To carry out an analysis of the significant differences be-
tween the proposed methods, the Friedman test is applied to
the diagnostic accuracies presented in Table 10. This test is a
non‐parametric test used to identify and analyse statistically
significant differences between the proposed methods. The
Friedman test was performed using two hypothetical state-
ments, the null hypothesis (H0) and the alternative hypothesis
(H1). The null hypothesis states that there is no difference
between the proposed methods, implying that the feature input

F I GURE 6 The diagnostic accuracies of the proposed methods
obtained on the training and testing datasets according to the fault type. (1):
Individual method 1. (2): Individual method 2. (3): Individual method 3. (4):
Individual method 4. (5): Individual method 5. (6): Individual method 6. (7):
Individual method 7. (8): Combine technique.
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TABLE 9 Proposed method performances.

TP FP TN FN TPR (Ci) (%) PPV(Ci) (%) TNR (Ci) (%) F1(Ci) (%) Acc (%)

Individual method 1 PD 18 2 227 7 72.00 90.00 99.13 80.00 88.98

D1 39 5 204 6 86.67 88.64 97.61 87.64

D2 43 5 201 5 89.58 89.58 97.57 89.58

T1 42 7 201 4 91.30 85.71 96.63 88.42

T2 34 1 213 6 85.00 97.14 99.53 90.67

T3 50 8 196 0 100.00 86.21 96.08 92.59

Individual method 2 PD 16 5 224 9 64.00 76.19 97.82 69.57 87.01

D1 42 7 202 3 93.33 85.71 96.65 89.36

D2 42 2 204 6 87.50 95.45 99.03 91.30

T1 43 11 197 3 93.48 79.63 94.71 86.00

T2 31 1 213 9 77.50 96.88 99.53 86.11

T3 47 7 197 3 94.00 87.04 96.57 90.38

Individual method 3 PD 19 4 225 6 76.00 82.61 98.25 79.17 84.25

D1 38 7 202 7 84.44 84.44 96.65 84.44

D2 42 5 201 6 87.50 89.36 97.57 88.42

T1 39 7 201 7 84.78 84.78 96.63 84.78

T2 30 4 210 10 75.00 88.24 98.13 81.08

T3 46 13 191 4 92.00 77.97 93.63 84.40

Individual method 4 PD 18 1 228 7 72.00 94.74 99.56 81.82 87.40

D1 39 12 197 6 86.67 76.47 94.26 81.25

D2 40 5 201 8 83.33 88.89 97.57 86.02

T1 41 5 203 5 89.13 89.13 97.60 89.13

T2 34 5 209 6 85.00 87.18 97.66 86.08

T3 50 4 200 0 100.00 92.59 98.04 96.15

Individual method 5 PD 20 1 228 5 80.00 95.24 99.56 86.96 88.19

D1 39 5 204 6 86.67 88.64 97.61 87.64

D2 44 10 196 4 91.67 81.48 95.15 86.27

T1 43 4 204 3 93.48 91.49 98.08 92.47

T2 34 2 212 6 85.00 94.44 99.07 89.47

T3 44 8 196 6 88.00 84.62 96.08 86.27

Individual method 6 PD 20 2 227 5 80.00 90.91 99.13 85.11 87.80

D1 41 3 206 4 91.11 93.18 98.56 92.13

D2 47 3 203 1 97.92 94.00 98.54 95.92

T1 36 7 201 10 78.26 83.72 96.63 80.90

T2 31 7 207 9 77.50 81.58 96.73 79.49

T3 48 9 195 2 96.00 84.21 95.59 89.72

Individual method 7 PD 16 3 226 9 64.00 84.21 98.69 72.73 83.07

D1 41 5 204 4 91.11 89.13 97.61 90.11

D2 45 4 202 3 93.75 91.84 98.06 92.78

T1 36 9 199 10 78.26 80.00 95.67 79.12

T2 26 8 206 14 65.00 76.47 96.26 70.27

T3 47 14 190 3 94.00 77.05 93.14 84.68
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vectors used in the subset formation stage had no effect on the
diagnostic model obtained. The alternative hypothesis suggests
that there is a difference between the methods. The Friedman
test results are shown in Tables 12 and 13. Table 12 shows the
differences in the mean ranks of the proposed individual
methods. Table 13 confirms this by rejecting the null hy-
pothesis with a p‐value of less than 0.05 and a chi‐square value
of greater than 3.841. This indicates that there was a significant
difference between the proposed individual methods. This
means that the different feature input vectors used provides
crucial information that significantly impacts the quality of the
clusters formed during subset formation stage. And conse-
quently, on the human expert's ability to distinguish between
faults in the same cluster.

