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Abstract
This article sets forth results on the existence, non-existence, uniqueness, and
regularities properties, as well as boundary behavior of solutions for singular systems
involving mixed local and non-local elliptic operators (see System (S) below). More
precisely, we first establish a new weak comparison principle for a singular equation.
Afterward, we discuss the non-existence of positive classical solutions, as well as
construct suitable ordered pairs of sub-solutions and super-solutions. This allows us
to obtain the existence of a pair of positive weak solutions for System (S) by
employing Schauder’s fixed-point theorem in the associated conical shell. Finally, we
adapt a method of Krasnoselsky to establish the uniqueness of such a positive pair of
solutions.
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1 Introduction
Let 0 < s1 < 1, 0 < s2 < 1, and α1, α2, β1, β2 > 0. Let � ⊂ R

N , N ≥ 3 be an open bounded
domain with C1,1 boundary ∂�.

In this article, we deal with the existence, non-existence, uniqueness, and other qualita-
tive properties of solutions to the following singular system:

⎧
⎨

⎩

L1u = k1(x) u–α1 v–β1 , u > 0 in �; u = 0, in R
N \ �,

L2v = k2(x) v–α2 u–β2 , v > 0 in �; v = 0, in R
N \ �.

(S)

Here Li, i = 1, 2 is the mixed operator, defined as:

Li = –� + (–�)si . (1.1)

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived
from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/
4.0/.

https://doi.org/10.1186/s13661-024-01937-0
https://crossmark.crossref.org/dialog/?doi=10.1186/s13661-024-01937-0&domain=pdf
mailto:gouasmia.abdelhamid@gmail.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gouasmia Boundary Value Problems        (2024) 2024:126 Page 2 of 36

On the right-hand side, kj : � → (0, +∞), j = 1, 2 are continuous functions that satisfy the
following growth condition: for some aj > 0 and any x ∈ �,

C1 d–aj (x) ≤ kj(x) ≤ C2 d–aj (x), (1.2)

where C1, C2 > 0 and d(x) := dist(x, ∂�) = infy∈∂�|x – y|, for any x ∈ �. The word mixed
above refers to the type of the operator combining the classical Laplacian (–�) and the
fractional Laplacian (–�)s, which for a fixed parameter s ∈ (0, 1), is defined as

(–�)s u(x) := C(N , s) P.V.
∫

RN

u(x) – u(y)
∣
∣x – y

∣
∣N+2s dy,

where P.V. denotes the Cauchy principal value, and C(N , s) is an appropriate normalizing
constant, whose explicit expression is given by

C(N , s) :=
(∫

RN

1 – cos(ξ1)

|ξ |N+2s dξ

)–1

.

We refer the reader to [1, 7, 17] for a comprehensive discussion of the main properties
of this fractional operator, which includes various real-world applications as well as re-
sults pertaining to continuous and compact embeddings and other important properties.
For recent advancements in obtaining precise estimates for the best constants in frac-
tional subcritical Sobolev embeddings, we direct the reader to the work by [12]. Further-
more, significant results have been explored in the context of fractional problems involving
mixed Dirichlet–Neumann boundary conditions or Choquard problems. For additional
relevant works and valuable insights on these topics, we refer to [6, 30].

The mixed-type operator (1.1) has many applications in the real world, such as physical
phenomena that arise naturally from a mixed dispersal strategy. Dispersal usually refers
to the movement of a biological population (whose density is described by u and which is
self-competing for the resources in a given environment �) from one location to another.
Various types of movement exist, such as local dispersal and non-local dispersal. In [29],
it is shown how mixed dispersal affects the invasion of a single species and how the mixed
dispersal strategies will evolve in spatially periodic but temporally constant environment.
We refer further to [18], which proposes a model that describes the diffusion of a bio-
logical population living in an ecological niche and subject to both local and non-local
dispersals. See also [13, 19, 32] for further explanations and applications. In view of this
motivation, the study of elliptic problems involving mixed types of operators has received
much attention lately. In particular, many research papers have investigated the results
of the existence, uniqueness, as well as maximum principle, interior Sobolev–Lipschitz
regularity, and other qualitative properties, we refer to [3, 5] without giving an exhaustive
list.

1.1 Motivation and literature
Singular systems, represented as (S), hold a significant interest in studying models derived
from molecular biology. In this context, Gierer and Meinhardt [25] introduced the follow-
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ing mathematical model: for p, q, r, s > 0

⎧
⎨

⎩

∂tu = d1�u – αu + cρupv–q + ρ0ρ in � × (0, T),

∂tv = d2�v – βv + c′ρ ′urv–s in � × (0, T),

where u and v are the concentrations of the chemical substances of activator (a slowly
diffusing substance) and inhibitor (a rapidly diffusing substance) with the source distribu-
tions ρ and ρ ′ respectively. Also, d1 and d2 are the diffusion coefficients, while α,β , c, c′,ρ0

are positive constants. The problem is subject to Neumann boundary conditions in a
smooth bounded domain �. It explains the pattern formation of spatial tissue structures in
hydra during morphogenesis, which is a biological phenomenon first discovered by Trem-
bley in 1744. For a detailed presentation on this topic, we refer the reader to [21]. In the
following, we present a brief literature survey of the problems of the type (S):

• Local case: We start with the work [20] where the author deals with the system (S) and
investigates the existence, non-existence, and uniqueness of classical solutions in
C(�) ∩ C2(�) by applying the fixed-point Theorem, and sub–solutions and
super-solutions methods, when L1 = L2 = –�. Additionally, we refer to [24] to extend
the results of existence, uniqueness, and regularity to the nonlinear p-Laplace
operator, defined as �pu = div(|∇u|p–2 ∇u), with p > 1. For further discussion, we
refer the reader to [10, 14, 15] and the references cited therein.

• Non-local case: In this regard, we can quote [26]. Here the author discusses the
existence of weak solutions and investigated the asymptotic behavior of these
solutions near ∂�, when L1 = L2 = (–�)s, s ∈ (0, 1). Furthermore, Araujo et al.
extended the results obtained in [20] to the fractional Laplace operator, as presented
in [16]. For the general case, we refer the readers to [28], where the existence,
non-existence, and uniqueness of C(�) solutions to fractional p-Laplace operator are
investigated.

However, there are very few results on mixed operator systems. In this regard, we can
cite [9]. The authors considered an eigenvalue problem for a system of local and non-
local operators. They prove the existence and simplicity of the first eigenvalue, while also
studying its asymptotic behavior as p → ∞.

It is worth noting that before delving into the study of our problem, we need to analyze
single equations in the presence of singular nonlinearity. For significant insights and an
extensive bibliography covering motivations related to the study of such equations, which
frequently arise in various real-world models, both in local and non-local cases, we refer
to [3, 4, 22, 27].

