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Abstract
Transformer health analysis using Dissolved Gas Analysis is crucial for diagnosing power
transformer faults. This paper proposes an innovative approach to diagnose power
transformer faults by integrating machine learning algorithms with Ensemble techniques.
The method involves fusing reduced dimensional input features through Principal
Component Analysis with Ensemble techniques such as Bagging, Decorate, and Boost-
ing. Various machine learning algorithms, including Decision Tree (DT), K‐Nearest
Neighbours, Radial Basis Function Network, and Support Vector Machine, are
employed in conjunction with Ensemble techniques. The long short‐term memory al-
gorithm was used to create synthetic data to solve the issue of data imbalance. A dataset
of 683 samples is used in the study for training, testing, validation, and comparison with
current techniques. The results highlight the effectiveness of Ensemble techniques,
particularly Boosting, which demonstrates superior performance across all classification
algorithms. The Boosting with DT algorithm achieves an impressive accuracy of 98.32%,
surpassing alternative methods. In validation, the proposed Boosting Ensemble technique
outperforms various approaches, showcasing its diagnostic accuracy and superiority over
alternative methods. The research emphasises the model's effectiveness in smoothing
input vectors, enhancing harmony with ensemble techniques, and overcoming limitations
in prior methods.
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1 | INTRODUCTION

Ensuring the optimal health of power system equipment is
crucial for maintaining system reliability. Transformers play a
pivotal role in both the distribution and transmission sectors of
electrical systems [1]. The power system operates at a high
voltage level, underscoring the critical role of transformers in
voltage conversion. Prolonged use, however, can inevitably
result in internal faults within the transformers [2].
Due to the presence of incipient faults, the insulation within

transformers gradually deteriorates, ultimately culminating in

failure over time. Consequently, it becomes imperative to
monitor the transformers' condition, aiming to enhancemachine
longevity and mitigate the occurrence of incipient faults [3].
Dissolved Gas Analysis (DGA) stands out as the most

crucial method in evaluating the condition of recurrent trans-
formers [4]. Dissolved Gas Analysis serves as a widely adopted
online monitoring method globally, primarily employed for the
detection of primary faults in oil‐filled power transformers. Its
popularity stems from the non‐destructivemonitoring approach
and its sensitivity in fault detection [5]. Transformer oil degra-
dation primarily produces the following gases: hydrogen (H2),
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methane (CH4), ethane (C2H6), ethylene (C2H4), acetylene
(C2H2), and carbon monoxide (CO). Interpreting the results
involves considering significant parameters, including the com-
bination of rates and concentrations of combustible gases [6].
The rate of gas production serves as a criterion for determining
whether the equipment is operating under normal conditions or
exhibiting incipient faults [7].
Various methods have emerged to interpret DGA over

time. The initial approaches, including Dornenburg's method
[8], the International Electrotechnical Commission method [9],
and Roger's method [9], all of which are considered methods
of ratios. They are improved by a graphical method called the
Duval Triangle [10]. The evolution of these techniques has
seen a transition from triangles to pentagons, exemplified by
the Duval and Mansour pentagons [11, 12]. In more recent
times, modern ratio methods have surfaced, such as the clus-
tering method [13] and three ratios techniques [14], alongside
graphical innovations such as the Gouda triangle [15]. Despite
this progression, both traditional and contemporary methods
face challenges in providing accurate interpretations for diag-
nosing faults in power transformers. Ratios methods encounter
difficulties when faults fall outside specified limits, while
graphical methods rely on fixed parameters that may not
encompass all potential fault scenarios. Furthermore, these
methods are susceptible to issues related to the source data.
To address these challenges, artificial intelligence algo-

rithms, encompassing machine learning [16], deep learning
[17], Ensemble learning [18], and hybrid techniques [19], have
been proposed. These AI‐driven solutions aim to transcend
the constraints of traditional methods, providing more robust
and accurate fault diagnosis for power transformers.
In recent studies, a convergence of traditional DGA

methods and artificial intelligence algorithms has been explored
to enhance diagnostic capabilities. Senoussaoui and colleagues
[20] employed rudimentary vectors, including percentages and
logistic ratios, derived from traditionalDGAmethods.However,
they did not utilise these traditional methods as vectors aiding in
gas separation. Kherif and team [21], on the other hand, advo-
cated for using traditional DGA methods as vectors, albeit
without integrating them. Their evaluation focused solely on
accuracy a criterion deemed insufficient for a comprehensive
assessment. Hechifa and collaborators [22] took a step further by
amalgamating vectors from traditional DGA methods. None-
theless, their study primarily delved into experimenting with the
most suitable vector for algorithms, overlooking the extraction
and selection of crucial features within vectors that could
enhance efficiency in diagnosing power transformer faults. This
underscores the need for a more holistic approach, combining
the strengths of traditional DGA methods and artificial intelli-
gence, while optimising feature extraction and selection for
improved diagnostic accuracy.
Addressing the limitations of prior methodologies, this

