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Abstract In this work, we propose the design and implementation of a parallel-structured fuzzy logic controller with
integral action and anti-windup. The Grey Wolf Optimization (GWO) technology is used to optimize fuzzy rules, which
allows for the complicated algebraic ideas of type 1 fuzzy logic algorithms to be reduced to straightforward numerical
equations for FPGA target implementation. The techniques for operating a geared DC motor are optimized by the
membership function structure of our controller’s data propagation. Our proposed controller was implemented in Xilinx
System Generator (XSG) and co-simulated on hardware and software with VIVADO and XSG tools.
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1. Introduction

Due to their simplicity, reliability, and ease of control, Direct Current (DC) motors find extensive utilization
across a diverse range of industries and applications. These motors are commonly employed in electric vehicles,
robotics, industrial equipment, appliances, aerospace and defense systems, renewable energy systems, medical
devices, and amateur projects. The primary function of DC motors is to convert electrical energy into mechanical
motion, enabling efficient and precise control for various tasks, including propulsion, robotic movements, material
handling, fluid transportation, and more [30, 21, 14]. Their widespread adoption and adaptability have made them
an indispensable component of modern technologies spanning different sectors.

Ongoing research on DC motors aims to enhance their performance and control in diverse applications. This
research involves gaining insights into engine characteristics, developing mathematical models and simulations,
exploring control techniques and algorithms, and investigating sensorless control methods. By addressing
challenges such as nonlinearities, uncertainties, and parameter variations, the ultimate goal is to improve the
efficiency, reliability, and controllability of DC motors [12]. Research plays a crucial role in advancing the
development of Direct Current (DC) motor systems that offer enhanced reliability and precision, tailored to the
specific requirements of diverse industries [12, 7]. One area of focus in DC motor research involves achieving
precise and efficient speed control in various industrial applications. Initially, open-loop control methods were
utilized, but their accuracy and performance were compromised in the presence of disturbances and load variations.
Consequently, closed-loop control techniques, notably PID control, gained popularity. PID control involves using
feedback to continuously adjust control inputs based on the disparity between the desired motor speed and its
actual speed. Researchers have explored various approaches to fine-tune PID parameters for achieving improved
performance [6, 19, 10]. Fuzzy logic control is a control technique used to regulate DC motors and other systems
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by incorporating human-like reasoning and linguistic variables. This approach offers flexible and robust control
strategies, effectively handling imprecision and uncertainty present in real-world systems. Fuzzy logic control
finds applications in various areas, such as speed control, position control, torque control, robotics, automation, and
energy efficiency optimization for DC motors. By enabling precise and adaptive control, it effectively addresses
non-linearities and varying operating conditions, providing intelligent control strategies for diverse applications
[33, 29, 27].

The main challenges posed by the problem can be summarized into two key issues: the non-linearity of the DC
motor and the drawbacks associated with fuzzy controller systems, which are expressed as follows [27, 16, 34]:
1. Complex mathematical computations are necessary for fuzzy controllers.
2. The essential information provided by experts may not always be optimal or precise.
3. The challenge lies in determining the ideal values for input and output gains due to the numerous multiplications
and additions involved in fuzzy calculations.

Xilinx provides a high-level design tool called XSG, which is specifically designed for rapid prototyping
of Digital Signal Processing (DSP) algorithms using their FPGAs. This tool seamlessly integrates with
MATLAB/Simulink, enabling designers to create and simulate intricate DSP algorithms within a user-friendly
graphical environment. By automating low-level implementation details, XSG simplifies the design process and
supports various Xilinx FPGA families. Leveraging FPGA parallelism and configurability, System Generator
(XSG) facilitates efficient implementation, resulting in reduced development time and a higher level of abstraction
compared to traditional RTL design. This feature allows for faster iterations and system exploration, making it a
potent tool for DSP algorithm design and implementation on Xilinx FPGAs [4, 13, 17, 15].