Our first main goal in the present article is to investigate the non-existence of classical
solutions to system (S) by using the same approach in the paper [20]. Next, we will obtain
the existence of weak solution in the sense of Definition 1.1 by means of Schauder’s fixed-
point theorem. To this aim, we need to define the following operator: for any (u, v) in H

T : H →H by (u, v) �−→ T (u, v) := (T1(v),T2(u)), (1.3)

where
• H is a suitable closed convex subset of H1

loc(�) × H1
loc(�) that contains all positive

functions behaving suitably in terms of the distance function.
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• T1(v) ∈ H1
loc(�) and T2(u) ∈ H1

loc(�) are defined to be the unique positive weak
solutions of the following Dirichlet problems, respectively:

L1(T1(v)) = k1(x)(T1(v))–α1 v–β1 ,T1(v) > 0 in �; T1(v) = 0, in R
N \ �, (1.4)

L2(T2(u)) = k2(x)(T2(u))–α2 u–β2 ,T2(u) > 0 in �; T2(u) = 0, in R
N \ �. (1.5)

Afterward, we also need to check that
T (H) ⊂H, T is compact and continuous.

Remark 1.1 The operator T has the following properties:
(1) Any fixed point of T is a positive solution pair for (S), and conversely.
(2) The mappings T1 and T2 are order-reversing under some conditions to be defined

later (see Theorem 2.1 below). Moreover, we obtain the (point-wise) order-preserving
of the following mappings:

u �−→ (T1 ◦ T2)(u) and v �−→ (T2 ◦ T1)(v).

(3) For λ ∈ ]0, 1[, we have:

T1(λv) = λ
– β1

α1+1 T1(v) and T2(λu) = λ
– β2

α2+1 T2(u).

Then

(T1 ◦ T2)(λu) = λ
β1

α1+1 · β2
α2+1 (T1 ◦ T2)(u),

(T2 ◦ T1)(λv) = λ
β2

α2+1 · β1
α1+1 (T2 ◦ T1)(v).

(4) It is easy to check that the mappings T1 ◦ T2 and T2 ◦ T1 are sub-homogeneous
under the following condition:

(α1 + 1) (α2 + 1) > β1β2. (1.6)

Furthermore, there exists τ ∈ (0; +∞) such that

α1 + 1
β1

> τ >
β2

α2 + 1
,

or, equivalently

α1 + 1 > τβ1 and τ (α2 + 1) > β2. (1.7)

We will see that condition (3) leads to the uniqueness of a positive fixed point.

1.2 Mathematical background and main results
First, we recall some notation that will be used throughout this paper:

• Let � ⊂R
N , N ≥ 3 an open bounded domain with boundary of class C1,1.
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• We recall that the Sobolev space H1(RN ) is defined as

H1 (
R

N) :=
{

u ∈ L2 (
R

N) , ∇u ∈ L2 (
R

N)} ,

equipped with the norm

‖u‖H1(RN ) := ‖u‖L2(RN ) + ‖∇u‖L2(RN ) .

• The Sobolev space H1
0 (�) is defined as the closure of C∞

c (�) in the norm

‖u‖H1
0 (�) := ‖∇u‖L2(�) ,

where

C∞
c (�) :=

{
ϕ : RN →R : ϕ ∈ C∞(RN ) and supp(ϕ) � �

}
.

• Set 0 < s < 1. The fractional Sobolev space Hs(RN ) is the set of functions

Hs(RN ) :=
{

u ∈ L2(RN ),
∫

RN

∫

RN

|u(x) – u(y)|2
|x – y|N+2s dxdy < ∞

}

,

endowed with the natural norm:

‖u‖Hs(RN ) :=
(

‖u‖2
L2(RN )

+
∫

RN

∫

RN

|u(x) – u(y)|2
|x – y|N+2s dxdy

) 1
2

.

• The space Hs
0(�) is the set of functions defined as:

Hs
0(�) :=

{
u ∈ Hs (

R
N) | u = 0 a.e. in R

N \ �
}

.

The associated norm in the space Hs
0(�) is given by Gagliardo semi-norm:

‖u‖Hs
0(�) :=

(∫

RN

∫

RN

|u(x) – u(y)|2
|x – y|N+2s dxdy

) 1
2

.

• We consider the space H(�), defined as

H(�) =
{

u ∈ H1(RN ) : u|� ∈ H1
0 (�), u = 0 a. e. in R

N \ �
}

.

Moreover, using [8, Proposition 9.18], we can identify H(�) with the space H1
0 (�), if �

admits a C1– boundary ∂�.
We have the following Lemma (see [9, Lemma 2.1] for the proof ):

Lemma 1.1 For any s ∈ (0, 1), there exist a constant c = c(N , s,�) such that

∫

RN

∫

RN

|u(x) – u(y)|2
|x – y|N+2s dxdy ≤ c

∫

�

|∇u|2 dx for every u ∈H(�).
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Then, we have the following remark:

Remark 1.2 In light of the boundary regularity of domain �, we have:

H1
0 (�) ⊂ Hs

0(�).

Next, we introduce the notion of the weak solutions to (S) as follows.

Definition 1.1 A pair (u, v) ∈ H1
loc(�) × H1

loc(�) is a weak solution of (S), if the following
holds:

(i) for any compact set K � �, there exists a constant C(K) > 0 such that

u, v ≥ C(K) in K ,

(ii) there exists θ ≥ 1, such that

(uθ , vθ ) ∈ H1
0 (�) × H1

0 (�),

(iii) for all (ϕ,ψ) ∈ H1
0 (�) × H1

0 (�) with compact supports contained in �:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

�

∇u · ∇ϕ dx+
C(N , s1)

2

∫

RN

∫

RN

(
u(x) – u(y)

) (
ϕ(x) – ϕ(y)

)

|x – y|N+2s1
dx dy

=
∫

�

k1(x)u–α1 v–β1 ϕ(x) dx,

∫

�

∇v · ∇ψ dx +
C(N , s2)

2

∫

RN

∫

RN

(
v(x) – v(y)

) (
ψ(x) – ψ(y)

)

|x – y|N+2s2
dx dy

=
∫

�

k2(x)v–α2 u–β2 ψ(x)dx.

(1.8)

Remark 1.3 To understand the notion of weak solutions in Definition 1.1, let us test the
weak formulation (1.8) by functions from the natural spaces H1

0 (�). In this case, we cannot
expect (u, v) ∈ H1

0 (�) × H1
0 (�) for α1,α2,β1,β2 large enough (see [2, 31]). For this reason,

we choose suitable test functions depending on the value of the exponents and the pair of
solutions (u, v), e.g., we restrict our test sets to functions with compact support.

For classical solutions to system (S), we provide the following definition:

Definition 1.2 We say that a pair (u, v) is a classical solution to system (S), if (u, v) is a
weak solution pair to (S) and (u, v) ∈ C(RN ) ∩ C2(�).

