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An Intersection Attack on the CirclePIN
Smartwatch Authentication Mechanism

Djalel Chefrour, Yasser Sedira, Samir Chabbi

Abstract—We present a thorough security analysis of a recent
smartwatch authentication mechanism called CirclePIN, which
was considered resilient to several attacks including shoulder
surfing and video recording. This mechanism avoids the direct
entry of the personal identification number (PIN) by using
consecutive screens of random colors that fool the attacker. We
disclose a vulnerability in CirclePIN inherent to the way in which
the users match the random colors to their PINs’ digits and we
illustrate how to exploit it with an intersection attack. This attack
uses the information extracted from multiple video recordings
of legitimate authentication sessions. We prove that it has a
high probability of revealing the user PIN with only three video
recordings and always succeeds with five. Our proof is twofold.
We formulate the theoretical probability of success for the attack
as a function of the number of available video recordings. Then,
we validate this formula with a simulation of a large number
of attacks to compute their experimental probability of success.
In our estimation, manual information extraction takes around
one minute per exploitable video recording. So, a complete
intersection attack is cost effective in terms of time, as it lasts
five minutes or less.

Index Terms—Smartwatch authentication, Intersection attack,
CirclePIN vulnerability.

I. INTRODUCTION

Personal Internet of Things (IoT) devices like smartwatches
are increasingly present in daily life and integrated into
critical infrastructure sectors. For instance, in e-payment and
healthcare applications, they can act as a trusted identity proxy
for users in addition to their role as sources for sensitive
telemetry data. It is therefore necessary that they implement
strong and user-friendly authentication mechanisms to protect
privacy, despite their hardware constraints [1].

Guerar et al. [1] argue that traditional smartwatch authenti-
cation mechanisms, such as direct personal identification num-
ber (PIN) entry on a numeric touch pad, lack a comprehensive
understanding of the vulnerabilities and potential threats they
face. As a result, these mechanisms suffer from usability and
security issues, making them susceptible to attacks such as
shoulder surfing. Indeed, there is evidence backed by real-
world data that shoulder surfing is likely to violate user’s
privacy [2]–[5]. This could happen in different environments
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such as an individual’s home, workplace, public transport,
shopping center, or park. So, there is an established need to
protect the users of mobile devices like smartwatches against
shoulder surfing.

We are interested in this study by one work named Cir-
clePIN, which was proposed by Guerar et al. [1] as a non-
obtrusive and robust authentication mechanism on smart-
watches. Compared to direct entry of a four-digit PIN on a
numeric pad, CirclePIN enhances both the usability and secu-
rity aspects of user authentication by leveraging smartwatch
features such as its color touch screen and its crown. To hide
the PIN, this mechanism requires that the user identifies its
digits indirectly by mapping them to random colors displayed
in consecutive screens on the smartwatch. Figure 1 shows an
example of these screens for the entry of PIN 7521. The first
screen (a) contains a table similar to a numeric pad in which
the digits 0 to 9 are associated to random colors. The user
memorizes the color beneath the leftmost digit of the PIN
(i.e., red and 7 in our example) and moves to the second
screen (b). This contains a circle sliced into 10 sectors that
are also colored randomly and surrounded by the 10 digits (0
to 9). By employing the smartwatch crown, the user rotates
this circle until the color they memorized from the previous
screen (i.e., red) matches the next digit of their PIN (i.e., 5) to
obtain screen (c). At this stage, the user confirms the entry of
the two first PIN digits by clicking the crown (or taping the
OK button in the middle of the circle, if the crown acts only
as a power button). Next, the user repeats the same process to
enter the remaining digits. Namely, the PIN last digits 2 and
1 are matched with the color pale green from screens (d) and
(e). We note that CirclePIN works only for PIN codes that
contain an even number of digits.

Although we find that CirclePIN is easy to use, we discov-
ered that it has a vulnerability which can lead to the disclosure
of the user PIN through video-based shoulder surfing. If an
attacker disposes of multiple video recordings of valid authen-
tication sessions, they can exploit them using information in-
tersection to reveal the PIN with a high probability of success.
In this paper, we introduce the intersection attack on CirclePIN
and prove its effectiveness in terms of probability of success
and execution time through the following contributions:

• The identification of a threat model in which we list
the assumptions necessary for the attack to succeed (in
section III-A).

• The exposure of CirclePIN vulnerability to multiple video
recordings intersection attack via a step-by-step illustra-
tion (in section III-B).

• The theoretical analysis of the attack and the formulation
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Fig. 1. Screens of the CirclePIN authentication session [1].

of its probability of success as a function of the number of
available video recordings (in section IV). Namely, with
three exploitable videos the attacker has an 80% chance
of success, while with five videos they are assured to
always reveal the user PIN.

• The calculation of the corroborating experimental prob-
ability of success (in section V). For this purpose, we
developed a Python based attack simulator that we made
available as open source.

• The estimation of the attack execution time with a break-
down of its manual steps (in section V). This estimation,
like the screens used in the attack illustration, is based on
our Android Wear implementation of CirclePIN, which is
distributed as open source too, for reproducibility.