Incorporating FPGAs in DC motor speed control offers several advantages, such as enhanced flexibility, high-
speed processing capabilities, integration of multiple functions, customizability, real-time monitoring, reduced
system cost, and potential energy efficiency [39, 23, 22, 36, 11, 25, 1, 38, 32, 20].

1.1. Literature review

DC motor speed control has been extensively studied in the field of control systems. Researchers have explored
various control techniques and algorithms to achieve precise and efficient speed regulation. The literature review
highlights significant findings and approaches, including PID control [8], adaptive control [7], fuzzy logic control
[35], neural network control [30], sliding mode control [15], optimal control [5], and hybrid control methods
[10]. The main focus of these studies is on optimizing control performance, dealing with non-linearities and
uncertainties, and achieving robust and efficient speed control in DC motors.

In the subsequent sections, we will briefly examine the utilization of Fuzzy Logic Controller (FLC) structures in
the control of DC motors. Additionally, we explore the application of Field-Programmable Gate Arrays (FPGAs)
for control purposes in embedded systems.

In [24] the primary aim of this research is to introduce and justify a defuzzification approach founded on the
global structure of a fuzzy controller. Furthermore, this study demonstrates how this method can assist designers
in attaining their objectives with ease and in a systematic manner. Various defuzzification methods exist, including
COG (Center of Gravity), MOM (Mean of Maxima), WAF (Weighted Average Formulae), QM (Quality Method),
and WABL (Weighted Average Based on Levels) , among others. However, the challenge arises from the fact that
each method yields distinct outcomes for the same problem. Consequently, determining which one is the most
suitable becomes a crucial question.

In one study [28], the primary objective is to enhance the performance of Electric Vehicles (EV) battery chargers
by optimizing the Vienna rectifier with a Voltage-Oriented Controller (VOC) PI controller. The researchers aim
to optimize the VOC PI controller using the Particle Swarm Optimization (PSO) technique implemented through
MATLAB software [37]. Comparing it to the Genetic Algorithm (GA) technique, the PSO technique offers a
simpler optimization process with fewer heuristic variables, making it the preferred method for optimizing the PI
controller of VOCs.

In another study [11], the authors investigate the performance of Induction Motor (IM) drives utilizing Indirect
Field Oriented Control (IFOC) along with a simple self-tuning mechanism for adjusting the output Scaling Factor
(SF) of the primary FLC. They analyze the impact of varying rule sizes within the FLC on both the drive’s
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performance and the computational load of the system. The study provides a comprehensive analysis of these
effects.

In [18], the authors set out to present a prototype of a unicycle robot. They initiated the process by developing
a model of a two-armed inverted pendulum. Subsequently, they made enhancements by incorporating various
components, ultimately intending to replace the arms with a gyroscope. As mentioned earlier, when a perturbation
τ was applied to the two arms, it led to rotations of the arms, denoted as α and β, and caused the pendulum angle
θ to oscillate around its equilibrium point. To ensure stability in the system, the authors proposed and modeled a
fuzzy logic control technique.

In [25], the authors propose a straightforward Fuzzy Control Strategy (FCS) for Self-Balancing Robot (SBR)
systems and demonstrate an implementation technique using Look-Up Tables (LUTs) for Fuzzy Logic Controllers
(FLCs). This approach is specifically tailored for educational purposes.

In [1], the authors employ a Fractional-Order PID (FOPID) controller to regulate the reference current of a
Brushless Direct Current (BLDC) motor, and a Fuzzy Logic Controller (FLC) is utilized to manipulate the DC bus
voltage of the inverter. To tune the FOPID controller’s parameters, they develop a modified Harmony Search (HS)
metaheuristic technique. The article presents a strategy for controlling the speed of a BLDC motor, involving the
use of a FLC to adjust the DC inverter voltage and a FOPID controller to regulate the BLDC motor’s reference
current through the inverter gate circuit.