We define the notion of weak sub-solutions and super-solutions pairs to (S):

Definition 1.3 We say that (u, v) and (u, v) in H1
loc(�) × H1

loc(�) are sub-solutions and
super-solutions pairs for (S), respectively, if the following holds:

(i) for any compact set K � �, there exists a constant C(K) > 0 such that

u, v, u, v ≥ C(K) in K ,
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(ii) there exist θ1, θ2 ≥ 1, such that

(uθ1 , vθ1 ) ∈ H1
0 (�) × H1

0 (�),

and

(uθ2 , vθ2 ) ∈ H1
0 (�) × H1

0 (�),

(iii) the following inequalities are verified

(P) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

�

∇u · ∇ϕdx+
C(N , s1)

2

∫

RN

∫

RN

(u(x) – u(y))
(
ϕ(x) – ϕ(y)

)

|x – y|N+2s1
dx dy

≤
∫

�

k1(x)u–α1 v–β1 ϕ(x) dx,

∫

�

∇v · ∇ψdx+
C(N , s2)

2

∫

RN

∫

RN

(v(x) – v(y))
(
ψ(x) – ψ(y)

)

|x – y|N+2s2
dx dy

≤
∫

�

k2(x)v–α2 u–β2 ψ(x) dx,

(1.9)

and

(P) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

�

∇u · ∇ϕdx+
C(N , s1)

2

∫

RN

∫

RN

(u(x) – u(y))
(
ϕ(x) – ϕ(y)

)

|x – y|N+2s1
dx dy

≥
∫

�

k1(x)u–α1 v–β1 ϕ(x) dx,

∫

�

∇v · ∇ψdx+
C(N , s2)

2

∫

RN

∫

RN

(v(x) – v(y))
(
ψ(x) – ψ(y)

)

|x – y|N+2s2
dx dy

≥
∫

�

k2(x)v–α2 u–β2 ψ(x) dx,

(1.10)

for all (ϕ,ψ) ∈ H1
0 (�) × H1

0 (�), with ϕ,ψ ≥ 0 in �, and suppϕ, suppψ � �.

Our first result concerns the non-existence of classical solutions to (S).

Theorem 1.2 Assuming that ki, i = 1, 2 satisfies condition (1.2), we consider the cases where
α1,α2,β1,β2 fulfill one of the following conditions:

(1) If a1 + β1 + α1 < 1, and a2 + β2 ≥ 2.
(2) If a2 + β2 + α2 < 1, and a1 + β1 ≥ 2.
(3) If a1 + β1 + α1 = 1, and a2 + β2(1 – κ1) ≥ 2, for some κ1 ∈ (0, 1).
(4) If a2 + β2 + α2 = 1, and a1 + β1(1 – κ2) ≥ 2, for some κ2 ∈ (0, 1).
(5) If a1 + β1 + α1 > 1, with a1 + β1 < 3

2 and a2 + β2 (2–a1–β1)
α1+1 ≥ 2.

(6) If a2 + β2 + α2 > 1, with a2 + β2 < 3
2 and a1 + β1 (2–a2–β2)

α2+1 ≥ 2.
(7) If 1 < a1 + α1 < 3

2 + α1, 1 < β2(2–a1)
α1+1 + a2 + α2 < 3

2 + α2, and

β1 ((2 – a2)(α1 + 1) – β2(2 – a1)) ≥ (2 – a1)(α1 + 1)(α2 + 1).
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(8) If 1 < a2 + α2 < 3
2 + α2, 1 < β1(2–a2)

α2+1 + a1 + α1 < 3
2 + α1, and

β2 ((2 – a1)(α2 + 1) – β1(2 – a2)) ≥ (2 – a2)(α2 + 1)(α1 + 1).

Then, there does not exist any classical solution to system (S).

The following is our second result regarding the existence and uniqueness of a pair of
positive weak solutions to (S):

Theorem 1.3 Assume that α1, α2, β1,β2 are positive numbers that satisfy condition (1.6).
Additionally, assume that ki, i = 1, 2 satisfies (1.2).

(1) If a1 + β1 + α1 ≤ 1 and a2 + β2 + α2 ≤ 1, then system (S) possesses a unique positive
weak solution (u, v) ∈ H1

0 (�) × H1
0 (�) satisfying the following inequalities for some

C > 0:

C–1 d ≤ u, v ≤ Cd hold in �, if a1 + β1 + α1 < 1 and a2 + β2 + α2 < 1,

and for some κ ∈ (0, 1)

C–1 d ≤ u, v ≤ Cd1–κ hold in �, if a1 + β1 + α1 = 1 and a2 + β2 + α2 = 1.

(2) Let

γ =
(2 – a1)(α2 + 1) – β1(2 – a2)

(α1 + 1)(α2 + 1) – β1β2
and ξ =

(2 – a2)(α1 + 1) – β2(2 – a1)

(α1 + 1)(α2 + 1) – β1β2
.

Now, assume that a1 + ξβ1 + α1 > 1 with a1 + ξβ1 < 3
2 and a2 + γβ2 + α2 > 1 with

a2 + γβ2 < 3
2 . Then, the problem (S) has a unique weak solution (u, v) according to

Definition 1.1 and satisfies the following inequalities with a constant C > 0:

C–1dγ ≤ u ≤ Cdγ and C–1dξ ≤ v ≤ Cdξ hold in �.

Moreover, we have the following Sobolev regularity:
• (u, v) ∈ H1

0 (�) × H1
0 (�) if and only if ν∗

1 < 1 and ν∗
2 < 1.

• (uν1 , vν2 ) ∈ H1
0 (�) × H1

0 (�) if and only if νi > ν∗
i ≥ 1, i = 1, 2,

where ν∗
1 := α1+1

2(2–a1–ξβ1) and ν∗
2 := α2+1

2(2–a2–γβ2) .
(3) Let

γ =
2 – a1 – β1

α1 + 1
.

If a1 + α1 + β1(1 – κ2) > 1 for some κ2 ∈ (0, 1), with a1 + β1 < 3
2 , and γβ2 + a2 ≤ 1

hold, then the problem (S) possesses a unique weak solution (u, v) in the sense of
Definition 1.1, satisfying the following inequalities for some constant C > 0:

C–1dγ ≤ u ≤ Cdγ and C–1d ≤ v ≤ Cd hold in �, if γβ2 + a2 < 1,

C–1dγ +κ2 ≤ u ≤ Cdγ and C–1d ≤ v ≤ Cd1–κ2 hold in�, if γβ2 + a2 = 1.

Furthermore, v ∈ H1
0 (�) and:
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• u ∈ H1
0 (�) if and only if ν∗

1 < 1.
• If γβ2 + a2 < 1, then uν1 ∈ H1

0 (�) if and only if ν1 > ν∗
1 ≥ 1.

• If γβ2 + a2 = 1, then uν1 ∈ H1
0 (�) if and only if ν1 > ν∗∗

1 ≥ 1.
where ν∗

1 := α1+1
2 (2–a1–β1) and ν∗∗

1 := α1+1
2 (2–a1–β1(1–κ2)) .

(4) Similarly to Part 3 mentioned above, let

ξ =
2 – a2 – β2

α2 + 1
.

If a2 + α2 + β2(1 – κ1) > 1 for some κ1 ∈ (0, 1), with a2 + β2 < 3
2 , and ξβ1 + a1 ≤ 1 hold,

then the problem (S) possesses a unique weak solution (u, v) in the sense of
Definition 1.1, satisfying the following inequalities for some constant C > 0:

C–1dξ ≤ v ≤ Cdξ and C–1d ≤ u ≤ Cd hold in �, if ξβ1 + a1 < 1,

C–1dξ+κ1 ≤ v ≤ Cdξ and C–1d ≤ u ≤ Cd1–κ1 hold in�, if ξβ1 + a1 = 1.