paper introduces a novel approach that integrates traditional
DGA methods as vectors with ensemble techniques. The
proposed model leverages various graphical DGA methods—
such as the Duval Triangle, Duval Pentagon, Mansour
Pentagon, and Gouda Triangle—by combining them into a

single vector to enrich the feature set for power transformer
fault diagnosis. To improve computational efficiency and focus
on the most informative aspects of the data, Principal
Component Analysis (PCA) is applied for dimensionality
reduction. However, even with this reduction, the essential
diagnostic information is preserved, ensuring that the accuracy
of fault diagnosis remains intact. Principal Component Anal-
ysis effectively extracts the critical features from the combined
DGA methods, allowing the model to retain only the most
significant information for classification.
The model further incorporates machine learning algo-

rithms such as Decision Tree (DT), K‐Nearest Neighbours,
Radial Basis Function Network, and Support Vector Machine
(SVM), which are optimised using ensemble techniques such as
Bagging, Decorate, and Boosting. These ensemble methods
enhance the accuracy and reliability of the diagnosis by
reducing variance and improving the stability of the pre-
dictions, especially when working with complex or unbalanced
datasets.
A major advancement in the proposed model is its ability

to address the common challenge of unbalanced datasets,
which can significantly affect the performance of fault diag-
nosis models. By employing Long Short‐Term Memory
(LSTM) networks to generate synthetic data, the model ensures
a balanced dataset, thus improving both the accuracy and
consistency of the diagnostic results. This synthetic data gen-
eration process mitigates the limitations faced by previous
methodologies, where data imbalances could lead to biased or
incomplete diagnoses.
Ultimately, the combination of traditional DGA methods,

advanced ensemble techniques, and synthetic data generation
forms a comprehensive and robust framework for power
transformer fault diagnosis. This approach not only resolves the
shortcomings of earlier methods, such as ratio‐based, graphical,
and hybrid techniques, but also offers superior performance, as
evidenced by the results from experimental testing. The pro-
posed framework demonstrates significant improvements over
existing methodologies, making it a powerful tool for accurate
and reliable fault diagnosis in power transformers.
The flow of this article will be as follows. Section 2 pro-

vides an explanation of the principles underlying DGA
graphical methods. The artificial intelligence (AI) techniques
used are described in Section 3. Section 4 will explain the
proposed methodology in detail, and Section 5 will discuss,
analyse, and compare the results with the existing method.
Section 6 will conclude this article with potential future work.

2 | DISSOLVED GAS ANALYSIS
GRAPHICAL TECHNIQUES

Dissolved Gas Analysis Graphical Techniques, such as the
Duval Triangle Method (DTM), Duval Pentagon Method
(DPM), Mansour Pentagon Method (MPM), and Gouda Tri-
angle Method (GTM), have been extensively utilised as vectors
for analysing power transformer faults through DGA.
These methods have gained recognition for their efficacy in

2 - HECHIFA ET AL.

 25143255, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/nde2.12092 by A

lgeria H
inari N

PL
, W

iley O
nline L

ibrary on [08/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



interpreting DGA data, each offering unique insights into the
condition of transformers. However, despite their individual
effectiveness, there has been a notable absence of efforts to
integrate these methods into a single vector, thereby limiting
the comprehensive understanding of transformer health. This
absence of integration has hindered the exploitation of their
complementary properties, potentially missing out on the
synergistic benefits that could arise from their combined use.
To address this gap, it is essential to delve into the specifics of
each graphical method:

2.1 | Duval Triangle Method

Duval Triangle Method, introduced by Canadian scientist
Michel Duval, is an alternative graphic approach for analysing
dissolved gases using three ratios (R1, R2, and R3) [10]. The
method involves dividing a triangle into seven zones, each
representing specific faults, and diagnosing faults based on the
region to which a point belongs.

2.2 | Duval Pentagon Method

Duval Pentagon Method, developed by Duval and Lamar, is a
graphical method for interpreting DGA. It consists of five axes
representing the concentrations of five combustible gases ( H2,
C2H6, CH4, C2H2, and C2H4) ranging from 0% to 100% [11],
his pentagon delineates six thermal and electrical failure zones,
along with a specific area for stray gas(s).

2.3 | Mansour Pentagon Method

Mansour Pentagon Method, entails constructing a pentagon
where each vertex represents the percentage concentration of
an individual gas relative to the total combustible gases [12].
Similar to the Duval Pentagon, the Mansour Pentagon iden-
tifies six thermal and electrical fault zones, differing only in
coding.