3.4 | IEC TC10 database validation and
comparison with current techniques

A comparison is made between nine methods from the liter-
ature [5, 7, 9, 10, 13, 31–34] and those proposed in this paper.

The aim of this comparison is to assess the effectiveness of
the proposed methods in comparison with those already in
existence. Tables 14 and 15 show the diagnostic accuracies
using 117 instances from the IEC TC10 databases. Table 14
presents the diagnostic accuracies by type of fault. The diag-
nostic accuracies of the methods based on vectors 1 and 4
were 97.44% and 98.29%, respectively, representing the
highest accuracies obtained by the individual methods. The
methods based on vectors 2, 3 and 7 are next in line, with a
diagnostic accuracy of 96.58%. The method based on vector 5,
with a diagnostic accuracy of 94.87%, is the least effective
individual approach. These findings indicate that the individual
methods proposed are more accurate than the Gouda triangle
method (88.89%) [9], the Hyosun gas ratio method (88.03%)
[31] and the three ratios technique (86.32%) [7]. The proposed
combined technique exhibits the highest diagnostic accuracy
compared to the individual techniques employed in its
implementation and to the literature methods utilised for
comparison. The diagnostic accuracy of this combined
technique is 100.00%.

Diagnostic accuracies by equipment are presented in
Table 15. According to these findings, the combined technique
is the most effective, with a diagnostic accuracy of 100.00% for
power transformers without communication on‐load tap‐
changers. The individual methods follow, with diagnostic ac-
curacies ranging from 91.67% to 97.22%. With diagnostic ac-
curacies of 91.67% and 88.89%, respectively, the three ratios
approach [7] and the Hyosun gas ratios method [31] come
next. In the case of power transformers with communication
on‐load tap‐changers, the Hyosun gas ratio method [31], the
combined technique and individual methods 1, 2, 4 and 6 are
the most effective, with a diagnostic accuracy of 100.00%.
These diagnostic methods are followed by the individual
methods based on vectors 3 and 7, the three‐ratio method [7]
and the Gouda triangle method [9], all of which have a diag-
nostic accuracy of 95.45%.

3.5 | Computational analysis

Implementation and execution times are further indicators of
diagnostic methods. The implementation time considers the
creation of the 120 subsets and the analysis of the subsets by
the experts to implement the 120 sub‐models. The execution
time considers the time between the input of the gas

TAB LE 9 (Continued)

TP FP TN FN TPR (Ci) (%) PPV(Ci) (%) TNR (Ci) (%) F1(Ci) (%) Acc (%)

Combined technique PD 19 2 227 6 76.00 90.48 99.13 82.61 90.94

D1 41 5 204 4 91.11 89.13 97.61 90.11

D2 45 3 203 3 93.75 93.75 98.54 93.75

T1 42 4 204 4 91.30 91.30 98.08 91.30

T2 35 4 210 5 87.50 89.74 98.13 88.61

T3 49 5 199 1 98.00 90.74 97.55 94.23

F I GURE 7 Proposed method performances across all classes. (1):
Individual method 1. (2): Individual method 2. (3): Individual method 3. (4):
Individual method 4. (5): Individual method 5. (6): Individual method 6. (7):
Individual method 7. (8): Combine technique.
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concentration values into the computer and the return of the
diagnostic result. Table 16 shows the implementation and
execution times for the proposed methods. These results were
obtained with MATLAB 2021a on a personal computer with
an Intel(R) Core(TM) i5‐5200U CPU @ 2.20 GHz 2.20 GHz
with 8 Gb of RAM. The observed implementation times can
be attributed to the number of subsets created and the fact that
the analysis of these subsets is carried out by a human expert.
However, once implemented, the execution time is of the order
of the second. Much of this execution time is spent reading the
DGA data in the Excel file. In practice, this execution time has
no negative impact on the maintenance process.