Furthermore, u ∈ H1
0 (�) and:

• v ∈ H1
0 (�) if and only if ν∗

2 < 1.
• If ξβ1 + a1 < 1, then uν2 ∈ H1

0 (�) if and only if ν2 > ν∗
2 ≥ 1.

• If ξβ1 + a1 = 1, then uν2 ∈ H1
0 (�) if and only if ν2 > ν∗∗

2 ≥ 1.
where ν∗

2 := α2+1
2 (2–a2–β2) and ν∗∗

2 := α2+1
2 (2–a2–β2(1–κ1)) .

1.3 Organization of the paper:
In Sect. 2, we investigate the mixed local and non-local elliptic problem involving singular
nonlinearity and singular weights (see Problem (E) below) related to our system (S). First,
we establish a new comparison principle for weak sub and super-solutions of (E) under
some conditions to be defined later, and as a consequence of this, we obtain the uniqueness
result. Next, we collect some results obtained in the paper [3], which play an important
role in this paper. Section 3 is devoted to the proof of our main results (Theorems 1.2 and
1.3). The proof of Theorem 1.3 is divided into two main steps. Firstly, we utilize Schauder’s
fixed-point theorem in conjunction with the sub- and super-solutions method to estab-
lish the existence of a positive solution in conical shells. Secondly, we apply a well-known
argument, originally from Krasnoselsky, to prove the uniqueness of the positive solution
within the same conical shell.

2 Auxiliary results
In this section, we need to introduce and analyze the following mixed local and non-local
equation involving singular nonlinearity and singular weights:

–�u + (–�)s u = K(x) u–α , u > 0 in �; u = 0, in R
N \ �, (E)

where α > 0, 0 < s < 1, and K satisfies the following growth condition:

c1d(x)–β ≤ K(x) ≤ c2 d(x)–β , (2.1)

for any x ∈ �, and some β ∈ [0, 2), with c1, c2 positive constants.
Next, we define the notion of sub- and super-solutions, as well as of weak solution for

(E):
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Definition 2.1 A function u ∈ H1
loc(�) is said to be a weak sub-solution (resp. super-

solution) of the problem (E), if the following holds
(i) for any K � �, there exists a constant C(K) > 0 such that

u ≥ C(K) in K ,

(ii) there exists θ ≥ 1, such that uθ ∈ H1
0 (�),

(iii) for all ϕ ∈ H1
0 (�), with ϕ ≥ 0 and compact support contained in �:

∫

�

∇u · ∇ϕ dx +
C(N , s)

2

∫

RN

∫

RN

(
u(x) – u(y)

) (
ϕ(x) – ϕ(y)

)

|x – y|N+2s dx dy

≤ (resp. ≥)
∫

�

K(x)u–α ϕ(x) dx.
(2.2)

A weak solution is defined as a function that serves as both a weak sub-solution and a
weak super-solution of (E).

We point out that in general, the solution described in this definition does not belong
to the space H1

0 (�) (see Remark 1.3). Moreover, it is worth noting here the lack of trace
mapping in H1

loc(�). For this, we adopt the following definition to understand the Dirichlet
datum in a generalized meaning (see [3, 11]):

Definition 2.2 We say that u ≤ 0 on ∂�, if u = 0 in R
N \� and (u – ε)+ ∈ H1

0 (�), for every
ε > 0. Furthermore, u = 0 on ∂� if u ≥ 0 and u ≤ 0 on ∂�.

Remark 2.1 Condition (ii) in definition 2.1 ensures that the solution fulfills the boundary
datum in the meaning of Definition 2.2 (see [11, Proposition 1.5]).

First, we establish the following weak comparison principle between sub-solutions and
super-solutions for singular elliptic equations (E):

Theorem 2.1 Assume that 0 ≤ β < 3
2 . Let u, v ∈ H1

loc(�) be weak sub and super-solution of
the problem (E), respectively in the sense of definition 2.1. Then u ≤ u a.e. in �.

Proof We follow the ideas in [11] and [23]. More precisely, let us consider k > 0 and super-
solution u of (E). We now define the following convex and closed set:

K :=
{
φ ∈ H1

0 (�) : 0 ≤ φ ≤ u a. e. in �
}

.

Again, we define the functional Jk : H1
0 (�) →R∪ {–∞, +∞} as follows

Jk(w) :=
1
2

(∫

�

|∇w|2 dx +
C(N , s)

2

∫

RN

∫

RN

∣
∣w(x) – w(y)

∣
∣2

∣
∣x – y

∣
∣N+2s dxdy

)

–
∫

�

K(x)Gk(w)dx,

where the function Gk : R →R is primitive of the following function:

gk(s) :=

⎧
⎨

⎩

min {s–α , k} if s > 0,

k if s ≤ 0,
(2.3)
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such that Gk(1) = 0. It is easy to observe that:
• Jk is well defined and strictly convex on K.
• Jk is weakly lower semi-continuous on K. Indeed, let {wn}n ⊂K converges weakly to

some w in K, as well as wn → w in Lr(�), for 1 ≤ r < 2∗ := 2N
N–2 . Then, we have

∫

�

|∇w|2 dx ≤ lim inf
n→∞

∫

�

|∇wn|2 dx, (2.4)

and

∫

RN

∫

RN

∣
∣w(x) – w(y)

∣
∣2

∣
∣x – y

∣
∣N+2s dxdy ≤ lim inf

n→∞

∫

RN

∫

RN

∣
∣wn(x) – wn(y)

∣
∣2

∣
∣x – y

∣
∣N+2s dxdy. (2.5)

Let θ ∈ (0, 1) be chosen later, such that
1 – θ

2
+

θ

r
+

1
l

= 1, where r < 2∗. By using Hardy
inequality, the boundedness of {wn}n in H1

0 (�), and taking into account that Gk is globally
Lipschitz, we deduce that

∫

�

K(x) |Gk(wn) – Gk(w)|dx ≤ C1

∫

�

|wn – w|
dβ(x)

dx

= C1

∫

�

( |wn – w|
d(x)

)1–θ

|wn – w|θ d(x)1–θ–βdx

≤ C2

(∫

�

|wn – w|r dx
) θ

r
(∫

�

d(x)(1–θ–β)ldx
) 1

l

≤ C3 ‖wn – w‖θ
Lr(�) since 0 ≤ β <

3
2

−→ 0, (2.6)

where C1, C2, C3 > 0 are constants independent of wn and w. Finally, gathering (2.4), (2.5)
and (2.6), we infer that Jk is weakly lower semi-continuous on K. Hence, based on the
above properties, Jk has a global minimizer w0 on K.