In [38], the authors introduce a novel PID controller called DFPID-HSA (Dual Fuzzy Logic Systems with
Harmony Search Algorithm optimization). They incorporate dual Fuzzy Logic Systems (FLSs) and utilize the
Harmony Search Algorithm (HSA) optimization technique to enhance the speed control performance of BLDC
motors. DFPID-HSA comprises two FLSs: FLS1, which adjusts the three coefficients of the PID controller based
on the system error and error change rate, and FLS2, which is optimized using HSA (referred to as HSA-F2) to
achieve precise correction of the three coefficients.

The key works in [32] and [20], representing a branch of research in FPGA implementation, are the subject of
our study. In [32], the authors propose a new fuzzy logic algorithm and compare it with the traditional fuzzy
logic algorithm. They provide a detailed discussion of the comparative results obtained from the analysis. In
[20], the authors introduce optimization techniques using an enhanced Genetic Algorithm (GA) to improve the
inherent qualities of fuzzy controllers. They compare the outcomes achieved with various types of fuzzy controllers
mentioned in other research papers and introduce specific strategies for implementing an optimal fuzzy controller
on FPGA. The proposed method’s scheme is represented in Figure 1.

1.2. Motivations and Contributions

Reasons for regulating the speed of DC motors encompass the necessity for exacting command, enhanced
energy usage, torque management, and seamless system amalgamation. This facilitates meticulous performance,
optimized energy utilization, precise torque generation, and effortless integration into intricate setups. Difficulties
associated with governing the speed of DC motors involve intricate control demands, dynamic responsiveness,
motor traits and confines, susceptibility to Electromagnetic Interference (EMI), as well as the expenses and
intricacy linked with control hardware, along with upkeep and dependability concerns. To surmount these hurdles, it
necessitates advanced control algorithms to tackle nonlinear tendencies, counterbalance motor restrictions, handle
EMI susceptibilities, consider cost and intricacy aspects, and ensure appropriate maintenance to ensure dependable
functionality. Fixed-point arithmetic plays a significant role in influencing the cost and performance of a circuit. As
the size of operators decreases, the required precision becomes more critical. The main goal is to achieve a small
and fast circuit while ensuring an acceptable level of precision. Consequently, this research paper aims to make
two contributions:

1. Control algorithms: The primary focus is on developing a novel control algorithm based on simple and easily
implementable equations to enhance the accuracy, stability, and response characteristics for regulating the speed of
DC motors.

2. Power consumption strategies: To minimize power losses and improve overall energy efficiency,
implementation techniques on FPGA boards, such as parallelism and data propagation pipeline, are employed.
These strategies are designed to optimize power consumption by capturing global energy efficiency.
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Figure 1. Integral FL controller with anti-windup technique.

2. Electromachanical system

Using an electrical input to create a mechanical output or a displacement output from a voltage input, a motor is an
electromechanical component. The following graphic displays the geared DC motor’s schematic [30, 2].

Figure 2. Electromechanical system modeling.

In industrial applications, a motor that drives the load is typically linked to gears. You may increase speed with
less torque or decrease speed with more torque while using gears. When referring to the motor with gear, JT
stands for total inertial momentum and BT for total viscous friction. The electromechanical system’s parameters
are presented in table 1. A second order system is defined as any system that is governed by a second order linear

Table 1. The Electromechanical System's Parameters.

Ra[Ω] 0.5 ki[N.m/A] 0.05
La[H] 1.5 kb[V.s/rad] 0.05
JT[Kg.m2] 0.0025 Nominal Voltage[V] 23.5
BT[N.m.s/rad] 0.0010 Operating Range [V] 8-35

differential equation with constant coefficients whose transfer function is:

Stat., Optim. Inf. Comput. Vol. 12, January 2024



186 FUZZY LOGIC CONTROLLER ALGORITHMS WITH MF OPTIMIZATION
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Figure 3 show the dynamic behavior of the error and its derivative of our system studied later.