Before detailing these contributions, we start first by a
review of related works in section II. Later, we discuss the
results and the limitations of our study (in section VI), then
conclude with a summary and a list of perspectives for future
work (in section VII).

II. RELATED WORKS

We start by visiting other works from the authors of
CirclePIN that share the same design principle and hence
have the same vulnerability to the multiple video recordings
intersection attack. Then, we review briefly the most known
smartwatch authentication mechanisms and compare them to
CirclePIN. Next, we summarize the known attacks against
these mechanisms by describing their way of working. Af-
terwards, we discuss the intersection attacks found in the
literature that are like the one we devised.

A. Authentication mechanisms like CirclePIN

CirclePIN is inspired by another mechanism called Color
Wheel PIN (CWPIN), which was developed by the same
authors for authentication on Automated Teller Machines
(ATM) using smartphones [6]. In CWPIN, random color tables
are sent from the ATM to the smartphone screen using Near
Field Communication (NFC). The color wheel on the other
hand is displayed on the ATM screen, where it can be rotated

using a touch pad. Users of CWPIN look for the color that
corresponds to their first/third PIN digit on the smartphone
screen, then map it to the second/fourth PIN digit by rotating
the color wheel on the ATM screen. As CWPIN is similar in
essence to CirclePIN, it is also vulnerable to the same multiple
recordings intersection attack.

2GesturePIN is another smartwatch authentication mecha-
nism from the same authors, that is closely comparable to
CirclePIN in terms of design and vulnerability [7]. But, instead
of using colored tables, 2GesturePIN employs an outer circle
that houses the fixed digits, while a concentric rotating wheel
within holds the randomized digits. Users rotate this wheel to
align the PIN digits between the two circles. Nevertheless, as
attackers can observe from these circles 10 combinations for
each two digits, they can uncover the PIN using a few video
recordings as we discuss in detail later for CirclePIN.

B. Smartwatch authentication mechanisms

Smartwatch authentication can be achieved via different
mechanisms that might be categorized according to multiple
criteria such as: complexity, cost, type of inputs, usability
and resilience to security attacks. A good authentication
mechanism should be secure and easy to use with reduced
complexity, cost and number of inputs. However, as shown
by the authentication mechanisms reviewed herein, striking
the right balance between these criteria is not an easy task.
For instance, increasing the complexity of a mechanism or its
number of authentication inputs might improve its security but
render it less easy to use. For the purpose of this research, we
group the most known smartwatch authentication mechanisms
in two high level categories according to their resilience (or
not) to video-based shoulder surfing.

The first category comprises the traditional techniques based
on passwords, PINs, or unlock patterns; and the more recent
CirclePIN mechanism. They are easy to use and do not require
additional hardware or training. The usability tests reported
by CirclePIN authors [1] showed that it is less error prone
than pattern-based techniques, which suffer from an average
error rate close to 20% as estimated by [8]. Conversely, while
these techniques are vulnerable to fortuitous shoulder surfing,

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author’s version which has not been fully edited and content may change prior

to final publication. Citation information: DOI 10.1109/JIOT.2023.3333964

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information



PUBLISHED IN THE IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 7, APRIL 2024 3

CirclePIN is resilient to this particular attack. Nevertheless,
a persisting malicious party can still break it by obtaining
multiple video recordings of valid authentication sessions, as
we illustrate here later with the intersection attack.

The second category includes the authentication mecha-
nisms that are resilient to video-based shoulder surfing. They
can be divided further in two non-orthogonal sub-categories
according to the number and type of their authentication in-
puts. On the one hand, we put two-factor authentication (2FA)
mechanisms. On the other hand, we group the schemes based
on user traits such as biometric, continuous and behavioral
characteristics.

2FA mechanisms on smartwatches are more robust than
CirclePIN and the traditional mechanisms, as they require a
second verification step from the user. This step is performed
on a companion application or web browser running in a
different device like a smartphone (e.g., OAuth 2.0 support
in Android Wearables [9]). We believe that, even if 2FA
mechanisms take a little bit more time and involve a second
device, this is justifiable given the improved security they
provide. They remain resilient to shoulder surfing and to our
multiple recordings intersection attack.

The smartwatch authentication techniques of the second
sub-category rely on the user’s unique behavioral or physiolog-
ical traits, such as fingerprints, gestures [10] and heart rhythm
[11]. These techniques are convenient, fast, provide strong
security and do not require users to remember passwords
or PIN codes. They are resilient to shoulder surfing, even
if it is video-based and carried through multiple recordings.
Unlike CirclePIN, they may require specialized hardware and
additional training or setup. Furthermore, there is a risk for
biometric data to be stolen or copied. Moreover, the collection
of this data in the case of continuous authentication can be
considered an intrusive monitoring by some users.