On the other hand, for ψ ∈ w0 +
(
H1

0 (�) ∩ L∞
c (�)

)
, with 0 ≤ ψ ≤ u a. e. in �, we have

∫

�

∇w0 · ∇(ψ – w0) dx

+
C(N , s)

2

∫

RN

∫

RN

(
w0(x) – w0(y)

) (
(ψ – w0)(x) – (ψ – w0)(y)

)

|x – y|N+2s dx dy

≥
∫

�

K(x) G′
k(w0) (ψ – w0) dx.

(2.7)

Claim 1 For all ψ ∈ C∞
c (�) with ψ ≥ 0, we have

∫

�

∇w0 · ∇ψ dx

+
C(N , s)

2

∫

RN

∫

RN

(
w0(x) – w0(y)

) (
ψ(x) – ψ(y)

)

|x – y|N+2s dx dy

≥
∫

�

K(x) G′
k(w0)ψ dx.

(2.8)
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Indeed, let us consider g ∈ C∞
c (R) such that

0 ≤ g ≤ 1 in R, g ≡ 1 in [–1, 1] and supp g ⊂ (–2, 2) .

Then, for any non-negative ψ ∈ C∞
c (�), we set

ψh := g(
w0

h
)ψ and ψh,t := min {w0 + tψh, u},

for h ≥ 1 and t > 0. It is easy to check that ψh,t ∈ w0 +
(
H1

0 (�) ∩ L∞
c (�)

)
, with 0 ≤ ψh,t ≤

u a. e. in �. From (2.7), we obtain that
∫

�

∇w0 · ∇(ψh,t – w0) dx

+
C(N , s)

2

∫

RN

∫

RN

(
w0(x) – w0(y)

) (
(ψh,t – w0)(x) – (ψh,t – w0)(y)

)

|x – y|N+2s dx dy

≥
∫

�

K(x) G′
k(w0) (ψh,t – w0) dx.

After straightforward computations, we deduce that

∫

�

∣
∣∇(ψh,t – w0)

∣
∣2 dx +

C(N , s)
2

∫

RN

∫

RN

∣
∣(ψh,t – w0)(x) – (ψh,t – w0)(y)

∣
∣2

|x – y|N+2s dx dy

≤
∫

�

∇ψh,t · ∇(ψh,t – w0)dx

+
C(N , s)

2

∫

RN

∫

RN

(ψh,t(x) – ψh,t(y))
(
(ψh,t – w0)(x) – (ψh,t – w0)(y)

)

|x – y|N+2s dxdy

–
∫

�

K(x) G′
k(w0) (ψh,t – w0) dx.

This implies that

∫

�

∣
∣∇(ψh,t – w0)

∣
∣2 dx +

C(N , s)
2

∫

RN

∫

RN

∣
∣(ψh,t – w0)(x) – (ψh,t – w0)(y)

∣
∣2

|x – y|N+2s dx dy

–
∫

�

K(x) (G′
k(ψh,t) – G′

k(w0)) (ψh,t – w0) dx

≤
∫

�

∇ψh,t · ∇(ψh,t – w0 – tψh)dx

+
C(N , s)

2

∫

RN

∫

RN

(ψh,t(x) – ψh,t(y))
(
(ψh,t – w0 – tψh)(x) – (ψh,t – w0 – tψh)(y)

)

|x – y|N+2s dxdy

–
∫

�

K(x) G′
k(ψh,t) (ψh,t – w0 – tψh) dx + t

[∫

�

∇ψh,t · ∇ψhdx

+
C(N , s)

2

∫

RN

∫

RN

(ψh,t(x) – ψh,t(y))(ψh(x) – ψh(y))

|x – y|N+2s dxdy

–
∫

�

K(x) G′
k(ψh,t)ψh dx

]

. (2.9)

Setting

R = {u ≤ w0 + tψh} ∪ {u > w0 + tψh} .
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Then, we have

∫

�

∇ψh,t · ∇(ψh,t – w0 – tψh)dx =
∫

�

∇u · ∇(ψh,t – w0 – tψh)dx,

and

∫

RN

∫

RN

(ψh,t(x) – ψh,t(y))
[
(ψh,t – w0 – tψh)(x) – (ψh,t – w0 – tψh)(y)

]

|x – y|N+2s dxdy

=
∫

{
u≤w0+tψh

}

∫

{
u≤w0+tψh

}

(ψh,t(x) – ψh,t(y))
[
(ψh,t – w0 – tψh)(x) – (ψh,t – w0 – tψh)(y)

]

|x – y|N+2s dxdy

+
∫

{
u≤w0+tψh

}

∫

{
u>w0+tψh

}

(ψh,t(x) – ψh,t(y))
[
(ψh,t – w0 – tψh)(x) – (ψh,t – w0 – tψh)(y)

]

|x – y|N+2s dxdy

+
∫

{
u>w0+tψh

}

∫

{
u≤w0+tψh

}

(ψh,t(x) – ψh,t(y))
[
(ψh,t – w0 – tψh)(x) – (ψh,t – w0 – tψh)(y)

]

|x – y|N+2s dxdy

≤
∫

{
u≤w0+tψh

}

∫

{
u≤w0+tψh

}

(u(x) – u(y))
[
(ψh,t – w0 – tψh)(x) – (ψh,t – w0 – tψh)(y)

]

|x – y|N+2s dxdy

+
∫

{
u≤w0+tψh

}

∫

{
u>w0+tψh

}

(u(x) – u(y))
[
(ψh,t – w0 – tψh)(x) – (ψh,t – w0 – tψh)(y)

]

|x – y|N+2s dxdy

+
∫

{
u>w0+tψh

}

∫

{
u≤w0+tψh

}

(u(x) – u(y))
[
(ψh,t – w0 – tψh)(x) – (ψh,t – w0 – tψh)(y)

]

|x – y|N+2s dxdy

=
∫

RN

∫

RN

(u(x) – u(y))
(
(ψh,t – w0 – tψh)(x) – (ψh,t – w0 – tψh)(y)

)

|x – y|N+2s dxdy.

From (2.9), we then obtain

–
∫

�

K(x) (G′
k(ψh,t) – G′

k(w0)) (ψh,t – w0) dx ≤
∫

�

∇u · ∇(ψh,t – w0 – tψh)dx

+
C(N , s)

2

∫

RN

∫

RN

(u(x) – u(y))
(
(ψh,t – w0 – tψh)(x) – (ψh,t – w0 – tψh)(y)

)

|x – y|N+2s dxdy

–
∫

�

K(x) G′
k(ψh,t) (ψh,t – w0 – tψh) dx + t

[∫

�

∇ψh,t · ∇ψhdx

+
C(N , s)

2

∫

RN

∫

RN

(ψh,t(x) – ψh,t(y))(ψh(x) – ψh(y))

|x – y|N+2s dxdy

–
∫

�

K(x) G′
k(ψh,t)ψh dx

]

,

From the definition of the function Gk , it is easy to see that u is a super-solution to the
following problem:

–�u + (–�)s u = K(x) G′
k(u).

