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Abstract
In the present manuscript, we discuss the Ulam stability of dynamic equations on

time scales. We get some stability requirements using a fixed point alternative on

complete generalized metric spaces. To illustrate the effectiveness and benefit of the

proven results, two examples are provided. Our findings extend some related

findings in the literature.
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1 Introduction

Stefan Hilger introduced the theory of time scales calculus in his doctoral thesis in

1988, which is a useful tool for combining continuous and discrete problems into a

single theory. Working with dynamic equations has the benefit of allowing us to

characterize continuous–discrete hybrid systems within a single framework. In

terms of time scales, the results are more all-encompassing and take a variety of

different results as an example. Consequently, any discipline containing both
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continuous and discrete problems could benefit from the study of dynamic equations

on time scales. As a result, in recent decades, the topic of dynamic equations has

gained a lot of popularity for application in the simultaneous mathematical

modeling of several situations. In addition, the problems about stability, periodicity

and positivity of solutions for dynamic equations have received the attention of

many authors, see [1–7, 9–14, 17, 21] and the references therein.

The first to discuss the stability of functional equations were Ulam [24] and

Hyers [16]. Ulam–Hyers stability is the name given to this sort of stability after that.

In 1978, Rassias [20] generalized the Hyers theorem, enabling the Cauchy

difference to be unbounded. Several mathematicians were drawn to and motivated

to investigate the Ulam–Hyers and Ulam–Hyers–Rassias stabilities of differential

equations as a result of this discovery, see the publications [8, 18, 19, 22, 23] and the

references therein.

Basci, Misir and Ogrekci [8] discussed the Ulam stability of the differential

equation

-0 1ð Þ ¼ W 1;- 1ð Þð Þ:

By applying a fixed point alternative on generalized complete metric spaces, the

authors demonstrated the Ulam–Hyers stability and Ulam–Hyers–Rassias stability

of the above equation.

Let ! be a time scale. In the present manuscript, we extend the findings in [8] by

proving the Ulam stability of the dynamic equation

-D 1ð Þ ¼ W 1;- 1ð Þð Þ; 1 2 !; ð1:1Þ

where W : !� R ! R is a bounded rd-continuous function. To demonstrate the

Ulam–Hyers stability and Ulam–Hyers–Rassias stability of (1.1), we transform (1.1)

into an equivalent integral equation and then apply the fixed point alternative on a

complete generalized metric space. Finally, we present two examples to illustrate

our obtained findings.

2 Preliminaries

Definition 1 ([9]) A time scale ! is an arbitrary closed nonempty subset of R.

Definition 2 ([9]) Let ! be a time scale of R. The forward and the backward jump

mappings r; q : ! ! ! and the graininess l : ! ! Rþ are defined, respectively, by

r 1ð Þ ¼ inf s 2 ! : s[ 1f g; q 1ð Þ ¼ sup s 2 ! : s\1f g; l 1ð Þ ¼ r 1ð Þ � 1:

A point 1 2 ! is called left-dense if 1[ inf ! and q 1ð Þ ¼ 1, left-scattered if

q 1ð Þ\1, right-dense if 1\ sup! and r 1ð Þ ¼ 1, and right-scattered if r 1ð Þ[ 1. If !
has a left-scattered maximum M, then !j ¼ !nfMg. Otherwise, we define !j ¼ !.
If ! has a right-scattered minimum m, we define !j ¼ !n mf g. Otherwise, we
define !j ¼ !.
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Definition 3 ([9]) The function - : ! ! R is rd-continuous if it is continuous at

every right-dense point 1 2 ! and its left-sided limits exist, and is finite at every

left-dense point 1 2 !. The set of rd-continuous functions - : ! ! R is denoted by

Crd ¼ Crd !ð Þ ¼ Crd !;Rð Þ:

Definition 4 ([9]) Let - : ! ! R and 1 2 !j. We define -D 1ð Þ (if it exists) with
the property that for every e[ 0, there is a neighborhood U of 1 such that

- r 1ð Þð Þ � - sð Þ � -D 1ð Þ r 1ð Þ � sð Þ
�
�

�
�� e r 1ð Þ � sj j for all s 2 U:

We call -Dð1Þ the D-derivative of - at 1. We say that - is D-differentiable in !k if

-Dð1Þ exists for all 1 2 !j. The function -D : ! ! R is said to be the D-derivative
of - in !j.