TABLE 10 Sensitivity analysis results.
Model diagnostic accuracies (%)

Input variations (1) (2) (3) (4) (5) (6) (7) (8)

Without uncertainty 88.98 87.01 84.25 87.40 88.19 87.80 83.07 90.94

With uncertainty −10% de H2 85.43 72.05 72.05 85.43 83.46 86.61 79.13 86.22

−5% de H2 87.40 79.92 78.35 87.40 86.61 87.80 81.10 88.58

þ5% de H2 87.80 79.13 80.31 87.01 87.01 87.40 81.50 87.40

þ10% de H2 87.01 75.98 75.20 84.65 83.07 87.40 82.28 85.43

−10% de CH4 86.61 74.02 71.26 85.04 83.86 73.23 68.50 81.89

−5% de CH4 87.01 78.35 77.17 86.22 86.61 82.68 76.77 87.01

þ5% de CH4 87.40 79.92 78.35 87.01 86.61 79.53 79.13 85.83

þ10% de CH4 86.61 74.02 73.23 85.83 85.83 75.59 75.20 83.07

−10% de C2H6 86.61 72.44 76.77 85.43 84.65 87.40 80.71 87.80

−5% de C2H6 88.19 78.74 82.28 86.61 86.61 87.80 82.68 88.58

þ5% de C2H6 87.01 77.95 81.50 86.22 87.01 87.80 83.46 88.97

þ10% de C2H6 84.25 70.47 76.38 85.43 83.86 86.61 81.50 87.01

−10% de C2H4 84.65 64.57 70.08 83.86 85.04 75.59 75.98 81.89

−5% de C2H4 87.80 75.59 77.95 86.22 87.01 80.31 80.71 85.83

þ5% de C2H4 87.80 76.77 74.80 85.43 87.40 80.71 74.02 85.04

þ10% de C2H4 84.65 70.87 67.72 83.46 86.61 71.65 68.11 80.71

−10% de C2H2 87.01 83.86 81.89 85.04 87.01 83.46 79.13 88.19

−5% de C2H2 88.58 85.43 83.46 86.61 87.40 86.22 80.71 90.16

þ5% de C2H2 89.76 86.22 83.86 87.40 88.19 87.40 81.50 90.94

þ10% de C2H2 88.98 84.65 83.07 86.22 86.61 85.43 80.71 90.55

Note: (1): Individual method 1. (2): Individual method 2. (3): Individual method 3. (4): Individual method 4. (5): Individual
method 5. (6): Individual method 6. (7): Individual method 7. (8): Combine technique.

TABLE 11 Descriptive statistical results of sensitivity analysis.

(1) (2) (3) (4) (5) (6) (7) (8)

Mean 87.12 77.52 77.62 85.90 86.13 83.26 78.85 86.76

Std. deviation 1.46 5.85 4.86 1.11 1.52 5.34 4.34 3.00

Minimum 84.25 64.57 67.72 83.46 83.07 71.65 68.11 80.71

Maximum 89.76 87.01 84.25 87.40 88.19 87.80 83.46 90.94

Note: (1): Individual method 1. (2): Individual method 2. (3): Individual method 3. (4):
Individual method 4. (5): Individual method 5. (6): Individual method 6. (7): Individual
method 7. (8): Combine technique.

TABLE 12 Friedman's test mean rank results.

Method Mean rank

Individual method 1 6.48

Individual method 2 2.26

Individual method 3 1.74

Individual method 4 5.05

Individual method 5 5.36

Individual method 6 4.88

Individual method 7 2.24

TABLE 13 Friedman's test Statistical results.

Method Mean rank

N 7

Chi‐square 94.9

df 6

p <0.001

10 - NANFAK ET AL.
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TABLE 14 Diagnostic accuracies by
type of fault obtained by the proposed and
literature methods, on the IEC TC10 database.

Fault diagnostic accuracy (%)