Figure 3. Second-Order System Behavior( time scale 2s).

Where:  KC = 100
106 = 0.9434 rad

s.V

ωn = 3.7594 rad
s , ζ = 0.0975

ωd = 3.7415 rad
s , Td = 1.6793s

(4)

We have the following continuous dynamic system with u(t) is the applied control (see Figure 3), the time
response is given by:

y(t) = KU0(1− e−ζωnt(cosωn

√
1− ζ2t+

ζ√
1− ζ2

sinωn

√
1− ζ2t)) (5)

The equation that represents the error applied to system is expressed by:
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The error's derivative function is:

ė(t) = −KU0
ωn√
1− ζ2

e
−ζωnt

sinωn

√
1− ζ2t (7)

Stat., Optim. Inf. Comput. Vol. 12, January 2024



SAMET AHMED, KOURD YAHIA 187

If the derivative function's derivative is equal to zero, the derivative function's minimum is equal to a quarter of
the system's pseudo-period. This is shown in (8)

sinωn

√
1− ζ2t = 1 ⇒ t =

T

4
(8)

from which the numerical application gives the results in (9)

ė

(
T

4

)
= ėMin = −KU0

ωn√
1− ζ2

e
−ζωn

T
4

= −K0U0 = −3.0552U0 (9)

This involves:

eMax = 250 ⇒ ėMin = −763.7966 (10)

Finally, we can deduce the range of work to which we will apply our controller in the next part of this article. for
practical reasons, that is to say, reducing noise and exploiting average speeds in order to have performance in the
results of simulations (11). {

−256 ≤ e ≤ 256
−1024 ≤ ė ≤ 1024

(11)

3. Fuzzy Logic Controller

3.1. Type-1 fuzzy logic systems

The following membership function, µA(x), which accepts values in the range [0,1], describes a type-1 fuzzy set
in the universe X. It may be modeled as a collection of ordered pairs of an element and the degree to which the
element is a member of the set.

(A = {A,µA(x)| x ∈ X} (12)

Where µA: X ∈ [0, 1] , in this expression, µA(x) stands for the degree of membership of the element x ∈ X to the
set A. Any fuzzy logic-based system has three phases: fuzzy inference, fuzzy inference, and fuzzy defuzzification.
The set point andv the measured and computed signals from the encoder are expressed linguistically via the input
linguistic variables for the fuzzy logic controller (FLC). Fuzzification involves employing membership functions
to convert entries into linguistic variables. The two inputs to FLC are derivative of Error equal to d and Error
equal to e (Set point-measured speed, derivative of error). In the output linguistic variable, the value applied to the
FLC actuator for dc motor control is stated (u). Triangular membership functions are used to fuzzily the input or
output. For the fuzzifier application, it is necessary to identify the range of fuzzy variables associated to the crisp
inputs and output values. NS=negative small, NB=negative big, NM=negative mean the fuzzy sets utilized are tiny,
ZE=zero, PS=positive small, PM=positive mean, and PB=positive big. The Membership function for input and
output linguistic variables is shown in equations [27, 18, 18].

Inputs e and de are represented by a symmetrical triangular function:

µei
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i
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Triangular function that represents the output u:
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The components of the vectors to be optimized are given by the following system of equations:
xi = (l

1
i − ai) a[−256 , 256]

yi = (l
2
i − bi) a[−1024, 1024]

zi = (l
3
i − ci) a[−12 , 12 ]

(17)

It is a technique that characterizes the study of this article that the values in the intervals in the function pertaining
to the linguistic variables of inputs and outputs are in power of 2. ai a {−256, −32, 0, 32, 256}

bi a {−512, −128, 0, 128, 512}
ci a {−8, −4, 0, 4 , 8 }

(18)

Inference connects input linguistic variables to output linguistic variables, which are then expressed as linguistic
variables (the inference engine used is Max-min from Mamdani) [27]. The rule base for FLC is shown in Figure
4 Which command to employ is indicated by a fuzzy controller’s fuzzy output. The predicted output is also a real