2.4 | Gouda Triangle Method

Gouda Triangle Method, proposed by Gouda and a group of
scientists, is an advanced graphical approach developed from
the Duval method. It involves three values (R1, R2, R3) con-
verted into percentages (P1, P2, P3) [15], forming the vertices
of a parallelogram triangle similar to the Duval method. The
method also identifies fault zones based on these values.

3 | AI TECHNIQUES

This section discusses the various techniques used in the
proposed model. While several artificial intelligence algorithms
are employed, such as LSTM, DT, SVM, KNN, and Radial

Basis Function Networks (RBF), PCA, a statistical method for
dimensionality reduction, is also utilised to pre‐process the data
and improve the performance of these AI algorithms. Addi-
tionally, ensemble techniques are incorporated to enhance
model robustness.

3.1 | Principal Component Analysis

Principal Component Analysis, initially introduced by Karl
Pearson and further developed by Hotelling, is an unsuper-
vised and non‐parametric statistical technique widely used in
data science and machine learning workflows for dimension-
ality reduction. Its main objective is to reduce the dimen-
sionality of high‐dimensional data by extracting the principal
components while preserving as much of the original data's
variance as possible. Although not an artificial intelligence al-
gorithm in itself, PCA is often utilised in AI and machine
learning tasks to preprocess data and improve the efficiency of
subsequent algorithms [23].

3.2 | Long short‐term memory

Long short‐term memory sophisticated design allows it to
effectively understand intricate patterns in sequential data. As a
form of recurrent neural network, it considers both previous
outputs and current inputs when predicting the next time step,
making it adept at capturing complex dependencies. Its
application as a time series network is valuable for replicating
statistical properties of real‐world data in synthetic datasets,
especially when privacy preservation is a priority [24]. To avoid
generating synthetic data biased by the order of samples,
shuffling the dataset before training the LSTM model is a
fundamental precaution.

3.3 | Decision Tree

Decision Tree are a distinctive classification algorithm known
for their relatively simple structure. Compared to other clas-
sification algorithms, DTs excel in efficiently analysing large
amounts of data within a short timeframe, making them suit-
able for mass data processing. A DT classifier is built using
internal nodes and leaf nodes, representing decision thresholds
and predictions, respectively [25].

3.4 | Support Vector Machine analysis

Support Vector Machine, introduced by Vapnik in the 1990s, is
a classifier based on a linear discriminant function and has
gained popularity over the past few decades. The success of
SVM relies heavily on choosing a suitable kernel function,
which generates dot products in a higher‐dimensional feature
space. This space theoretically extends to infinite dimensions,
enabling effective linear discrimination [26].
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3.5 | K‐Nearest Neighbour

K‐Nearest Neighbour algorithm is recognised as one of the
simplest intelligent algorithms, notable for its lack of a learning
stage. It functions by calculating distances between sample
points and their nearest neighbours within the assigned point
set. The inductive step involves assigning the class label of the
k most similar neighbours to the class label being tested [27].

3.6 | Radial Basis Function Networks

Radial Basis Function Networks (RBFN) serves as an intelli-
gent interpolation technique designed for modelling both
linear and non‐linear multidimensional data, commonly applied
to forecasting problems. The kernel of RBFN involves two
parameters: centre and radius. Determining these parameters
can be achieved through either unsupervised learning or su-
pervised learning [28].

3.7 | Ensemble techniques

3.7.1 | Bagging

Bootstrap aggregating, commonly referred to as bagging, is an
ensemble strategy initially introduced by Breiman. The initial
step in the bagging technique involves creating multiple forms,
followed by generating models based on the actual method
using random subsamples of the dataset [29].

3.7.2 | Decorate

The Diverse Ensemble Creation by Oppositional Relabelling
of Artificial Training Examples method, known as Decorate,
was introduced by Melville and Mooney. Differing from other

ensemble methods, this meta‐learning algorithm is distinctive
in that it explicitly evaluates and utilises variation in each
iteration to generate ensemble classifiers. [30].

3.7.3 | Boosting

The multi‐boost learner, also known as boosting, was intro-
duced by Freund and Schapire. Boosting is an ensemble
learning technique that combines weak learners to create a
strong classifier, enhancing overall accuracy. This sequential
ensemble learning method involves training weak learners on a
dataset, where the output of one learner becomes the input for
the next, iteratively improving the accuracy of the final
model [31].

4 | PROPOSED METHODOLOGY

Researcher and engineer are exploring innovative methods
with a focus on precision in diagnosis to ensure power
equipment safety and extend electrical system lifespan,
particularly power transformers. In this endeavour, the pro-
posed methodology aims to introduce novel solutions for
diagnosing power transformers. The initial phase involves
meticulous data collection, followed by the conversion of this
data into input vectors tailored for graphical methods. Subse-
quently, a normalisation process is applied, accompanied by
dimensionality reduction on the input vectors. In the final stage
of data processing, a transformation from unbalanced to
balanced data is achieved through the integration of synthetic
data. Both the original and synthetic datasets are then
employed to assess classification algorithms, which are further
augmented by the incorporation of ensemble techniques to
enhance overall accuracy. The sequential steps of this meth-
odology are visually depicted in Figure 1, with comprehensive
explanations provided in this section.