C. Attacks on smartwatch authentication mechanisms

The popularity of IoT devices like smartwatches is growing
thanks to their rich set of features. As a result, they contain
nowadays an increasing amount of sensitive user data like con-
tact details, health records, payment information and position
tracking. This makes them a valuable target for attacks that
might compromise their authentication mechanisms and put
the user privacy at risk. Such attacks include:

Guessing and brute force: An attacker might try to guess the
user PIN/password either randomly or using some knowledge
about the targeted person (e.g., birth date), assuming it is used
as an authentication secret. But the longer the PIN/password
is, the less likely it is for the attack to succeed. For instance,
with a four-digit PIN, there is only one chance of success
out of 10000. To increase this probability, the attacker might
resort to brute force by trying all the possible combinations for
the user secret. Nonetheless, many authentication mechanisms
mitigate such attacks by limiting the number of attempts to
three or five.

Shoulder surfing: An attacker observes a user entering their
authentication secret to uncover it [2]–[5]. This attack can
be carried in person or via a video camera pointed at the

interface of the device implementing the authentication (e.g.,
smartwatch, phone, ATM). The targeted secret can be a: PIN,
password, drawing unlock pattern, 2D touch-based signature or
even a 3D magnetic-based gestural signature. Sahami Shirazi
et al. [12] showed that authentication in the latter case is more
secure to video-based shoulder surfing than the former ones.

The survey from Eiband et al. [3] found that most shoulder
surfing in the wild was: opportunistic, with no malicious intent,
common among strangers in public transport, involved smart-
phones in most cases and often went unnoticed. By contrast,
the survey from Aviv et al. [2] concentrated on shoulder
surfing using video recordings of smartphone authentications.
Around 1200 participants were assigned the task of viewing
recorded videos that showed victims entering PINs and unlock
patterns in an attempt to uncover them. The recordings were
filmed using GoPro cameras from multiple angles, covering
various hand positions of the victims. The rate of successful
attacks on six-digit PINs was 10.8% with a single view and
26.5% with multiple views of an authentication video. These
rates increased respectively to 34.9% and 56.7% for four-digit
PINs, which are easier to uncover because they are shorter.
Furthermore, the attacks on unlock patterns were the most
successful due to the capture of the victim finger movements
and (when enabled) the screen feedback lines connecting the
relevant points of the pattern. These empirical results highlight
that multiple viewing of an authentication exacerbates its
vulnerability to shoulder surfing. The evaluation of our inter-
section attack, which relies too on multiple video recordings
of CirclePIN, confirms this finding.

Biometric spoofing: An attacker creates a copy of the user
biometric data, such as a fingerprint, facial image or voice
record, then replays it to authenticate [13].

Side-channel attacks: An attacker intercepts and analyzes
signals emitted by the smartwatch during authentication to
extract the password via a malware injected on the device
[14]. For instance, Snoopy is a Trojan that masquerades as a
fitness or gaming app and eavesdrops on motion data when
users type or swipe their passwords on smartwatches [15]. It
periodically uploads this information to the cloud, where it
leverages deep neural networks trained with crowd sourced
data to infer the user’s password.

CirclePIN authors [1] reported that it is resilient to the
previous types of attacks. Nevertheless, we show in this work
that it is vulnerable to the multiple recordings intersection
attack, which can be qualified as an elaborate and more
effective form of video-based shoulder surfing.

D. Intersection attacks on authentication mechanisms

English [16] analyzed intersection attacks on recognition-
based graphical passwords. These authentication mechanisms
present several challenge screens to the user. In every screen
there is only one pass image specific to the user that allows
access, whilst the other images are random distractions. The
attacker can identify the pass images by carrying several
authentication attempts then selecting the most frequently
shown images. This attack resembles ours because it relies on
the fact that the distraction images have a lower probability of
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reappearing in every screen, as do the random combinations of
two digits in CirclePIN screens. Furthermore, the effectiveness
of the intersection attack on graphical passwords varies as
a function of the number of authentication attempts needed
before success. Both, (i) the ratio of pass images to distrac-
tion ones and (ii) the reuse of constant distraction images
between sessions, increase the number of required attempts.
By contrast, we provide a formal analysis and a simulation-
based validation, to show that our intersection attack on
CirclePIN has a high probability of success for a low number
of exploitable video recordings.

III. VULNERABILITY OF CIRCLEPIN

In this section we first identify the vulnerability we have
found in CirclePIN through a detailed threat model. The goal
is to emphasize the circumstances where this vulnerability
becomes apparent. Then, through an illustrative example, we
delve into the detailed steps of how to exploit this vulnerability
with an intersection attack, which reveals the user PIN by
analyzing the video recordings of few valid authentication
sessions.

A. The threat model

We assume that the attacker is able to record exploitable
videos of several successful CirclePIN authentications. We
mean by exploitable a video where the smartwatch screen is
clearly visible during the whole authentication session. More
precisely, in addition to the final CirclePIN screen that shows
a successful authentication, the other screens of interest to the
attacker are the ones that display the color table and the color
circle at the end of its rotation. These are screens (a), (c),
(d) and (f), in the case of the authentication session depicted
by figure 1. They constitute the crucial moments in every
video recording that the attacker analyzes to derive the user
PIN. We note that there is no need to record the smartwatch
crown itself when manipulated by the user to carry a successful
attack. Moreover, we assume the attacker can get hold of the
smartwatch (e.g., steel it) once they derive the PIN from the
recorded videos.