Then, we have

–
∫

�

K(x) (G′
k(ψh,t) – G′

k(w0))ψh dx ≤
∫

�

∇ψh,t · ∇ψhdx
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+
C(N , s)

2

∫

RN

∫

RN

(ψh,t(x) – ψh,t(y))(ψh(x) – ψh(y))

|x – y|N+2s dxdy –
∫

�

K(x) G′
k(ψh,t)ψh dx.

By using the dominated convergence theorem, and again by definition of Gk , we can pass
to the limit as t → 0, we then obtain

∫

�

∇w0 · ∇ψhdx +
C(N , s)

2

∫

RN

∫

RN

(w0(x) – w0(y))(ψh(x) – ψh(y))

|x – y|N+2s dxdy

≥
∫

�

K(x) G′
k(w0)ψh dx.

So the claim is proved, by taking h → ∞. Since C∞
c (�) is dense in H1

0 (�). Hence, we
conclude (2.8) is satisfied for any ψ ∈ H1

0 (�) with ψ ≥ 0 a.e. in �.

Claim 2 For all ε > 0, we have u ≤ w0 + ε.
Indeed, since w0 ∈ H1

0 (�) and w0 ≥ 0 a.e. in �, the function (u–w0 –ε)+ ∈ H1
0 (�). Testing

(2.8) with Tm((u – w0 – ε)+), we obtain

∫

�

∇w0 · ∇Tm((u – w0 – ε)+) dx

+
C(N , s)

2

∫

RN

×
∫

RN

(
w0(x) – w0(y)

) (
Tm((u – w0 – ε)+)(x) – Tm((u – w0 – ε)+)(y)

)

|x – y|N+2s dx dy

≥
∫

�

K(x) G′
k(w0) Tm((u – w0 – ε)+) dx, (2.10)

such that Tm(s) = min {s, m}. Let now {ψn} be a sequence in C∞
c (�) such that ψn → (u –

w0 – ε)+ in H1
0 (�), and set ψn,m := Tm(min

{
(u – w0 – ε)+,ψ+

n
}
). It is easy to observe that

ψn,m ∈ H1
0 (�) and compact support contained in �. Then,

∫

�

∇u · ∇ψn,m dx +
C(N , s)

2

∫

RN

∫

RN

(
u(x) – u(y)

) (
ψn,m(x) – ψn,m(y)

)

|x – y|N+2s dx dy

≤
∫

�

K(x)u–α ψn,m dx.

Therefore, by employing the dominated convergence theorem, we obtain

∫

�

∇u · ∇Tm((u – w0 – ε)+) dx

+
C(N , s)

2

∫

RN

∫

RN

(
u(x) – u(y)

) (
Tm((u – w0 – ε)+)(x) – Tm((u – w0 – ε)+)(y)

)

|x – y|N+2s dx dy

≤
∫

�

K(x)u–α Tm((u – w0 – ε)+) dx. (2.11)
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By subtracting (2.11) from (2.10), while selecting ε > 0 such that k > ε–δ , and by using
the definition of gk (see (2.3)), we obtain

∫

�

∣
∣∇Tm((u – w0 – ε)+)

∣
∣2 dx

+
C(N , s)

2

∫

RN

∫

RN

∣
∣Tm((u – w0 – ε)+)(x) – Tm((u – w0 – ε)+)(y)

∣
∣2

|x – y|N+2s dx dy

≤
∫

�

K(x)(u–α – G′
k(w0)) Tm((u – w0 – ε)+) dx

=
∫

�

K(x)(G′
k(u) – G′

k(w0)) Tm((u – w0 – ε)+) dx ≤ 0,

passing to the limit as m tends to infinity, and using Fatou’s lemma, we obtain

∫

�

∣
∣∇(u – w0 – ε)+∣∣2 dx

+
C(N , s)

2

∫

RN

∫

RN

∣
∣(u – w0 – ε)+(x) – (u – w0 – ε)+(y)

∣
∣2

|x – y|N+2s dx dy ≤ 0.

This implies that
(u – w0 – ε)+ = 0 a.e. in �.

Thus, u ≤ w0 + ε ≤ u + ε, passing to the limit as ε → 0 it follows that u ≤ u. �

Remark 2.2 We have the following observations:
(1) If u, u ∈ H1

0 (�), the proof of Theorem 2.1 becomes very easy when we consider
(u – u)+ as a test function in equation (2.2).

(2) If 0 ≤ β < 3
2 , then there exists a unique weak solution of the problem (E).

Furthermore, we need to consider some of the recently obtained results in the paper [3].
To be more specific, the authors have established the non-existence, existence, unique-
ness, and Sobolev regularity results of the problem (E), under the assumption (2.1) of the
function K , within a specific range of values for α and β . The following theorem summa-
rizes the results that will be utilized in the present paper, where the following exponent is
employed:

ν∗ :=
α + 1

2 (2 – β)
withβ ∈ [0, 2).

Theorem 2.2 We have the following
(1) If α > 0, and α + β ≤ 1. Then, problem (E) possesses a unique positive minimal

solution u in the following sense:
• u ∈ H1

0 (�).
• for any ϕ ∈ H1

0 (�):

∫

�

∇u · ∇ϕ dx +
C(N , s)

2

∫

RN

∫

RN

(
u(x) – u(y)

) (
ϕ(x) – ϕ(y)

)

|x – y|N+2s dx dy

=
∫

�

K(x)u–α ϕ(x) dx.
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Furthermore, u satisfy the following estimates:

C–1 d ≤ u ≤ Cd hold in � if α + β < 1,

and for some κ ∈ (0, 1)

C–1 d ≤ u ≤ Cd1–κ hold in � if α + β = 1.

(2) If α > 0, and α + β > 1 with β <
3
2

. Then there exists a unique positive minimal
solution u of (E) in the following sense:
• u ∈ H1

loc(�).
• there exists θ ≥ 1 such that uθ ∈ H1

0 (�).
• for every compact subset k ⊂ � there exists a constant C(K) > 0 such that u ≥ C(K)

in K .
• for every ϕ ∈ H1

0 (�) in case ν∗ ≤ 1, and with compact support contained in � in
case of ν∗ > 1, we have:

∫

�

∇u · ∇ϕ dx +
C(N , s)

2

∫

RN

∫

RN

(
u(x) – u(y)

) (
ϕ(x) – ϕ(y)

)

|x – y|N+2s dx dy

=
∫

�

K(x)u–α ϕ(x) dx.

Moreover, we have the following Sobolev regularity:
• u ∈ H1

0 (�) if and only if ν∗ < 1.
• uν ∈ H1

0 (�) if and only if ν > ν∗ ≥ 1.
In addition, u satisfy the following estimates:

C–1 d
2–β
α+1 ≤ u ≤ Cd

2–β
α+1 hold in �.

(3) If β ≥ 2, then there is no weak solution to (E) in the sense of (1) and (2).