F I GURE 1 Proposed methodology.

4 - HECHIFA ET AL.
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4.1 | Dissolved Gas Analysis data collection

Data collection is an important and decisive step in order to
evaluate the condition of power transformers, especially with the
suffering of the lack of approved data sources, as 407 samples
were collected in this study to evaluate the proposed method,
from the Egyptian Electricity Company for Transmission and
Distribution [32], the IECTC10 databases [33], and the literature
[6]. Table 1 shows an example of the data distribution.

4.2 | Input vectors

The transformation of raw data into input vector features is a
pivotal step for leveraging graphical methods, such as the
Duval Triangle, Duval Pentagon, Mansour Pentagon, and
Gouda Triangle. This process is designed to effectively sepa-
rate overlapping gases, ensuring precision in the analysis. The
input features required for the graphical methods are consol-
idated into a single input vector as illustrated in Table 2.

4.3 | Data processing

4.3.1 | Z‐score normalisation

Z‐score normalisation, also known as standardisation, is a
technique used in statistics to transform data into a standard
normal distribution. This process is often applied to features or
variables in a data set. The goal is to make the data comparable
and suitable for analysis, especially in machine learning and
statistical modelling.
The formula for calculating the Z‐score for a data point x

in a dataset with mean μ and standard deviation σ is given by
the following:

Z ¼
x − μ

σ
ð1Þ

Z: the Z‐score.
x: the individual data point.
μ: the mean of the dataset.
σ: the standard deviation of the dataset.
Figure 2 illustrates a visual representation employing box

plots to depict the dataset both before and after undergoing Z‐
score normalisation. Visual inspection reveals that the data

before normalisation shows outliers, a characteristic mitigated
in the normalised dataset where values are confined within the
�3 range. This highlights the efficacy of Z‐score normalisation
in enhancing data quality, given its ability to centre the data
around a mean of 0 with a standard deviation of 1. Notably,
this normalisation step holds significance for subsequent
dimensionality reduction using PCA in the next step.

4.3.2 | Dimensional reduction of features using
Principal Component Analysis

The dimensionality reduction step using PCA is crucial for
distilling essential information from eight graphical method
features, represented as the vector V = [F1, F2, F3, F4, F5, F6,
F7, F8]. This process significantly impacts classification algo-
rithms by simplifying feature spaces, improving computational
efficiency, and enhancing accuracy. By reducing the number of
features while retaining the most informative ones, PCA helps
to alleviate the curse of dimensionality, mitigating issues such
as overfitting and improving the generalisation capability of
machine learning models. Additionally, PCA aids in creating
synthetic data, addressing limitations in dataset size. After the
3D conversion, a new vector V' = [n1, n2, n3] is obtained,
highlighting the transformation achieved by PCA. The reduced
dimensionality not only facilitates visualisation but also con-
tributes to model interpretability. Figure 3 represents the
feature conversion proposed for graphical methods applied to
3D features, providing a visual insight into the transformative
effects of PCA on the dataset.

TABLE 1 Proposed Dissolved Gas Analysis (DGA) data
collection (ppm).

Code Cases H 2 CH 4 C2H 6 C2H 4 C2H 2

PD 32 870 77 73 54 14

D1 59 1309 124 113 6 0.001

D2 99 425 17,424 7299 37,043 158

T1 86 244 754 172 1281 27

T2 48 137 369 144 1242 16

T3 83 90 28 8 31 32

Abbreviation: PD, partial discharge.

TABLE 2 Aggregation of features of graphical methods into the
proposed input vector.

Graphical methods Features equation

Duval triangle
method DTM

F1¼ x¼ 100 − %C2H2 − %CH4 cos
π
6

� �
cot

π
3

� �

F2¼ y¼%CH4 cos
π
6

� �

Gouda’ triangle
method GTM

F3¼ x¼ 100 − %R2 − %R3 cos
π
6

� �
cot

π
3

� �

F4¼ y¼%R3 cos
π
6

� �

Duval pentagon
method DPM

F5¼ Xð1Þ ¼
1
6

P4

i¼0
xi þ xiþ1ð Þ xiyiþ1 − xiþ1yið Þ

1
2
P4

i¼0
xiyiþ1 − xiþ1yið Þ

F6¼ Xð2Þ ¼
1
6

P4

i¼0
yi þ yiþ1ð Þ xiyiþ1 − xiþ1yið Þ

1
2
P4

i¼0
xiyiþ1 − xiþ1yið Þ

Mansour pentagon
method MPM

F7¼ xm ¼

Pn

i¼1
mixi

100

F8¼ ym ¼

Pn

i¼1
miyi

100

Proposed vector V = [F1, F2, F3, F4, F5, F6, F7, F8]
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4.3.3 | Creating synthetic data using long short‐
term memory