CirclePIN authors [1] evaluated its resilience to video-based
shoulder surfing in an experimental setup that was considered
a ”best-case scenario from the attacker’s point of view”.
They video-recorded 19 participants (enrolled as victims)
while performing valid CirclePIN authentications in a seated
position. The videos were captured with a smartphone camera
pointed at the victim’s smartwatch with no obstruction. Then,
they were given to 15 other participants (cast as attackers) to
analyze. None of them managed to correctly guess any PIN,
even when they could play, pause, and rewind the recordings
at will. Nevertheless, we note that 100% of the videos were
exploitable in the sense defined above. The authors reported
that they extracted ”from each video” the two lists of 10
combinations of digits (that our intersection attack relies on)
and gave them to the attackers [1]. This experiment shows
that the availability of exploitable videos is highly likely
when the recording is carried out with an attacker mindset.
Consequently, we assume that the attackers will spare no effort

to obtain exploitable videos, which is the worst-case scenario
from a security point of view. Furthermore, we qualify these
attackers as agile to mean that they have practiced the manual
steps of the attack a dozen times so they can execute it quickly
in a streamlined way.

To obtain an exploitable video, it is crucial to employ one
or two wide-angle high-resolution cameras dissimulated in
strategic places where the target user is susceptible to run
CirclePIN. It is also important to orient the cameras such as
they capture the user’s wrist through a clear and unobstructed
view, and therefore capture their smartwatch screen with the
best video quality possible. Examples of such places include,
but are not limited to, the ceiling and the walls of the rooms
where the users usually sit and carry out an activity that
involves a CirclePIN authentication. This could be at their
workplace above their desk and/or at a cafeteria or a restaurant
they frequent. The attacker could also place the spy cameras
in the furniture of these locations, such as lamps, picture
frames, etc. The advantage of such static hidden cameras is
that they can be equipped with lasting batteries to record
videos for long periods of time and to target multiple users.
If equipped with motion and/or light detectors, such cameras
can be programmed to operate only when users are present
and hence cover longer surveillance periods.

A more sophisticated attack scenario might involve the use
of drones that can carry video-based shoulder surfing from a
certain distance (say a few typical building stories altitude).
Such a drone can follow a target user waiting for an opportune
moment to record their CirclePIN sessions. It can also zoom
and move its camera in multiple degrees of freedom to capture
the best possible view of the smartwatch screen. Although
this scenario requires a live involvement of the attacker and
additional hardware, it offers better chances to capture more
targets, compared to the statically concealed cameras. Another
more advanced attack scenario could involve infecting the
smartwatch with malware that captures videos of its screen.
This can be accomplished with a side-channel attack that
exploits other vulnerabilities in the smartwatch.

Once multiple video recordings of successful authentication
sessions are acquired, the attacker analyzes them to extract the
user PIN. We illustrate how this is done with three recordings
in the next section. However, it should be noted that this attack
assumes that the user does not modify their PIN during the
whole period of the multiple recordings.

B. Intersection attack on CirclePIN

We illustrate herein a successful intersection attack on
CirclePIN that uses three video recordings of valid authen-
tications. For this purpose, we describe the actions carried out
by the attacker starting from the example of figure 1. This
contains the screens of crucial moments extracted from the
first video recording of a user with the PIN 7521. By picking
the digits associated to each color in the screens (a) and (c),
the attacker identifies 10 possible combinations for the PIN
first two digits. Likewise, screens (d) and (f) give up 10 other
combinations for the PIN last two digits. These two sets of 10
combinations are shown in Tables I and II.
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Fig. 2. Screens of the second CirclePIN authentication session.

Fig. 3. Screens of the third CirclePIN authentication session.

TABLE I
POSSIBLE COMBINATIONS OF THE PIN FIRST TWO DIGITS FROM THE

FIRST CIRCLEPIN SESSION.

1st digit 0 1 2 3 4 5 6 7 8 9
Color
2nd digit 4 3 2 6 0 7 8 5 1 9

TABLE II
POSSIBLE COMBINATIONS OF THE PIN LAST TWO DIGITS FROM THE FIRST

CIRCLEPIN SESSION.

3rd digit 0 1 2 3 4 5 6 7 8 9
Color
4th digit 2 7 1 8 0 6 4 3 9 5

In each set of 10 combinations, only one element belongs
to the PIN and is present in every valid authentication session.
The remaining nine combinations do not belong to the PIN,
because each digit from 0 to 9 is not repeated either in
the color table or in the following color circle. Moreover,
there is a high chance that these nine combinations will not
reappear in consecutive authentication sessions, as they are
generated randomly by CirclePIN. Therefore, by extracting,
then intersecting a few sets of 10 combinations of two digits
for each half of the PIN, the attacker can rule out the random
ones and disclose the PIN digits as soon as the intersection
yields one and only one element.