Diagnostic methods D1 D2 PD T1/T2 T3 Total

Existing methods [7] 97.92 88.89 73.08 68.75 88.89 86.32

[9] 97.92 100.00 88.46 56.25 88.89 88.89

[5] 97.92 100.00 80.77 43.75 88.89 85.47

[31] 80.77 97.92 77.78 75.00 88.89 88.03

[32] 87.50 100.00 57.69 62.50 77.78 76.92

[33] 77.08 88.89 53.85 18.75 55.56 61.54

[34] 89.58 100.00 50.00 50.00 61.11 71.79

[13] 91.67 77.78 53.85 37.50 77.78 72.65

[10] 77.08 88.89 53.85 18.75 55.56 61.54

Proposed methods Individual method 1 96.15 97.92 100.00 100.00 94.44 97.44

Individual method 2 92.31 100.00 100.00 93.75 94.44 96.58

Individual method 3 96.15 97.92 88.89 93.75 100.00 96.58

Individual method 4 96.15 100.00 100.00 100.00 94.44 98.29

Individual method 5 92.31 95.83 100.00 100.00 88.89 94.87

Individual method 6 96.15 100.00 88.89 100.00 83.33 95.73

Individual method 7 96.15 97.92 100.00 93.75 94.44 96.58

Combined technique 100.00 100.00 100.00 100.00 100.00 100.00

TABLE 15 Diagnostic accuracies by equipment obtained by the proposed and literature methods, on the IEC TC10 database.

Fault diagnostic accuracy (%)

Diagnostic methods B C I P R S U Empty Total

Existing methods [7] 20.00 100.00 91.67 91.67 84.38 71.43 95.45 100.00 86.32

[9] 60.00 100.00 91.67 83.33 93.75 85.71 95.45 100.00 88.89

[5] 40.00 100.00 91.67 83.33 90.63 71.43 90.91 100.00 85.47

[31] 40.00 100.00 83.33 88.89 90.63 71.43 100.00 100.00 88.03

[32] 20.00 100.00 91.67 77.78 87.50 42.86 72.73 100.00 76.92

[33] 20.00 100.00 66.67 55.56 71.88 57.14 59.09 100.00 61.54

[34] 20.00 100.00 83.33 75.00 78.13 42.86 68.18 100.00 71.79

[13] 0.00 100.00 75.00 69.44 90.63 57.14 68.18 100.00 72.65

[10] 60.00 50.00 91.67 77.78 84.36 / 72.73 / 61.54

Proposed methods Individual method 1 100.00 100.00 100.00 91.67 96.88 100.00 100.00 100.00 97.44

Individual method 2 60.00 100.00 100.00 97.22 100.00 85.71 100.00 100.00 96.58

Individual method 3 80.00 100.00 91.67 97.22 100.00 100.00 95.45 100.00 96.58

Individual method 4 80.00 100.00 100.00 97.22 100.00 100.00 100.00 100.00 98.29

Individual method 5 80.00 100.00 100.00 97.22 100.00 100.00 81.82 100.00 94.87

Individual method 6 80.00 100.00 91.67 91.67 100.00 100.00 100.00 100.00 95.73

Individual method 7 100.00 100.00 100.00 94.44 100.00 85.71 95.45 100.00 96.58

Combined technique 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
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4 | CONCLUSION

In this paper, eight DGA‐based diagnostic methods have been
proposed for faults diagnostic of power transformers. Among
the proposed methods, seven are two‐step individual methods
based on clustering and subset analysis, and the last one is a
combined technique that integrates the diagnostic results of
individual methods into a unified diagnostic model. In the
individual methods, the k‐means algorithm is used in the first
step for the formation of the clusters. In the second step,
traditional gas ratios sub‐models were proposed to separate the
different fault types associated with the same cluster. Seven
feature input vectors were used in the subset formation step
corresponding to seven individual methods proposed. In the
combined technique, to integrate the individual methods into
the unified diagnostic model, an SVM classifier is trained with
the diagnostic results of the individual methods as input fea-
tures and the fault types as labels. In this paper, 966 DGA
samples including the six primary IEC defects were utilised.
The suggested procedures were applied and assessed using the
first set of data, which consisted of 849 samples. Based on the
training and testing dataset results, the combined technique
performs best of all the proposed methods. Using the second
batch of 117 samples, the performance and efficacy of the
suggested methods were assessed and compared with those of
the current methods. The validation and comparison results
showed that, the combined technique depicts the best overall
diagnostic accuracies. These findings indicate that the two‐
stage diagnostic approach has the potential to enhance the
performance of conventional methods. Furthermore, the in-
fluence of the feature input vector on the efficacy of diagnostic
models employing artificial intelligence tools was demon-
strated. The proposed combined approach, which integrates
multiple individual methods into a unified diagnostic system, is
an attractive alternative for enhancing subsequent diagnostic
methods. In future research, a hybrid approach based on
multisource information fusion can be explored to improve
power transformers' fault diagnostic.
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