To enhance the diagnostic accuracy of classification algorithms,
a strategy has been proposed to transform the imbalanced
dataset into a balanced one. This involves generating synthetic
data to ensure an equitable representation of faults, aligning
with the principle of equal opportunity in fault evaluation.
Examining Table 1 reveals that fault D1 stands out with the
highest count of 99 samples, making it the benchmark. Syn-
thetic data will be introduced to each of the faults, namely
partial discharge (PD), D2, T1, T2, and T3, until their counts
match that of D1.
The synthetic data generation process employs LSTM

networks, chosen for their capability to create multi‐modal
tabular data. LSTMs are particularly suited to handling a
mixture of categorical, numeric, time‐series, and textual fields,
as they are designed to capture long‐range dependencies and
maintain context over sequences of data.
Relevant references have been provided [37, 38] to offer

further explanation of the underlying principles of LSTM

networks in this context, including how they effectively capture
temporal dependencies and preserve statistical in-
terdependencies. Figure 4 from Gretel's report illustrates a
comparative analysis of correlation matrices, showcasing the
relationships between variables in both the original training set
and the synthetic dataset generated by the LSTM. The figure
further quantifies the discrepancies between the two sets,
providing a measure of the LSTM's ability to preserve the
integrity of the data relationships during synthesis.

4.4 | Evaluation of the proposed model

4.4.1 | Hyperparameters for classification
algorithms

After generating synthetic data, employing hyperparameters
becomes crucial to shape the behaviour of machine learning
models. The meticulous selection and fine‐tuning of these
hyperparameters play a pivotal role in bolstering the predictive
capabilities of the proposed model. A model endowed with
thoughtfully chosen hyperparameters is predisposed to
consistently exhibit optimal performance and effectively miti-
gate the risk of overfitting. Notably, the hyperparameters
outlined in Table 3 were utilised during the training of the
proposed model.

4.4.2 | Evaluation metrics

The meticulous selection of appropriate evaluation metrics
stands as a critical factor in gauging the efficacy and reliability
of the proposed model. Essential metrics such as Accuracy,
Recall, Precision, Specificity, and F1‐Score collectively
contribute to a thorough assessment, offering insights into the
model's performance across various dimensions. These metrics
are widely recommended in the literature [34–36].
Accuracy: Measures the overall correctness of the model

by calculating the ratio of correct predictions (both true pos-
itives and true negatives) to the total number of predictions:

F I GURE 3 Principal Component Analysis (PCA) transformation of
3D features.

F I GURE 2 Examine outliers using Z‐score normalisation; (a) Before Z‐score normalisation; (b) After Z‐score normalisation.
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Accuracy¼
TN þ TP

TN þ TP þ FN þ FP
ð2Þ

Precision: Evaluates the proportion of true positives
among all predicted positives, indicating how many of the
predicted positive instances are actually correct:

Precision¼
TP

TP þ FP
ð3Þ

Recall (Sensitivity): Measures the model's ability to
correctly identify positive instances from the dataset, focussing
on capturing all true positives:

Recall ¼
TP

TP þ FN
ð4Þ

Specificity: Complements Recall by measuring the model's
ability to correctly identify negative instances, evaluating how
well the model avoids false positives:

Specif icity¼
TN

TN þ FN
ð5Þ

F1‐Score: Provides a harmonic mean of Precision and
Recall, ensuring a balanced evaluation of both metrics, espe-
cially when a trade‐off exists between them:

F1 − Score¼
2ðPr ecision� RecallÞ
Pr ecisionþ Recall

ð6Þ

where, TP is true positives, TN is true negatives, FP is false
positives, FN is false negatives.

5 | RESULTS AND DISCUSSION

5.1 | Implementation and analysis of results

The proposed model was implemented using the KNIME
analytics platform, an open‐source tool tailored for developing
data analyses and predictive models. KNIME leverages various
programming languages and frameworks, including Python,
Java, and Weka, to construct its analytical workflows. To assess
the model's performance, a dataset comprising 407 real, un-
balanced samples and 187 synthetic samples was employed,
resulting in a hybrid balanced dataset of 594 samples. The
dataset was split in a 70:30 ratio, with 70% used for training
and 30% for testing. The effectiveness of the model was
evaluated using the hybrid balanced dataset and compared
against the real unbalanced data to provide deeper insights into
the model's robustness. Figure 5 illustrates the sequential steps
involved in implementing the ensemble classification algo-
rithms within the proposed model.
Tables 4 and 5 present key metrics evaluating the per-

formance of the proposed ensemble classification algorithms.
The metrics Accuracy, Recall, Precision, Specificity, and F1‐
Score provide a comprehensive assessment of the model's
effectiveness across different algorithms and ensemble tech-
niques, including base, Bagging, Decorate, and Boosting.
These results enable a comparison between real and hybrid
datasets.

