Synthesis and Characterization of Magnetite Iron Oxide Nanoparticles Application to the Degradation of Rhodamine B in Waste water

BOUKERCHE Said^{*1,2}, KHAMMAR Farida^{3,4} DJABER Selma¹, DRIDI Manel⁵, DEHIMI Chaima¹

¹ Department of Material Sciences, Faculty of Science and Technology, University Mohamed Cherif Messaaadia of Souk Ahras, 41000, Algeria

² Laboratory of Water and Environment Sciences and Technology (LST2E), University Mohamed Cherif Messaadia of Souk Ahras, 41000, Algeria

³ Department of Mechanical engineering, Faculty of Science and Technology, University Mohamed Cherif Messaadia of Souk Ahras, 41000, Algeria

⁴ Laboratory of Research on Electromechanical and Dependability (LRESF), University Mohamed Cherif Messaadia of Souk Ahras, 41000, Algeria

⁵ Laboratoire de Physique de la Matière et Rayonnement (LPMR), Faculté des Sciences et de Technologie, Université Mohamed Cherif Messaadia, Souk Ahras, Algeria

E mail :said.boukerche@univ-soukahras.dz

Abstract:

A significant amount of pollution is affecting the environment as a result of various factors. Among these factors include pharmaceutical waste, chemical waste discharges, pollution, and others. We have therefore turned to a method of treating these wastes to lessen the impact of pollution. Based on a study of photocatalytic activity using a supramagnetic catalyst—the magnetic iron oxide (Fe_3O_4)—photocatalysis offers the potential for the degradation of pollutants.

The magnetic iron oxide, or magnétite (Fe_3O_4), was produced chemically, and the nanoparticles were identified by diffraction of X-rays (DRX) and microscopy with balayage coupled to EDS (MEB-EDS). The synthesized particles were used as a catalyst for the degradation of pollutants that were already present, including Rhodamine B.

The following parameters were used to study the photodegradation of Rhodamine B: effect of catalyst mass, effect of solution pH, and effect of catalyst concentration.

The results obtained showed a good efficiency of Rhodamine B degradation. The best result is reached for acid pH (PH=2.36), at mass m=30mg and concentration C=3ppm for a minimal time of 35 min.

Keywords: Magnetite, Characterization, Photocatalysis, Degradation of pollutants, Rhodamine B.