Proof See Theorem 2.6, Theorem 2.7, Theorem 2.8 and Theorem 2.9 in [3]. From Re-
mark 2.2 - (2), we can infer the uniqueness results. �

Remark 2.3 We can conclude the results of non-existence in Theorem 2.2-(3) for the prob-
lem (E) by a similar proof in [3, Theorem 2.9] when K satisfies the following condition:

c1 d(x)–β1 ≤ K(x) ≤ c2 d(x)–β2 for any x ∈ �,

where 2 ≤ β1 ≤ β2 and c1, c2 are positive constants. Precisely, by contradiction, we suppose
that there exist a weak solution u ∈ H1

loc(�) of the problem (E) and θ0 ≥ 1 such that uθ0 ∈
H1

0 (�). Now, we can choose � ∈ (0, 1) and β0 < 2 such that a function K ′ satisfies the
growth condition:

c′
1� d(x)–β0 ≤ �K ′(x) ≤ c′

2� d(x)–β0 ≤ c1 d(x)–β1 ≤ K(x) for any x ∈ �,

where c′
1, c′

2 > 0 and the constant � is independent of β0 for β0 ≥ β∗
0 > 0. Then, we can

replicate the proof presented in [3, Theorem 2.9] to obtain the desired contradiction.
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3 Proof of the main results
First, we prove the non-existence of classical solutions (see Definition 1.2) to problem (S).
Before embarking on this, we need to establish the following lemma regarding the behavior
of classical solutions.

Lemma 3.1 Let (u, v) be a pair of positive classical solutions of system (S). If a1, a2 ∈ [
0, 3

2
)
,

then

u, v ≥ c d(x) in �, (3.1)

where c is a positive constant.

Proof Let (u, v) be a pair of classical solution of the system (S). Then, we have

–�u + (–�)s1 u ≥ c1 k1(x) u–α1 in �,

and

–�v + (–�)s2 v ≥ c2 k2(x) v–α2 in �,

for positive constants c1 and c2 that are small enough. We now consider the following
problems:

–�w1 + (–�)s1 w1 = c1 k1(x) w–α1
1 , w1 > 0 in �; w1 = 0, in R

N \ �,

–�w2 + (–�)s2 w2 = c2 k2(x) w–α2
2 , w2 > 0 in �; w2 = 0, in R

N \ �.

Hence, by using Theorem 2.2 (see also [3, Lemma 4.6]), there exists a unique positive
minimal solutions w1 and w2 of the above problems, respectively, with

w1, w2 ≥ k d(x) in �,

for k > 0. Since a1, a2 ∈ [
0, 3

2
)
, and by applying the comparison principle (Theorem 2.1),

estimates (3.1) follow. �

Using weak comparison principle (Theorem 2.1) along with Theorem 2.2, we can derive
the following proposition concerning sub-solutions and super-solutions to the problem
(E):

Proposition 3.2 Let u be a sub-solution of (E), and u be a super-solution of (E) in the
sense of definition 2.1. We have the following

• If β + α < 1. Then, there exists a positive constant C1, such that

u(x) ≤ C1 d(x) and u(x) ≥ C–1
1 d(x) in �.

• If β + α = 1. Then, there exists a positive constant C2, and κ ∈ (0, 1), such that

u(x) ≤ C2 d(x)1–κ and u(x) ≥ C–1
2 d(x) in �.
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• If β + α > 1 with β < 3
2 . Then, there exists a positive constant C3, where

u(x) ≤ C3 d(x)
2–β
α+1 and u(x) ≥ C–1

3 d(x)
2–β
α+1 in �.

We are now ready to present the proof of non-existence results:

Proof of Theorem 1.2 Let (u, v) be a positive classical solution to system (E). According to
the statement of Theorem 2.2, we classify the following cases:

Case (1): Assume that a1 + β1 + α1 < 1. First, by using Lemma (3.1), we can conclude that
u is a sub-solution of the following equation:

L1w = M1d–a1–β1 (x) w–α1 , w > 0 in �; w = 0, in R
N \ �,

for some constant M1 > 0 large enough. Next, from Proposition 3.2 combined with
Lemma 3.1, we have

C–1 d–a2–β2 (x) ≤ k2(x) u–β2 ≤ C d–a2–β2 (x) in �,

for some constant C > 0. Then, from Theorem 2.2 - (3), the following problem:

L2v = k2(x)u–β2 v–α2 , v > 0 in �; v = 0, in R
N \ �,

has no weak solution if a2 + β2 ≥ 2. Similarly, we arrive at the same conclusion for Case
(2).

Case (3): Let a1 + β1 + α1 = 1. Again, from Lemma 3.1 and Proposition 3.2, the problem:

L2v = k2(x)u–β2 v–α2 , v > 0 in �; v = 0, in R
N \ �,

with the following condition: for some κ1 ∈ (0, 1)

C–1 d–a2–β2(1–κ1)(x) ≤ k2(x) u–β2 ≤ C d–a2–β2 (x) in �,

has no weak solution if a2 + β2(1 – κ1) ≥ 2, taking into account Remark 2.3. Additionally,
the same conclusion applies to Case (4).

Case (5): Assume that a1 + β1 + α1 > 1, with a1 + β1 < 3
2 . Using Lemma (3.1), we get u is

a sub-solution of the following equation:

L1w = M2d–a1–β1 (x) w–α1 , w > 0 in �; w = 0, in R
N \ �,

such that M2 > 0 is a constant large enough. By combining Proposition 3.2 with Lemma 3.1,
we obtain

C–1 d–a2–β2
( 2–a1–β1

α1+1

)

(x) ≤ k2(x) u–β2 ≤ C d–a2–β2 (x) in �,

for some constant C > 0. Then, from Remark 2.3, the following problem:

L2v = k2(x)u–β2 v–α2 , v > 0 in �; v = 0, in R
N \ �,

has no weak solution if a2 + β2 (2–a1–β1)
α1+1 ≥ 2.
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Analogously, we obtain the same results for Case (6).
Case (7): Setting M = max

�

{
vβ1

}
> 0, one can easily check that u is a super-solution of

the following equation:

L1w = M–1 k1(x) w–α1 , w > 0 in �; w = 0, in R
N \ �.

Since a1 + α1 > 1 and a1 < 3
2 , by Proposition 3.2 there exists C > 0 such that

u(x) ≥ C d
2–a1
α1+1 (x) hold in�.

Therefore, v is a sub-solution to the following problem:

L2w = C–β2 d– β2(2–a1)
α1+1 (x) k2(x) w–α2 , w > 0 in �; w = 0, in R

N \ �.

By using Proposition 3.2 (since β2(2–a1)
α1+1 + a2 + α2 > 1 and β2(2–a1)

α1+1 + a2 < 3
2 ) and Lemma 3.1

there exists a positive constant C > 0 such that

C–1 d– β1
(
(2–a2)(α1+1)–β2(2–a1)

)

(α1+1)(α2+1) –a1 (x) ≤ k1(x) v–β1 ≤ C d–β1–a1 (x) in �.

Then, from Remark 2.3, the following problem:

L1u = k1(x)v–β1 u–α1 , u > 0 in �; u = 0, in R
N \ �,

has no weak solution if β1((2–a2)(α1+1)–β2(2–a1))
(α1+1)(α2+1) + a1 ≥ 2.