Now, we state some D-derivative properties. Note -r 1ð Þ ¼ - r 1ð Þð Þ.

Theorem 1 ([9]) Assume -; , : ! ! R are D-differentiable at 1 2 !j and let a be
a scalar.

1ð Þ -þ ,ð ÞD 1ð Þ ¼ -D 1ð Þ þ ,D 1ð Þ.
2ð Þ a-ð ÞD 1ð Þ ¼ a-D 1ð Þ.
3ð Þ The product rules

-,ð ÞD 1ð Þ ¼ -D 1ð Þ, 1ð Þ þ -r 1ð Þ,D 1ð Þ;
-,ð ÞD 1ð Þ ¼ ,D 1ð Þ- 1ð Þ þ ,r 1ð Þ-D 1ð Þ:

4ð Þ If , 1ð Þ,r 1ð Þ 6¼ 0 then

-
,

� �D
1ð Þ ¼ -D 1ð Þ, 1ð Þ � - 1ð Þ,D 1ð Þ

, 1ð Þ,r 1ð Þ :

Definition 5 ([9]) A function t : ! ! R is regressive if 1þ l 1ð Þtð1Þ 6¼ 0 for all

1 2 !j. The set of all regressive rd-continuous function t : ! ! R is denoted by

R ¼ R !ð Þ ¼ R !;Rð Þ:

The set of all positively regressive functions Rþ, is given by

Rþ ¼ Rþ !;Rð Þ ¼ t 2 R : 1þ l 1ð Þt 1ð Þ[ 0 for all 1 2 !f g:

Definition 6 ([9]) Let t 2 R. The exponential function on ! is defined by
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et 1; sð Þ ¼ exp

Z 1

s

nl ið Þ t ið Þð ÞDi
� �

for s; 1 2 !;

where the cylinder transformation nh is introduced in [9, Definition 2.21].

Remark 1 ([9]) If t 2 Rþ, then et 1; sð Þ[ 0 for all 1 2 !. Also, the exponential

function - 1ð Þ ¼ et 1; sð Þ is the solution to the initial value problem -D 1ð Þ ¼
t 1ð Þ- 1ð Þ; - sð Þ ¼ 1.

We give other properties of the exponential function in the next lemma.

Theorem 2 ([9]) Let t 2 R. Then
1ð Þ e

0
1; sð Þ ¼ 1 and et 1; 1ð Þ ¼ 1;

(2) et r 1ð Þ; sð Þ ¼ 1þ l 1ð Þt 1ð Þð Þet 1; sð Þ;
3ð Þ 1

et 1;sð Þ ¼ e�t 1; sð Þ where �t 1ð Þ ¼ � t 1ð Þ
1þl 1ð Þt 1ð Þ ;

4ð Þ et 1; sð Þ ¼ 1
et s;1ð Þ ¼ e�t s; 1ð Þ;

5ð Þ et 1; sð Þet s; rð Þ ¼ et 1; rð Þ;

6ð Þ eDt :; sð Þ ¼ tet :; sð Þ and 1
et :;1ð Þ

� �D
¼ � t 1ð Þ

ert :;1ð Þ.