F I GURE 4 Synthetic data generation report.

TABLE 3 Hyperparameters of the AI techniques used.

Algorithms Parameters Values

DT Collapse tree True

Confidence factor 0.25

Num folds 3

seedn 1

SVM SVM type C‐SVC

Cache size 40

Degree 3

Kernel type Radial basis function

KNN k 2

Search algorithm Linear NN search

RBFN Clustering seed 1

maxIts −1

Num clusters 2

Ridage 1.0E‐8

Ensemble techniques

Bagging Bag size percent 100

Num execution slots 1

Num iterations 10

Decorate Artificial size 1

Desired size 15

Num iterations 50

Boosting Num sub cmtys 3

Weight threshold 100

Num iterations 10

Abbreviation: AI, artificial intelligence.

HECHIFA ET AL. - 7
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Boosting consistently emerges as the best‐performing
ensemble technique across all algorithms and datasets, particu-
larly excelling in accuracy, recall, and F1‐score. It shows clear
advantages with more complex models like those using hybrid
datasets. Bagging also delivers strong performance, frequently
ranking as the second‐best technique, especially in recall and
specificity.
In contrast, Decorate tends to underperform relative to

Bagging and Boosting, particularly with real datasets, though it
demonstrates moderate improvements with hybrid datasets.
Overall, this analysis highlights Boosting as the most robust
technique across different algorithms, with Bagging being a
strong competitor. While Decorate is less effective, particularly
in real datasets, it performs better with hybrid datasets. This
comparison provides clear insights into how different
ensemble methods impact the performance of classification
algorithms based on the dataset type.
A thorough analysis of Table 6 and Figure 6 clearly dem-

onstrates that the use of balanced hybrid data significantly out-
performs real unbalanced data, with Boosting exhibiting the
highest performance when paired with theDTalgorithm in both
cases. The algorithm achieved outstanding results with an ac-
curacy of 98.32%, recall of 98.31%, precision of 98.38%, spec-
ificity of 99.67%, and an F1 score of 98.33% when applied to
hybrid data. Notably, these values not only surpassed but sub-
stantially exceeded those of all other ensemble classification
techniques, providing strong empirical evidence both visual and
tabular that highlights the superior performance of Boosting

TABLE 4 Metrics to evaluate the performance of the proposed ensemble classification algorithms for real datasets.

Algorithm Ensemble techniques

Model evaluation (%)

Accuracy Recall Precision Specificity F1‐score

Decision tree (DT) Base 86.99 86.64 85.26 97.40 85.71

Bagging 88.62 85.84 88.76 97.67 86.33

Decorate 86.99 86.09 86.73 97.34 86.08

Boosting 89.43 88.22 89.66 97.81 88.44

K‐nearest neighbours (KNN) Base 85.37 84.19 84.61 97.01 83.71

Bagging 87.80 86.97 87.14 97.52 86.65

Decorate 86.18 84.72 85.32 97.19 83.98

Boosting 88.62 86.93 88.87 97.64 87.14

Radial basis function network (RBFN) Base 83.80 81.82 82.33 96.72 81.80

Bagging 84.55 82.77 85.48 96.79 82.96

Decorate 80.49 77.61 80.46 95.99 76.99

Boosting 87.80 84.91 88.10 97.50 85.52

Support vector machine (SVM) Base 76.42 72.32 84.87 94.98 68.95

Bagging 78.05 74.36 85.69 95.33 72.04

Decorate 73.98 68.80 83.37 94.48 63.27

Boosting 79.67 76.03 86.04 95.70 74.71

Note: The bold represents the best results.

F I GURE 5 Flowchart for implementing the proposed method.
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when combined with the DT algorithm. This underscores its
position as the optimal choice among ensemble classification
strategies.
Figure 7 presents the confusion matrices for the best re-

sults achieved by Boosting across four different algorithms
DT, KNN, RBFN, and SVM labelled as (a), (b), (c), and (d),
respectively. Each matrix compares predicted and actual classes
for six distinct faults (D1, D2, PD, T1, T2, and T3), with the
values representing correct and incorrect predictions, and
percentages reflecting the classification accuracy for each fault.
When using hybrid data, which balances real and synthetic

samples, Boosting significantly improves the classification ac-
curacy of all algorithms. However, the DT algorithm (A) clearly

outperforms the others. Decision Tree achieves near‐perfect
results, with 100% correct classification on four out of six
faults, with two misclassifications in “D1” and one in “T1.”
This highlights the superior capability of the DT algorithm to
effectively manage hybrid data and consistently maintain high
performance across various fault types.
In comparison, KNN (B) also performs well with hybrid

data, achieving 100% accuracy on three faults, but it experi-
ences one misclassification in “D1,” two in “PD,” and one in
“T3.” Similarly, RBFN (C) and SVM (D) benefit from hybrid

TABLE 5 Metrics to evaluate the performance of the proposed ensemble classification algorithms for hybrid datasets.