Figure 4. Fuzzy logic controller rules reduction.

number if the input is a real number. However, since the output remains fuzzy even when the input is crisp, this
generally does not happen with fuzzy controllers. Determining a method for defuzzing the output and generating
a true number that will finally show which control to employ will be necessary. There are several defuzzification
methods available.

u =

∑n
j=1 µj(u)Cj∑n
j=1 µj(u)

(19)
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U is the centroid, which is sometimes referred to as the center of mass or gravity. It is suggested to use this
defuzzification method even if it is the most complex. The three parts of a fuzzy controller are shown in the
following diagram. By dissecting the building blocks, we can observe that the intermediate part houses the two
main working components of the controller, the rules and inference engine. This sort of controller uses the centroid
technique in Figure 5.

Figure 5. type I fuzzy Logic System Structure.

The membership function for the input or output linguistic variables is represented graphically in Figure 6.

Figure 6. Behavior of Membership function for inputs and outputs linguistic variable of FL Controller.

3.2. Proposed Centroid Calculation Algorithm

The Mamdani’s min-max implication is a fuzzy inference technique that use the min operator to determine the
least value of the membership degree between two inputs obtained from the rule selector, and the max operator
to aggregate all rules for each output variable. To obtain the crisp value of the fuzzy value, the final output is
determined using the weighted average defuzzification approach as shown in (20). The value of each resulting
surface of each rule is computed in the first stage of this procedure (19). The determined surface is the value of
Rk(u), which corresponds to the controller’s rk(u) rule’s membership function µi(u). All the values of the surfaces
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Rk(u) calculated as follows will be stored in a table R: R(u) =
∫ L

−L
(µk(u)− f(u))du

Rk(u) = A(k)(2µk(u)− µk(u)
2
)

k = 1, 2, . . . n = 9

(20)

In the second step an R array is computed of which:

Hk(u) = ckRk(u) (21)

Finally, we determine the centroid using ci, the coefficient of the triangle function of (22).

u =

∑n
k=1 ckRk(u)∑n
k=1 Sk(u)

=

∑n
k=1 Hk(u)∑n
k=1 Rk(u)

(22)

If we utilize the previous equation’s two-dimensional notation, we get:

u =

n∑
1

n∑
1

H(i, j)

R(i, j)
(23)

The first initialization, the second fuzzification, the third defuzzification process, and the fourth computation of the
center of gravity are the four parts of the algorithm.

4. Grey Wolf Optimization

4.1. Overview

Mirjalili et al. [3] suggested GWO. The social order and hunting practices of wolves served as the basis for the
mathematical model that makes up the Grey Wolf algorithm. Alpha, beta, delta, and omega make up the four tiers
of the grey wolf social structure, from highest to lowest. The top wolves in a wolf pack are called alphas. They
are in charge of the wolf pack, and the others must obey their orders. Beta is the next position in the grey wolf
hierarchy. The alpha wolf’s beta can help with decision-making or other group tasks. It provides feedback to the
alpha and reinforces his or her directives. Omega is the grey wolf with the lowest rating. They are obligated to
constantly yield to the other dominant wolves. Next to the alphas and betas in the pack hierarchy, delta wolves are
in charge of the omega. First, the objective function is built in accordance with the challenges and the best answer
is considered to be alpha in order to mathematically simulate the social hierarchy of grey wolves.

4.2. Encircling Prey

When hunting, grey wolves encircle their victim. The following equations allow a grey wolf to update its position
within the area around the prey at any random place during this procedure [3, 31].

D =
∣∣∣−→C.−→Xp(t)−

−−→
X(t)

∣∣∣ (24)

−→
X (t+ 1) =

−→
Xp(t)−

−→
A.

−→
D (25)

Where t is the current iteration, X(p) denotes the position vector of the prey, X denotes the position vector of a
grey wolf, C and A are the coefficient vectors that are determined using the following equations.