Lemma 1 ([1]) If t 2 Rþ, the

0\et 1; sð Þ� exp

Z 1

s

t ið ÞDi
� �

; 81 2 !:

Corollary 1 ([1]) If t 2 Rþ and tð1Þ\0 for all 1 2 !, then for all s 2 ! with s� 1,
we have

0\et 1; sð Þ� exp

Z 1

s

t ið ÞDi
� �

\1:

Theorem 3 ([15]) Let E; dð Þ be a complete generalized metric space. Suppose that
the mapping K : E ! E is contraction with the Lipschitz constant .\1. If there is a

k 2 N such that d Kkþ1,;Kk,
� �

\1 for some , 2 E, then the following are true

(a) the sequence Kn,f g converges to a fixed point ,� of K,
(b) ,� is the unique fixed point of K in

E� ¼ - 2 E : d KK,;-
� �

\1
	 


;

(c) if - 2 E�, then

d -; ,�ð Þ� 1

1� .
d K-;-ð Þ:
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3 Main results

Throughout this section, we define I :¼ 10; 10 þ d½ � \ ! for the given real numbers

10 and d with d[ 0. Also, we define the space E of all rd-continuous functions on I

by

E :¼ - : I ! R is rd-continuousf g ¼ Crd I;Rð Þ: ð3:1Þ

For every e	 0 and - 2 E satisfying

-D 1ð Þ �W 1;- 1ð Þð Þ
�
�

�
�� e;

if there is a solution -0 of (1.1) such that

- 1ð Þ � -0 1ð Þj j �Ke;

where K is a positive constant. Then, the Eq. (1.1) is Ulam–Hyers stable. If the

above statement remains true after replacing e by u : I ! ½0;1Þ, where this

function does not depends on - and -0, then the Eq. (1.1) is Ulam–Hyers–Rassias

stable. For more detailed, we refer to Ogrekci, Basci and Misir [19], Tunç and Biçer

[22].

In our proofs, we will need a completeness of the space E; dð Þ which is given in

the following result (see [8]).

Lemma 2 ([8]) Define the function d : E � E ! ½0;1� with

dð-1;-2Þ :¼ inf C 2 ½0;1� : j-1ð1Þ � -2ð1Þje�M 1; 10ð Þ�CUð1Þ; 1 2 If g; ð3:2Þ

where M[ 0 is a given constant and U : I ! 0;1ð Þ is a given rd-continuous

function. Then (E, d) is a complete generalized metric space.

Now, we are ready to study the Ulam–Hyers stability of dynamic Eq. (1.1).

Theorem 4 Suppose that the function W : I� R ! R is rd-continuous and satisfies
the Lipschitz condition

W 1;-1ð Þ �W 1;-2ð Þj j � . -1 � -2j j for all 1 2 I; -1;-2 2 R;

where .[ 0. If a rd-continuous function - : I ! R satisfies

-D 1ð Þ �W 1;- 1ð Þð Þ
�
�

�
�� e for all 1 2 I; ð3:3Þ

and some e	 0; then (1.1) admits a unique solution -0 satisfying

- 1ð Þ � -0 1ð Þj j � .þ 1ð Þde for all 1 2 I:

Proof Let E be the space defined by (3.1). We define a function d : E � E ! 0;1½ �
with
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d -1;-2ð Þ :¼ inf C 2 0;1½ � : -1 1ð Þ � -2 1ð Þj je� .þ1ð Þ 1; 10ð Þ�C; 1 2 I
	 


:

Then, by applying Lemma 2, E; dð Þ is a generalized complete metric space. Now,

define the mapping K : E ! E by

K-ð Þ 1ð Þ :¼ - 10ð Þ þ
Z 1

10

W s;- sð Þð ÞDs; 1 2 I; - 2 E:

Clearly, any fixed point of K solves (1.1).