Algorithm Ensemble techniques

Model evaluation (%)

Accuracy Recall Precision Specificity F1‐score

Decision tree (DT) Base 95.53 95.52 95.83 99.11 95.55

Bagging 96.09 96.06 96.18 99.22 96.07

Decorate 96.65 96.64 96.87 99.33 96.66

Boosting 98.32 98.31 98.38 99.67 98.33

K‐nearest neighbours (KNN) Base 95.53 95.50 96.07 99.11 95.59

Bagging 97.21 97.18 97.50 99.44 97.23

Decorate 96.09 96.07 96.32 99.22 96.12

Boosting 97.77 97.94 97.95 99.55 97.78

Radial basis function network (RBFN) Base 94.41 94.43 94.45 98.89 94.44

Bagging 95.53 95.54 96.70 99.11 95.59

Decorate 94.41 94.43 94.46 98.89 94.42

Boosting 97.21 97.21 97.35 99.44 97.24

Support vector machine (SVM) Base 96.09 96.09 96.23 99.22 96.10

Bagging 95.53 95.54 95.61 99.11 95.55

Decorate 94.41 94.43 94.53 98.89 94.40

Boosting 97.77 97.78 97.92 99.55 97.78

Note: The bold represents the best results.

TABLE 6 A comprehensive overview of all boosting results.

Boosting Acc Rec Pre Spe F1‐S

Unbalanced real data evaluation (%)

DT 89.43 88.22 89.66 97.81 88.44

KNN 88.62 86.93 88.87 97.64 87.14

RBFN 87.80 84.91 88.10 97.50 85.52

SVM 79.67 76.03 86.04 95.70 74.71

Balanced hybrid data evaluation (%)

DT 98.32 98.31 98.38 99.67 98.33

KNN 97.77 97.94 97.95 99.55 97.78

RBFN 97.21 97.21 97.35 99.44 97.24

SVM 97.77 97.78 97.92 99.55 97.78

F I GURE 6 Comparison of the best results of boosting between
balanced and unparallel data.
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F I GURE 7 Confusion matrix for the best boosting results for DT (a), KNN (b), RBFN (c), and SVM (d).

data but show more frequent misclassifications. Notably, SVM
(D) demonstrates the lowest performance among the four al-
gorithms, particularly in the classification of the “T3” fault.
Overall, the results confirm the effectiveness of Boosting

in conjunction with hybrid data, significantly enhancing clas-
sification performance across all algorithms due to the
balanced synthetic data generated using LSTM. Additionally,
the benefits of dimensionality reduction through PCA are
evident in the improved interpretability and generalisation of
the results. By reducing the feature space while preserving
essential information, PCA contributes to a clearer under-
standing of the performance metrics, offering insights into the
underlying factors driving the superior performance of
Boosting when combined with the DT algorithm. Conse-
quently, dimensionality reduction enhances the robustness and
reliability of the results, further reinforcing the validity of the
conclusions drawn from this analysis.

5.2 | Validation and comparison with
existing methods

For validation and comparison, a new dataset from the literature,
comprising 89 samples, was employed to assess the efficiency of
the proposed model and to compare it with current methods.
These 89 samples as detailed in ref. [22], serve as a basis for

assessing the performance of the proposed model and for
comparative analysis with established methodologies.
Table 7 presents a comprehensive comparison between the

results achieved by the proposed model and existing meth-
odologies across various categories, namely DGA Ratios
methods, DGA graphical methods, intelligent methods, and
hybrid methods. The assessment is based on the accuracy
pertaining to specific faults (PD, D1, D2, T1, T2, and T3) as well
as the overall accuracy. Notably, the Proposed Boosting
Ensemble techniques exhibited superior performance in
contrast to the Current methods. Specifically, for DT, K‐
Nearest Neighbours, Radial Basis Function Network, and
SVM, the Proposed Boosting Ensemble demonstrated overall
accuracies of 95.51%, 94.38%, 92.13%, and 93.26%, respec-
tively. This underscores the effectiveness of the proposed
model across a spectrum of fault types and its ability to
outperform existing methodologies in multiple scenarios.
Figure 8 illustrates a comprehensive comparison between