−→
C = 2.−→r2 (26)

−→
A = 2.

−→
d .−→r1 −

−→
d (27)

where r1 and r2 are random vectors between [0, 1], and components of d are linearly lowered from 2 to 0 during
the course of repetitions.
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4.3. Hunting

The dominant wolf leads the hunt. The beta and delta wolves occasionally go hunting. It is assumed that the alpha,
beta, and delta wolves have superior knowledge of the possible location of prey in order to mathematically describe
the hunting behavior of grey wolves. The first three best answers obtained are therefore kept, and the other search
agents are compelled to update their positions in accordance with the best search agents’ locations. The following
equations can be used in this regard [3, 31].

−→
Dα =

∣∣∣−→C1.
−→
Xα −

−→
X
∣∣∣ , −→

X1 =
−→
Xα −A1.

−→
Dα

−→
Dβ =

∣∣∣−→C2.
−→
Xβ −

−→
X
∣∣∣ , −→

X2 =
−→
Xβ −A2.

−→
Dβ

−→
Dδ =

∣∣∣−→C3.
−→
Xδ −

−→
X
∣∣∣ , −→

X3 =
−→
Xδ −A3.

−→
Dδ

(28)

4.4. Attacking Prey

When the victim stops moving, the grey wolves attack it to complete their hunt. The value of D is gradually
dropped over the course of iterations from 2 to 0, which also reduces the fluctuation range of A, in order to build
the mathematical model of a Gray Wolf approaching prey. The next position of a search agent can be at any location
between its present position and the position of the prey when the random values of A are in the range [-1, 1]. When
A is smaller than 1, grey wolves attack the victim [9, 26].

4.5. Search for Prey

Grey wolves split from one another in order to escape the local optimal solution and go for a more suitable prey.
A is used with random values bigger than 1 or less than -1 to force the search agent to diverge from the prey in
order to mathematically simulate the grey wolf’s divergence traits. As a result, the GWO algorithm may search
worldwide and emphasizes exploratory qualities. When abs(A) is larger than 1, grey wolves depart from their prey
in pursuit of fitter prey [3, 31]. In (28) the prey position corresponds, respectively, to the best position attained by
each of the wolf ranks, α, β and γ. All wolf population positions are updated using the following (29) and the
general GWO is presented in Table 2.

−→
X (t+ 1) =

−→
X1 +

−→
X2 +

−→
X3

3
(29)

4.6. Cost and parameters

In this paper the construction of objective function is shown in (31)

J =

∫ ∞

0

e(t)
2
dt (30)

More precisely:

J =

L∑
k=0

e(k)
2 (31)

The GWO method must minimize the cost J while optimizing the vectors Xin and Xout. Our approach entails
optimizing the input and output individually. With maximum number of iteration equal to 100 and number of
search agent is 30.

−→
X in =

[
xi

yi

]
i = −1, 0, 1 (32)

−→
X out = [zi] i = −2,−1, 0, 1, 2 (33)
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Table 2. GWO Algorithmrs

Pseudo Code
1 Initialize the grey wolf population Xi, i=1,n
2 Initialize a, A and C
3 Calculate the fitness of each search agent
4 Xα the best search agent
5 Xβ the best search agent
6 Xγ the best search agent
7 -------------------------------------------
8 While t< iteration do
9 For each search agent do

10 Randomly initialize r1 and r2
11 Update the position of the current search agent by Equation (29)
12 End
13 -------------------------------------------
14 Update a, A and C
15 Calculate the fitness of all search agent
16 Update Xα, Xβ and Xγ

17 T=t+1
18 End
19 -------------------------------------------
20 Return Xα

The bounds of the vectors Xin and Xout are given by the following memberships:

xi ∈ {2−4, 2−3, 2−2, 2−1, 20, 21, 22, 23, 24, 25, 26, 2
7
, 28} (34)

yi ∈ {2−4, 2−3, 2−2, 2−1, 20, 21, 22, 23, 24, 25, 26, 2
7
, 28, 29, 210} (35)

zi ∈ {2−4, 2−3, 2−2, 2−1, 20, 21, 22, 23, 24} (36)