According to fundamental theorem of calculus K- 2 E and thus we get

K-0ð Þ 1ð Þ � -0 1ð Þj je� .þ1ð Þ 1; 10ð Þ\1;

for arbitrary -0 2 E and all 1 2 I, which means d K-0;-0ð Þ\1 for all -0 2 E.
Similarly

-0 1ð Þ � - 1ð Þj je� .þ1ð Þ 1; 10ð Þ\1;

for all - 2 E and all 1 2 I, which means d -0;-ð Þ\1 for all - 2 E, i.e.,

- 2 E : d -0;-ð Þ\1f g ¼ E.
Now, we will show that K is a contraction on E. For any -1;-2 2 E, by using

Theorems 1 and 2, we obtain

K-1ð Þ 1ð Þ � K-2ð Þ 1ð Þj j

¼
Z 1

10

W s;-1 sð Þð Þ �W s;-2 sð Þð Þ½ �Ds
�
�
�
�

�
�
�
�

�
Z 1

10

W s;-1 sð Þð Þ �W s;-2 sð Þð Þj jDs

� .
Z 1

10

-1 sð Þ � -2 sð Þj jDs

¼ .
Z 1

10

-1 sð Þ � -2 sð Þj je� .þ1ð Þ s; 10ð Þe .þ1ð Þ s; 10ð ÞDs

� .d -1;-2ð Þ
Z 1

10

e .þ1ð Þ s; 10ð ÞDs

� .
.þ 1

d -1;-2ð Þe .þ1ð Þ 1; 10ð Þ;

for all 1 2 I. Thus, for any -1;-2 2 E and for all 1 2 I, we have

K-1ð Þ 1ð Þ � K-2ð Þ 1ð Þj je� .þ1ð Þ 1; 10ð Þ� .
.þ 1

d -1;-2ð Þ:

Hence, for all -1;-2 2 E we have

d K-1;K-2ð Þ� .
.þ 1

d -1;-2ð Þ:

So, K is a contraction on E. Consequently, we have demonstrated that all
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assumptions of Theorem 3 are satisfied with k ¼ 1 and E� ¼ E.
On the other hand, according to (3.3), we get

�e�-D 1ð Þ �W 1;- 1ð Þð Þ� e for all 1 2 I:

By integrating this inequality from 10 to 1, we get

- 1ð Þ � K-ð Þ 1ð Þj j � e 1� 10ð Þ for all 1 2 I:

By multiplying this inequality by e� .þ1ð Þ 1; 10ð Þ and applying Theorems 1 and 2, we

obtain

K-ð Þ 1ð Þ � - 1ð Þj je� .þ1ð Þ 1; 10ð Þ� e 1� 10ð Þe� .þ1ð Þ 1; 10ð Þ for all 1 2 I;

which means

d K-;-ð Þ� e 1� 10ð Þe� .þ1ð Þ 1; 10ð Þ� ede� .þ1ð Þ 1; 10ð Þ for each 1 2 I:

By applying Theorem 3, the dynamic Eq. (1.1) admits a unique solution -0 : I ! R

satisfying

d -;-0ð Þ� 1

1� .= .þ 1ð Þ d K-;-ð Þ� .þ 1ð Þede� .þ1ð Þ 1; 10ð Þ for each 1 2 I:

From definition of d we get

- 1ð Þ � -0 1ð Þj je� .þ1ð Þ 1; 10ð Þ� .þ 1ð Þede� .þ1ð Þ 1; 10ð Þ;

and thus we obtain

- 1ð Þ � -0 1ð Þj je� .þ1ð Þ 1; 10ð Þ� .þ 1ð Þde for all 1 2 I:

Now, the proof is complete. h

Now, we will prove the Ulam–Hyers–Rassias stability of (1.1).

Theorem 5 Suppose that the function W : I� R ! R is rd-continuous and satisfies
the Lipschitz condition

W 1;-1ð Þ �W 1;-2ð Þj j � . 11 � 12j j for all 1 2 I; -1;-2 2 R:

where .[ 0. If a rd-continuous function - : I ! R satisfies

-D 1ð Þ �W 1;- 1ð Þð Þ
�
�

�
��u 1ð Þ for all 1 2 I; ð3:4Þ

where the function u : I ! 0;1ð Þ is non-decreasing rd-continuous and satisfies

Z 1

10

u sð ÞDs
�
�
�
�

�
�
�
�
�Ku 1ð Þ for each 1 2 I: ð3:5Þ

Then, (1.1) admits a unique solution -0 satisfying
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- 1ð Þ � -0 1ð Þj j �K 1þ .ð Þu 1ð Þ for all 1 2 I:

Proof Let E be the space defined by (3.1). We introduce a function d : E � E !
0;1½ � with

d -1;-2ð Þ :¼ inf C 2 0;1½ � : -1 1ð Þ � -2 1ð Þj je� .þ1ð Þ 1; 10ð Þ�Cu 1ð Þ; 1 2 I
	 


:

Then, by applying Lemma 2, E; dð Þ is a generalized complete metric space. Now,

define the mapping K : E ! E by

K-ð Þ 1ð Þ :¼ - 10ð Þ þ
Z 1

10

W s;- sð Þð ÞDs; 1 2 I; - 2 E:

Clearly, any fixed point of K solves (1.1). Moreover, as in proof of Theorem 4, it

can be demonstrated that d K-0;-0ð Þ\1 for all -0 2 E and

- 2 E : d -0;-ð Þ\1f g ¼ E.
Now, we will prove that K is a contraction mapping on E. By integrating by parts,

we get
Z 1

10

u sð Þe .þ1ð Þ s; 10ð ÞDs

� 1

.þ 1
u 1ð Þe .þ1ð Þ s; 10ð Þ � 1

.þ 1

Z 1

10

uD 1ð Þe .þ1ð Þ r sð Þ; 10ð ÞDs:

Using the monotonicity of u, we obtain

Z 1

10

u sð Þe .þ1ð Þ s; 10ð ÞDs� 1

.þ 1
u 1ð Þe .þ1ð Þ 1; 10ð Þ for all 1 2 I:

Now, for any -1;-2 2 E, let C-1;-2
2 ½0;1� be an arbitrary constant with

d -1;-2ð Þ�C-1;-2
, that is

-1 1ð Þ � -2 1ð Þj je� .þ1ð Þ 1; 10ð Þ�C-1;-2
u 1ð Þ for all 1 2 I:

Using Theorems 1 and 2, it then follows, for any -1;-2 2 E,

K-1ð Þ 1ð Þ � K-2ð Þ 1ð Þj j

¼
Z 1

10

W s;-1 sð Þð Þ �W s;-2 sð Þð Þ½ �Ds
�
�
�
�

�
�
�
�

�
Z 1

10

W s;-1 sð Þð Þ �W s;-2 sð Þð Þj jDs

� .
Z 1

10

-1 sð Þ � -2 sð Þj jDs
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¼ .
Z 1

10

-1 sð Þ � -2 sð Þj je� .þ1ð Þ s; 10ð Þe .þ1ð Þ s; 10ð ÞDs

� .C-1;-2
u 1ð Þ

Z 1

10

e .þ1ð Þ s; 10ð ÞDs � .
.þ 1

C-1;-2
u 1ð Þe .þ1ð Þ 1; 10ð Þ;

for all 1 2 I. Thus, for any -1;-2 2 E and for all 1 2 I; we have

K-1ð Þ 1ð Þ � K-2ð Þ 1ð Þj je� .þ1ð Þ 1; 10ð Þ� .
.þ 1

C-1;-2
u 1ð Þ

Hence, for all -1;-2 2 E we have

d K-1;K-2ð Þ� .
.þ 1

d -1;-2ð Þ;

and we note that .= .þ 1ð Þ\1. So, the mapping K is contraction on E. Conse-
quently, we have demonstrated that all assumptions of Theorem 3 are satisfied with

k ¼ 1 and E� ¼ E.
On the other hand, according to (3.4), we get

�u 1ð Þ�-D 1ð Þ �W 1;- 1ð Þð Þ�u 1ð Þ for all 1 2 I:

By integrating this inequality from 10 to 1 and applying the inequality (3.5), we get