At the end of the first video recording analysis, the attacker
obtains 10x10 possible combinations of four digits. Only one
of them is the correct PIN. To eliminate the remaining 99
random combinations, the attacker must extract more sets from
additional video recordings where it is highly unlikely that
these 99 combinations will recur. Hence, the attack proceeds
with the second video recording from which the crucial screens
are extracted and shown in figure 2. Likewise, by comparing
the relevant screens the attacker obtains two other sets of
possible combinations for the two halves of the PIN. These
are shown in tables III and IV.

After analyzing the second authentication session, the at-
tacker can drastically reduce the possible combinations of
digits that constitute the PIN by intersecting Table I with III
and Table II with IV, while omitting the colored rows. The

TABLE III
POSSIBLE COMBINATIONS OF THE PIN FIRST TWO DIGITS FROM THE

SECOND CIRCLEPIN SESSION.

1st digit 0 1 2 3 4 5 6 7 8 9
Color
2nd digit 4 1 3 0 8 2 9 5 6 7

TABLE IV
POSSIBLE COMBINATIONS OF THE PIN LAST TWO DIGITS FROM THE

SECOND CIRCLEPIN SESSION.

3rd digit 0 1 2 3 4 5 6 7 8 9
Color
4th digit 4 3 1 8 2 5 0 7 6 9

result is shown in equations 1 and 2, which give only two
possible combinations for each half of the PIN. This means
the attacker disposes of four possible combinations for the PIN
(i.e., 0421, 0438, 7521 and 7538) and can already try them if
they manage to get hold of the user smartwatch. As CirclePIN
allows three authentication attempts before locking the device,
then there are already three chances out of four for the attacker
to authenticate successfully. Nevertheless, to get the correct
PIN, the attack carries on with a third video recording.

∩Tables(I, III) = {04, 75} (1)
∩Tables(II, IV ) = {21, 38} (2)

TABLE V
POSSIBLE COMBINATIONS OF THE PIN FIRST TWO DIGITS FROM THE

THIRD CIRCLEPIN SESSION.

1st digit 0 1 2 3 4 5 6 7 8 9
color
2nd digit 1 0 4 2 7 8 9 5 3 6

Figure 3 depicts the relevant screens extracted from the
analysis of the third CirclePIN recording; whereas Tables V
and VI illustrate the possible combinations of digits obtained
from these screens. We note that the two rightmost circles in
figure 3 are the same, because the color brown that matches
digit 2 to 1 is already in place, so the user does not rotate the
circle but just taps OK. At this stage the attacker can extend
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TABLE VI
POSSIBLE COMBINATIONS OF THE PIN LAST TWO DIGITS FROM THE

THIRD CIRCLEPIN SESSION.

3rd digit 0 1 2 3 4 5 6 7 8 9
Color
4th digit 8 5 1 3 2 0 7 4 6 9

the previous intersection operation to these last two tables to
reveal the correct halves of the PIN, 75 and 21, as show in
equations 3 and 4.

∩Tables(I, III, V ) = {75} (3)
∩Tables(II, IV , V I) = {21} (4)

IV. THEORETICAL ANALYSIS OF THE ATTACK

This section considers the general case of the intersection
attack for any value of the user PIN and any number N
of exploitable video recordings. In particular, we formulate
P (N) the theoretical probability of success for this attack and
prove mathematically that it is very high, i.e., 0.80, given
only three exploitable video recordings; and is close to 1
with four videos. Notably, the same logic holds for CWPIN
and 2GesturePIN which share the same design principle with
CirclePIN. For brevity, we analyze only two PIN digits, as
our attack independently reveals each half of a four-digit
PIN. Next, we provide a comparative analysis of this attack
with simple guessing, to show the added value brought by
information intersection. Afterwards, we extend our analysis
to PINs that are longer than four digits. To be precise, we use
in this section the word permutation instead of combination
of digits as their order matters. In the other sections, we stick
to the term combination as it is more popular and is the one
used in the CirclePIN work [1].

The probability of success for the intersection attack is
determined by the likelihood that the intersection of sets, each
representing possible permutations of two digits extracted from
N sessions, yields only those permutations that belong to the
PIN. This is equivalent to saying that none of the nine random
permutations will appear in every one of the N sessions.
So, we need to express first the probability R of a random
permutation of two digits showing up in one session. Then, we
analyze the case of N successive sessions where each random
permutation must disappear at least once, to be excluded by
the intersection operation.