5. Implementation Using Xilinx System Generator

A powerful tool for putting control methods that have been theoretically validated in Matlab Simulink into practice
is the Xilinx® System Generator. The co-simulation of the researched models is carried out directly on the FPGA
board, and parallel VHDL code generation is done in accordance with the model’s methodology. The Xilinx Vivado
platform and Matlab Simulink are used to polish the method.

5.1. FLC Controller Block Diagram

All of the components of our proposed controller are of the same sort of data, whether in input or output.
Understanding binary arithmetic and its accuracy is necessary for fixed point data transfer. Ts=0.001s, Ki=0.0250
will be used for the remainder of the co-simulation. The division block used in this design, which is why the radix
algorithm is the simplest, is the most basic unit of the system generator. As a result, excessive use of DSPs should
be avoided (Figure 7).
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Figure 7. Proposed FLC controller using Xilinx® System Generator.

5.2. FL Controller Arithmetic Configuration

One particular form of controller for FPGA implementation is the subject of the practical inquiry. We discover
an optimum architecture by reducing the quadratic errors on the signals that transmit data through the controller.
establishing a fixed point (64, 32) is the best option out of the total of 32 bits, of which one bit is the sign bit and
fifteen bits are the fractional part. The details will be discussed in the following section of this article. See Table 3.

Table 3. The proposed controller arithmetic structures' terminology.

Notation FLC 64 32
Designation Fuzzy Logic Controller
Type Fixed-point
Precisions (64 bits, 32)
Arithmetic type Signed (2’s comp)
Quantization Round

6. Explanation of Results

Table 4 and 5 show the comparison between the standard vectors of the fuzzy controller and the vectors optimized
by (GWO).

Table 4. Inputs Vector variables.

Standard GWO Standard GWO
i Xi Xi Yi Yi

-1 256 256 512 512
0 256 32 512 128
1 256 256 512 512
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Table 5. Output Vector variable.

Standard GWO
I Zi Zi

-2 4 4
-1 4 4
0 4 0.125
1 4 4
2 4 4

The linguistic input and output variables are given in Table 6 and 7.

Table 6. Inputs Linguistic variables.

Crisp Input Range Crisp Input Range
i Fuzzy Variable e=Error ∈ [-256,256] d=dError ∈ [-1024,1024]

-1 NE ∈ [. . . ,-250,0] ∈ [. . . ,-512,0]
0 ZE ∈ [-32,0,32] ∈ [-128,0,128]
1 PO ∈ [0,256,. . . ] ∈ [0,512,. . . ]

Table 7. Output Linguistic Variable.

Crisp Output Range
i Fuzzy Variable u=Control ∈ [-16,16]

-2 BN ∈ [-16,-8,-4]
-1 NE ∈ [-8,-4,0]
0 ZE ∈ [-1/8,0,1/8]
1 PO ∈ [0,4,8]
2 BP ∈ [4,8,16]

The membership function for the input and output linguistic variables is represented graphically in Figure 8
and 9.

Figure 8. Optimized Membership function for inputs linguistic variable of FL Controller.
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Figure 9. Optimized Membership function for output linguistic variable and control surface of FL controller.