the optimal outcomes obtained through the Proposed Boost-
ing Ensemble techniques and the best results achieved by
various categories of existing methods, including Ratios
methods, graphical methods, intelligent methods, and hybrid
methods. Notably, the Boosting DT algorithm stands out by
achieving the highest diagnostic accuracy at 95.51%, surpassing
all other existing methods. Specifically, it outperforms the
clustering method with 83.15%, the GTM with 78.65%, the
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Trees Based Learning algorithm with 92.13%, and the com-
bined technique N°2 with 80.90%. The superiority of Boosting
DT can be attributed to its utilisation of graphical methods as
vectors, which are then subjected to dimensionality reduction
techniques such as PCA, thereby enhancing the discrimination

power of the algorithm. Moreover, the boosting property of
the algorithm, which iteratively improves the model's perfor-
mance by focussing on misclassified instances, synergistically
overlays with the DT's ability to capture complex relationships
in the data, resulting in superior classification accuracy.

TABLE 7 Validation and comparison with existing methods.

Accuracy (%)

Existing methods PD D1 D2 T1 T2 T3 Total

DGA ratios methods Modified IEC 60599 [9] 87.50 61.54 84.21 84.62 57.14 89.66 80.90

Three ratios technique [14] 75 46.15 89.47 69.23 71.43 93.10 78.65

Clustering method [13] 100 69.23 84.21 92.31 42.86 89.66 83.15

Key gases with gas ratios [39] 75 76.92 84.21 84.62 57.14 82.76 79.78

DGA graphical methods Duval triangle method [10] 75 53.85 78.95 53.85 57.14 89.66 73.03

Duval pentagon method [11] 62.50 15.38 63.16 76.92 57.14 89.66 66.29

Mansour pentagon method [12] 87.50 61.54 63.16 53.85 14.29 82.76 66.29

Gouda triangle method [15] 87.50 69.23 84.21 53.85 57.14 93.10 78.65

Intelligent methods CSUS ANN method [17] 75 38.46 68.42 92.31 14.29 62.07 61.80

Trees based learning [22] 100 92.31 89.47 92.31 85.71 93.10 92.13

Conditional probability method [16] 87.50 53.85 89.47 61.54 57.14 93.10 78.65

Hybrid methods Combined technique N°2 [19] 87.50 69.23 89.47 61.54 71.43 89.66 80.90

Combined technique N°3 [19] 87.50 69.23 89.47 61.54 71.43 82.76 78.65

Novel combined techniques [40] 87.50 53.85 84.21 76.92 00.00 86.21 73.03

Proposed boosting ensemble techniques Decision tree 100 100 89.47 100 87.50 96.43 95.51

K‐nearest neighbours 100 92.31 94.74 100 87.50 92.86 94.38

Radial basis function network 100 92.31 78.95 92.31 100 96.43 92.13

Support vector machine 100 92.31 89.47 100 87.50 92.86 93.26

Note: The bold represents the best results.
Abbreviations: ANN, artificial neural network; IEC, International Electrotechnical Commission; PD, partial discharge.

F I GURE 8 Compare the best results for each category of previous methods with the best proposed method.
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6 | CONCLUSION

This contribution introduced an innovative approach by
amalgamating machine learning algorithms with Ensemble
techniques for the purpose of diagnosing power transformer
faults. The method hinged on the fusion of reduced‐
dimensional input features via PCA with Ensemble tech-
niques encompassing Bagging, Decorate, and Boosting, in
conjunction with machine learning algorithms such as DT,
KNN, RBFN, and SVM. Utilising a dataset comprising 683
samples, including 594 from literature and synthetic sources
for training and testing, and 89 for validation and comparison
with existing methods, the findings underscored the efficacy
of Ensemble techniques, with Boosting exhibiting superior
performance across all classification algorithms. Specifically,
the Boosting with DT algorithm attains an impressive accu-
racy of 98.32%, surpassing K‐Nearest Neighbours 97.77%,
Radial Basis Function Network 97.21%, and SVM 97.77%. In
validation and comparison with existing methods, our pro-
posed Boosting Ensemble technique outshines various ap-
proaches, including Ratio methods, graphical methods,
intelligent methods, and hybrid methods. Notably, the
Boosting DT algorithm exhibits a diagnostic accuracy of
95.51%, showcasing its superiority over alternative methods
such as clustering 83.15%, GTM 78.65%, Trees Based
Learning 92.13%, and Combined technique N°2 80.90%.
This superior performance underscores the effectiveness of
the model in smoothing input vectors, enhancing harmony
with ensemble techniques, and mitigating limitations inherent
in prior methods. The successful integration of the proposed
model not only advanced diagnostic accuracy but also paved
the way for future research. Researchers can explore feature
extraction and selection, combining them with machine
learning algorithms, deep learning, and Ensemble techniques.
Leveraging DGA input vectors enhances diagnostic model
reliability, offering promising avenues for continued ad-
vancements in the field.
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