If we were choosing a partial permutation with repetition
of two digits out of 10, then the sample size would be equal
to 100 and the probability of this choice would be 1

100 =
0.01. However, thanks to the design restrictions inherent to
CirclePIN, the first digit in the permutation is always fixed
in the color table. This is shown in the crucial smartwatch
screens and in the first rows of the Tables I to VI extracted by
the attacker. Furthermore, the second digit in the permutation
is drawn randomly in a uniform way without repetition from
a set of 9 possibilities only. This is apparent in the second
rows of the mentioned tables. The tenth possible digit is also
fixed as it belongs to the PIN. It will always show up at the

same position in the tables extracted from all the N sessions.
For instance, this is digit 5 in the second rows of Tables I, III
and V. So R = 1

9 = 0.11.
We consider now the case of N successive CirclePIN

authentication sessions. The first session contains nine random
permutations of two digits where each one appeared with
probability R. So, the probability that one of these permu-
tations will be present in all the remaining (N − 1) sessions
is actually R(N−1), as each session is independent from the
others. Conversely, the probability that a random permutation
is absent from at least one of these (N−1) sessions is therefore
equal to 1−R(N−1) (i.e., it is the complementary event of the
previous statement). By generalizing to all the nine random
permutations that showed up in the first session, we obtain
the probability that each one of them must disappear at least
once in the subsequent (N − 1) sessions. In other terms:
(1 − R(N−1))9 = (1 − 0.11(N−1))9. Finally, as the same
analysis applies to the two last digits of the PIN independently
from the first two, we must square the latter probability to
obtain P (N) as expressed in the formula 5.

P (N) = (1− 0.11(N−1))18 (5)

Concerning the case where only one video recording is
available per PIN, we note that our attack does not apply as
there are no multiple sets of permutations on which to perform
the intersection. So, formula 5 is not relevant (NR) for N = 1.
Instead, an attacker has merely one chance out of 10 to guess
the first PIN digit and figure out the second one via color
matching. The same thing holds for the third and fourth PIN
digits. So, if we consider both halves of a four-digit PIN, the
probability of success for this guessing attack is ( 1

10 )
2 = 0.01.

Let us call it G and generalize it to N multiple videos. We can
express this probability with formula 6, because the attacker
can guess the PIN with the first video, or the second one, or
the third, etc.

G(N) = ΣN
i=1(

1

10
)2 = N × 0.01 (6)

TABLE VII
SUCCESS PROBABILITIES OF THE INTERSECTION AND GUESSING ATTACKS

FOR AN INCREASING NUMBER OF VIDEO RECORDINGS.

N 1 2 3 4 5
P (N) NR 0.12 0.80 0.98 1.0
G(N) 0.01 0.02 0.03 0.04 0.05

Table VII computes the success probabilities for the inter-
section and guessing attacks (P and G) rounded to two deci-
mal places. Both are expressed as functions of the number N
of exploitable video recordings. We can see that P converges
to one quickly as N reaches five. In other words, an attacker
is guaranteed to disclose the user PIN with the intersection of
the information extracted from only five video recordings. In
most practical cases, three video recordings are sufficient to
yield one or two possible PINs that can be tried on a CirclePIN
smartwatch, once the attacker gets hold of it. By contrast, G is
drastically low for the same input and increases arithmetically,
whereas P grows exponentially. Hence, the intersection attack
is way more effective than simple guessing.
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Finally, we extend the analysis above to the cases where an
application implements CirclePIN with a longer user secret.
Let us denote L as the length of the PIN in such instances,
which is intentionally designed to be an even number of digits.
In this scenario, the probability of a successful attack is the
new function P (N,L) expressed by formula 7. Table VIII
shows how P (N,L) evolves when the PIN length increases
to an extreme case of 20 digits. Notably, while the probability
of success declines gradually when only three recordings are
available, it still remains quite high with four recordings and
nearly perfect with five.

P (N,L) = (1− 0.11(N−1))(9∗
L
2 ) (7)

TABLE VIII
SUCCESS PROBABILITY OF THE INTERSECTION ATTACK AS A FUNCTION

OF THE NUMBER OF RECORDINGS N AND THE PIN LENGTH L.

P(N,L) N=2 N=3 N=4 N=5
L=4 0.12 0.8 0.98 1.0
L=6 0.04 0.72 0.96 1.0
L=8 0.01 0.64 0.95 0.99
L=10 0.0 0.57 0.94 0.99
L=12 0.0 0.51 0.93 0.99
L=14 0.0 0.46 0.92 0.99
L=16 0.0 0.41 0.91 0.99
L=18 0.0 0.37 0.89 0.99
L=20 0.0 0.33 0.88 0.99

V. EXPERIMENTAL VALIDATION

To assess the effectiveness of the intersection attack ex-
perimentally, we have developed an Android Wear version of
CirclePIN in Kotlin and an attack simulator in Python. We
made both tools available as free and open source software1.
They use four-digit PINs by default, as in the CirclePIN
work [1]. Figures 1, 2 and 3 are screen captures from the
execution of CirclePIN in an Android smartwatch emulator.
The crown gestures are mimicked by the emulator Rotary Input
feature.

The Python simulator has a double role. First, it serves as
a graphical illustrator of the attack as shown by the example
of figure 4. More precisely, it depicts the crucial CirclePIN
screens, and the combinations of PIN digits derived from them,
as if they were extracted manually from the video recording
by the attacker. Second, the simulator runs many intersection
attacks starting after the extraction of the crucial screens, to
calculate the experimental probability of success.