The simplified and optimized algorithm for our fuzzy controller is given by the table 8:

Table 8. FLC Algorithmr

Pseudo Code
1 Initialize Vectors
2 a= [-256 -32 0 32 256];
3 b= [-512 -128 0 128 512];
4 c= [-8 -4 0 4 8];
5 A= [4 4 0.125 4 4];
6 E= [0 0 0];
7 D= [0 0 0];
8 U= [0 0 0; 0 0 0; 0 0 0];
9 R= [0 0 0; 0 0 0; 0 0 0];

10 H= [0 0 0; 0 0 0; 0 0 0];
11 -----------------------------------------
12 Calculate (E, D)
13 -------------------------------------------
14 k=0;
15 for i = 1:3
16 for j = 1:3
17 U(i,j)= min(E(i),D(j));
18 R(i,j)=A(j+k)*(2*U(i,j)-(U(i,j)ˆ2));
19 H(i,j)=c(j+k)*R(i,j);
20 End
21 k=k+1;
22 End
23 -------------------------------------------
24 U out=sum(H)/sum(R);

6.1. Co-simulation Theorical Study of FL Controller

At low speeds, the signals are normal; but, as the speeds rise, the Windup phenomenon becomes more pronounced.
This is explained by the presence of saturation in the Control loop. (Figure 10).

Stat., Optim. Inf. Comput. Vol. 12, January 2024



196 FUZZY LOGIC CONTROLLER ALGORITHMS WITH MF OPTIMIZATION

Figure 10. Simulink theorical study of FL Controller (speed and control curve Ref=250).

6.2. Co-simulation With Disturbance

The controller’s behavior is influenced by sudden changes in speed due to the limits of the used speeds, which are
disrupted by statistical errors connected to data propagation in the FPGA constructed in fixed point illustrated in
Figure 11. The next graph depicts the behavior of the control u as a function of torque disturbance; we’re talking
about speed control here.

Figure 11. Speed and control results of the proposed IFLC with disturbance using.

6.3. Co-simulation Using Reference Variation

The limitations of the speeds utilized, which are disturbed by statistical mistakes related to data propagation in the
FPGA built in fixed point, have an impact on the controller’s behavior, (Figure 12).
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Figure 12. Speed and control results of the proposed IFLC without disturbance using.

6.4. FPGA hardware statistic

The Vivado platform handles the modification and optimization of the programs transmitted by System Generator
from Simulink, after synthesis and analysis of the project, we acquire the following estimates Table 9 and Figure
13 show the programmable logic used in our realization.

Figure 13. Top level RTL schematic of proposed hardware implementation (FLC).

7. Conclusion

Our hardware was built using VHDL and an FPGA. With the help of this endeavor, we were able to apply the
majority of electromechanical systems theory and discover the centroid principle for the first time in real-world
applications. The system’s behavior has been modeled and specified. In actuality, we impose the moment of inertia
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Table 9. FLC Design Utilization Summary.

Estimated Values: FLC 64 32
Logic utilization Used Available Utilization
Number of Slice registers table 286 106400 0%
Number of Slice LUTs 8132 53200 15%
Number of fully used LUT.ff pairs 183 8235 2%
Number of bonded IOBs 129 200 64%
Number of BUFG/BUFGCTRLs 1 32 3%
Numbre of DSP48Es 149 220 67%

of the load while dispensing with the friction of the support. The emphasis was subsequently placed on fuzzy
control with integral action, which let us outperform a conventional PID optimized using a Matlab program.
To compare, a generic floating-point structure was employed. The system was followed from modeling through
implementation of the many correctors that needed saturation control to lessen the impact of non-linearities, which
made this assignment exciting. Additionally, by including its Anti windup in the tutorials and courses, it helped us
comprehend the concepts of saturation. Results of the experiments demonstrate the dependability and efficiency of
the developed controllers. The implementation, on the other hand, demonstrates that there is less consumption and
a quicker execution time on a fixed-point structure (Fix 64,32). There is less variation in the execution time, a fixed
sample time, less usage of the available resources, and only a brief setup period for the program and apparatus.
Overall, the FPGA target offers a versatile method for developing complicated control algorithms, especially for
highly dynamic processes. Future study will analyze the practical hidden components of this article, including the
PWM and encoder signals, as well as the GPO of the FPGA used in the mechanism control. Not to mention the
power supply voltage needed for the assembly to operate, the motor’s dead time, and the incremental encoder’s
noises.
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