- 1ð Þ � K-ð Þ 1ð Þj j �Ku 1ð Þ for all 1 2 I:

By multiplying this inequality with e� .þ1ð Þ 1; 10ð Þ we obtain

- 1ð Þ � K-ð Þ 1ð Þj je� .þ1ð Þ 1; 10ð Þ�Ku 1ð Þe� .þ1ð Þ 1; 10ð Þ

which means that

d K-;-ð Þ�Ku 1ð Þe� .þ1ð Þ 1; 10ð Þ for all 1 2 I:

By applying Theorem 3, the dynamic equation (1.1) admits a unique solution -0 :
I ! R satisfying

d -;-0ð Þ� 1

1� .= .þ 1ð Þ d K-;-ð Þ�K 1þ .ð Þu 1ð Þe� .þ1ð Þ 1; 10ð Þ;

for all 1 2 I. From definition of d -;-0ð Þ, we get

- 1ð Þ � -0 1ð Þj je� .þ1ð Þ 1; 10ð Þ�K 1þ .ð Þu 1ð Þe� .þ1ð Þ 1; 10ð Þ;

and thus we obtain

- 1ð Þ � -0 1ð Þj j �K 1þ .ð Þu 1ð Þ for all 1 2 I:

Now, the proof is complete. h

Example 1 Let ! be a time scale. Consider the dynamic equation
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-D 1ð Þ ¼ 3

7
cos 1ð Þ þ 2

7
arctan - 1ð Þð Þ; ð3:6Þ

on the interval I :¼ 0; d½ � \ !, d[ 0. In this case, we have

W 1;- 1ð Þð Þ ¼ 3

7
cos 1ð Þ þ 2

7
arctan - 1ð Þð Þ:

Obviously, W satisfies the Lipschitz condition with . ¼ 2
7
since

W 1;-1ð Þ �W 1;-2ð Þj j � 2

7
-1 � -2j j:

Hence, by using Theorem 4, (3.6) is Ulam-Hyers stable on I.

Now, if we define u : I ! R by u 1ð Þ ¼ ek 1; 0ð Þ, k[ 0, we have
Z 1

0

u sð ÞDs
�
�
�
�

�
�
�
�
¼

Z 1

0

ek s; 0ð ÞDs� 1

k
ek 1; 0ð Þ ¼ 1

k
u 1ð Þ:

Then, the condition (3.5) holds with K ¼ 1=k. Hence, by applying Theorem 5, (3.6)

is Ulam–Hyers–Rassias stable on I.

Example 2 Let ! be a time scale. Consider the dynamic equation

-D 1ð Þ ¼ sin 1ð Þ þ 1

5
cos - 1ð Þð Þ; ð3:7Þ

on I :¼ 10; d½ � \ !, where 10; d 2 ! with d[ 10. Since

W 1;- 1ð Þð Þ ¼ sin 1ð Þ þ 1

5
cos - 1ð Þð Þ;

we have

W 1;-1ð Þ �W 1;-2ð Þj j � 1

5
-1 � -2j j:

Hence, all conditions of Theorem 4 are satisfied. So, the Eq. ( 3.7) is Ulam-Hyers

stable.

For u 1ð Þ ¼ ek 1; 10ð Þ (k[ 0), we obtain
Z 1

10

u sð ÞDs
�
�
�
�

�
�
�
�
� 1

k
ek 1; 10ð Þ ¼ 1

k
u 1ð Þ for all 1 2 I:

Then, according to Theorem 5, the Eq. (3.7) is Ulam–Hyers–Rassias stable.

4 Conclusion

In this manuscript, we have considered the Ulam stability of a class of nonlinear

dynamic equations on time scales. We have obtained some new Ulam stability

criteria using a fixed point alternative on complete generalized metric spaces. We

have provided two examples to illustrate the effectiveness of proven findings. Our
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findings extend some well-known findings. As a future research, the Ulam stability

of delay dynamic equations might be considered.
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