To execute one attack, the simulator takes as input param-
eters the available number of video recordings N and the
targeted PIN, and proceeds as follows:

1) For each recording, the simulator mimics a legitimate
authentication session, then extracts the relevant infor-
mation from it, which is subsequently used for the
intersection.

2) For each pair of consecutive digits in the PIN, it gener-
ates two random sets containing 10 colors each. These

1https://github.com/cdjalel/CirclePIN/

are associated to the 10 digits of CirclePIN’s table and
circle, respectively.

3) Next, the simulator finds the color associated to the first
digit in the table, then rotates the circle until this color
aligns with the second digit, mimicking the behavior
of a legitimate user. This concludes the simulation of
the authentication for the digits pair and the attack
commences.

4) The simulator derives and stores the set of 10 possible
combinations of two digits from the states of the table
and the circle. Starting from the second recording, it
intersects this derived set with those obtained from
previous recordings.

5) The attack persists until the intersection produces one
and only one combination for each pair, indicating a
success. Otherwise, if the intersection yields no unique
result across all the processed recordings, the attack is
considered unsuccessful.

The simulator repeats the intersection attack 1000 times
to measure the experimental probability of success, given
a number of available video recordings. We note that each
attack is independent from the others with its own simulated
recordings. So, a new PIN is generated randomly for each
attack and the output result (i.e., success or failure) is saved.
As the number of attacks increases, we calculate at each
increment the experimental probability by dividing the number
of successes by the number of attacks carried so far. The latter
corresponds to the data points on the horizontal axes of the
plots in figure 5. There are four plots because we ran the loop
of 1000 attacks from scratch for every value of N between
two and five. The vertical axes indicate the experimental
probabilities we obtained. They match and therefore validate
the theoretical probabilities formulated earlier.

We note that the variability at the beginning of the curves
in figure 5 is due to the limit of the sample size (i.e.,
the number of attacks) at the start of the simulation. As
established by the statistical Law of Large Numbers, limited
sample sizes tend to produce more fluctuation in the observed
events because of their inherent randomness. Whereas, with a
large number of attacks the experimental probability converges
to the population mean (expressed here by the theoretical
formula) and stabilizes.

The whole simulation includes an outer loop over N with
the range [2..5], a middle loop that iterates 1000 attacks,
and an inner loop with the range [1..N ], which simulates
the retrieval and the intersection of information from the
recordings. In total, the simulation runs for about two seconds
on a laptop equipped with a 2.80 GHz Intel Core i7-1165G7
CPU. However, this does not include the time needed to extract
the crucial information from the recordings manually. This
time can be broken down per recording as follows:

1) The duration of the user authentication, as the attacker
needs to watch it till the screen that indicates success.
Assuming the video playback happens at normal speed
and the attack starts from the beginning of the authenti-
cation session, this step lasts around four seconds which
is the average CirclePIN authentication time reported in
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Fig. 4. Graphical simulation of a CirclePIN authentication session.

[1].
2) The time needed to extract the four crucial screens of

CirclePIN (e.g., (a), (c), (d) and (f) in figure 1). On the
one hand, the screens containing the color tables (e.g.,
(a) and (d)) are the easier to fetch as they do not change
when they are displayed. Their extraction consumes two
seconds per screen based on our experience with the
intersection attack. That is to pause, take a window
capture and save it. On the other hand, the screens
containing the color circles after rotation (e.g., (c) and
(f)), require a bit more attention from the attacker to
make sure the rotation really ended. This is accom-
plished by waiting for the display of the consecutive
screens (e.g., (d) and (g)), then pausing, rewinding the
video for few frames, capturing and saving. The extra
step of rewinding consumes as little as one second when
mapped to a key press in the video player.

3) The period required to find the digits combinations
using color matching between the relevant screens. The
attacker streamlines this process by: filling the first digits
(i.e., the first rows of tables I and II) in advance, reading
the cells of each color table in sequence, looking up each
color in the circle and retrieving its digit. This takes
around two seconds per color, which we multiply by 10
to count the number of combinations, then by two to
cover both halves of a four-digit PIN.

4) The time necessary to intersect the sets extracted from
three, four or five recordings. This time is negligible
as the intersection operation is easily automated in a
spreadsheet or a script as done in our attack simulator.

To sum up, an agile attacker can manually extract the

information (i.e., the two sets of 10 possible combinations of
two digits) from one video recording in roughly 4+2∗(2+3+
2 ∗ 10) = 54 seconds. We round this figure up to one minute
to cover for some slack and the time spent switching to the
next video recording. So, if the attack succeeds after exploiting
three videos, which is very likely, then it takes around three
minutes. Otherwise, if it requires five videos in the worst case,
then it lasts five minutes only.

VI. DISCUSSION

We reported in section II-C the survey from Eiband et
al. [3] which showed that shoulder surfing in the wild, when
carried out by direct observation, is mostly opportunistic.
However, we have not found so far a similar study about
video-based shoulder surfing in the real-world. Such a study
would reveal the ratio of real-world exploitable videos among
all recorded ones. To the contrary, several experiments about
the resilience of authentications mechanisms to video-based
shoulder surfing were run in controlled environments [1], [2],
[12], [17]. The recording settings were prepared in a way
favorable to the attacker, to assess the worst-case scenario
from a security point of view. In turn, this gives a high ratio of
exploitable videos. For instance, we outlined in section III-A
that the videos recorded for CirclePIN evaluation were 100%
exploitable. For this reason, we are convinced that carrying
out a similar controlled experiment for the intersection attack
will yield a high ratio too. Such ratios do not necessarily
reflect real-world scenarios, which might be characterized
by poor recording conditions. In fact, the clarity of a video
recording can vary widely depending on many factors such
as: camera distance, filming angle, lighting, smartwatch screen
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Fig. 5. The intersection attack probability of success as a function of available video recordings.

size, target’s posture and movements, etc. Therefore, we expect
the ratio of exploitable videos to be highly variable too.

Aviv et al. [2] established that the recording conditions
undoubtedly have an impact on shoulder surfing. Namely,
partial or poor video capture will make shoulder surfing unre-
liable. So, we can deduce that it will influence the intersection
attack effectiveness too. Nonetheless, we believe this will not
dissuade a persisting attacker who assesses that a specific
target holds high value from optimizing their recording setup.
In other terms, the intersection attack should be targeted and
well prepared to ensure its success. Moreover, the quality
of recorded videos can be improved using dedicated editing
tools. Also, the automation of information extraction from
these videos (for instance, through pattern recognition) will
minimize the attack time. Consequently, this will allow the
processing of a higher number of videos and compensate for
a possible low ratio of the exploitable ones. It will also enable
the targeting of a larger number of victims at low cost.

Assessing the ratio of real-world exploitable videos requires
a long empirical study. This study should cover various usage
scenarios with a representative number of participants. In our
opinion, such a study deserves its own publication and is
beyond the scope of this work. As CirclePIN is not deployed
in any commercial products, to the best of our knowledge,
we think this study is not justifiable for the time being. Fur-
thermore, we contend that the demonstrated high probability
of success for the intersection attack will likely deter the
adoption of CirclePIN, unless effective mitigation measures
are proposed. Despite our efforts to find such measures, a

solution confined to CirclePIN itself has so far eluded us.
We believe this is because the vulnerability we discovered
is inherent in the design of this mechanism. Removing this
vulnerability while preserving the main concept of digit-
matching with random colors proves to be challenging.

Lastly, we think that 2FA mechanisms, such as OAuth
2.0 [18], offer better security for IoT devices. This is due to
their hardware restrictions. In particular, smartwatches are not
designed as standalone devices; instead, they work in tandem
with smartphones. In this context, CirclePIN and similar
mechanisms could be coupled with 2FA to make them resilient
to many forms of video-based shoulder surfing, including our
intersection attack. A victim using 2FA can deny access to
their smartwatch from a second device, when notified about
the attacker’s attempt to authenticate with a disclosed PIN.

VII. CONCLUSION

In this work we disclosed a vulnerability in the recent smart-
watch authentication mechanism CirclePIN. This vulnerability
arises from the fact that the combinations of two digits belong-
ing to the PIN are consistently present in valid authentication
sessions, while the remaining combinations are unlikely to
repeat in successive sessions due to their randomness. We
devised and illustrated an intersection attack that exploits this
fact by using multiple video recordings.

We also proved formally that the probability of the attack
success converges quickly to one for a small number of video
recordings. In practice, only three recordings are required for
the attacker to uncover the correct user PIN. Furthermore,
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we confirmed the validity of the theoretical success rate of
our attack by developing a Python simulator that computes
the corresponding experimental probability. It does so by
executing a large number of attacks for each possible value
of N (the number of available video recordings) between two
and five. The attack is also cost effective in terms of time, as
it lasts five minutes or less when executed mostly manually.

In terms of limitations, our work did not assess empirically
the ratio of exploitable videos from real-world recordings. We
think this is not a high priority task; especially that CirclePIN
is not deployed commercially as far as we know. Neverthe-
less, to surpass the difficulty of obtaining real-world video
captures of CirclePIN sessions, one can resort to using virtual-
reality environments to test the attack. For instance, this was
performed recently by [19] to test shoulder surfing. Another
perspective for our work is to devise a mitigation of the
CirclePIN vulnerability that prevents the multiple recordings
intersection attack (other than 2FA).

Finally, with regard to the automatic extraction of the
relevant attack information from exploitable video recordings,
artificial intelligence techniques such as pattern recognition
with deep learning constitute a promising idea. Independently
of CirclePIN, such techniques can also serve to test various
video-based attacks on different authentications schemes, such
as traditional password/PIN mechanisms. So far, we have
found no works in the literature that investigate this possibility.
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