Analogously, we obtain the same results for Case (8). �

Next, we establish the existence of a pair of positive weak solutions by employing
Schauder’s fixed-point theorem in conjunction with the sub-solutions and super-solutions
method. In addition, we demonstrate the uniqueness results by applying a well-known ar-
gument of Krasnoselsky. Precisely, we have

Proof Theorem 1.3 We divided the proof into 2 parts.
Part 1: Existence of a pair of positive weak solutions.
According to Theorem 2.2, we segment the proof into four cases based on the boundary

behavior of the weak solutions to the problem (E). Indeed, we have:
Case 1: Firstly, if a1 + β1 + α1 < 1 and a2 + β2 + α2 < 1, then by applying Theorem 2.2 - (1),

there exist unique solutions u0, v0 ∈ H1
0 (�) for the following auxiliary problems, respec-

tively:

L1u0 = d–β1 (x)k1(x) u–α1
0 , u0 > 0 in �; u0 = 0, in R

N \ �,

L2v0 = d–β2 (x)k2(x) v–α2
0 , v0 > 0 in �; v0 = 0, in R

N \ �.

Moreover, in this case u0 and v0 satisfies the following inequalities for some constant C > 0:

C–1 d ≤ u0, v0 ≤ Cd hold in �.
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Now, we define the following convex set:

H :=

⎧
⎨

⎩

(u, v) ∈ H1
0 (�) × H1

0 (�);

m1 u0 ≤ u ≤ M1 u0 and m2 v0 ≤ v ≤ M2 v0

⎫
⎬

⎭
.

Here, we define constants 0 < m1 ≤ M1 < ∞ and 0 < m2 ≤ M2 < ∞, which will be deter-
mined later. These constants are chosen in such a way that the conical shell H remains
invariant under the following operator (see (1.3)):

T : (u, v) �−→ T (u, v) := (T1(v),T2(u)) : H −→ H1
0 (�) × H1

0 (�),

that is T (H) ⊆H.
Before confirming this, we need to first verify:
• (T is well-defined). Indeed, consider an arbitrary pair (u, v) in H. Then, by applying

Theorem 2.2 -(1), problems (1.4) and (1.5) possesses a unique solution T1(v) ∈ H1
0 (�) and

T2(u) ∈ H1
0 (�), respectively.

• (H is invariant under T ). In fact, based on Remark 1.1 - (2), we only need to verify the
following inequalities:

T1(M2v0) ≥ m1u0 and T2(m1u0) ≤ M2v0 (3.2)

T2(M1u0) ≥ m2v0 and T1(m2v0) ≤ M1u0. (3.3)

To establish these inequalities, it suffices to demonstrate that (m1u0, m2v0) and (M1u0,
M2v0) satisfy the conditions of being sub-solution and super-solution pairs for (S) as de-
fined in Definition 1.3 (refer to Theorem 2.1). To verify this, we can perform the following
straightforward computations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

�

∇(m1u0) · ∇ϕdx+
C(N , s1)

2

∫

RN

∫

RN

(m1u0(x) – m1u0(y))
(
ϕ(x) – ϕ(y)

)

|x – y|N+2s1
dx dy

≤ mα1+1
1 Cβ1 Mβ1

2

∫

�

k1(x)(m1u0)–α1 (M2v0)–β1 ϕ(x) dx,

∫

�

∇(m2v0) · ∇ψdx+
C(N , s2)

2

∫

RN

∫

RN

(m2v0(x) – m2v0(y))
(
ψ(x) – ψ(y)

)

|x – y|N+2s2
dx dy

≤ mα2+1
2 Cβ2 Mβ2

1

∫

�

k2(x)(m2v0)–α2 (M1u0)–β2 ψ(x) dx,

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

�

∇(M1u0) · ∇ϕdx+
C(N , s1)

2

∫

RN

∫

RN

(M1u0(x) – M1u0(y))
(
ϕ(x) – ϕ(y)

)

|x – y|N+2s1
dx dy

≥ Mα1+1
1 C–β1 mβ1

2

∫

�

k1(x)(M1v0)–α1 (m2v0)–β1 ϕ(x) dx,

∫

�

∇(M2v0) · ∇ψdx+
C(N , s2)

2

∫

RN

∫

RN

(M2v0(x) – M2v0(y))
(
ψ(x) – ψ(y)

)

|x – y|N+2s2
dx dy

≥ Mα2+1
2 C–β2 mβ2

1

∫

�

k2(x)(M2v0)–α2 (m1u0)–β2 ψ(x) dx,
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for all (ϕ,ψ) ∈ H1
0 (�) × H1

0 (�), with ϕ,ψ ≥ 0 in �. In light of inequalities (3.2) and (3.3),
we can choose m1 = B–1, M1 = B, m2 = B–τ and M2 = Bτ , where B ∈ [1; +∞) is a sufficiently
large constant and τ is defined in Remark 1.1-(4). Then, we obtain:

Cβ1 ≤ m–(α1+1)
1 M–β1

2 i.e., Cβ1 ≤ B(α1+1)–τβ1 ,

Cβ2 ≤ m–(α2+1)
2 M–β2

1 i.e., Cβ2 ≤ Bτ (α2+1)–β2 ,

Cβ1 ≤ M(α1+1)
1 mβ1

2 i.e., Cβ1 ≤ B(α1+1)–τβ1 ,

Cβ2 ≤ Mα2+1
2 mβ2

1 i.e., Cβ2 ≤ Bτ (α2+1)–β2 .

Hence, by using the inequalities (1.7), we conclude that all inequalities above are satisfied
for B ∈ [1; +∞) large enough.

• (T is a compact operator). Indeed, we consider a bounded sequence {(un, vn)}n ⊂
H. Then, up to a sub-sequence, that (un, vn)

H1
0 (�)×H1

0 (�)
⇀ (u, v), (un, vn)

L2(�)→ (u, v) and
(un(x), vn(x)) → (u(x), v(x)) a.e. in �. On the other hand, we have T (un, vn) = (T1(vn),
T2(un)). Now, our current focus is to prove there is a sub-sequence denoted again by
{(T1(vn),T2(un))}n that converges in the H1

0 (�) × H1
0 (�) sense to some (ũ, ṽ) ∈ H1

0 (�) ×
H1

0 (�), i.e.,

lim
n→∞

∥
∥T1(vn) – ũ

∥
∥

H1
0 (�) = 0 and lim

n→∞
∥
∥T2(un) – ṽ

∥
∥

H1
0 (�) = 0. (3.4)

First, from Theorem 2.2 - (1), for all (ϕ,ψ) ∈ H1
0 (�) × H1

0 (�), we have:
∫

�

∇T1(vn) · ∇ϕ dx

+
C(N , s1)

2

∫

RN

∫

RN

(
T1(vn)(x) – T1(vn)(y)

) (
ϕ(x) – ϕ(y)

)

|x – y|N+2s1
dx dy

=
∫

�

k1(x) v–β1
n T1(vn)–α1 ϕ(x) dx.

∫

�

∇T2(un) · ∇ψ dx

+
C(N , s2)

2

∫

RN

∫

RN

(
T2(un)(x) – T2(un)(y)

) (
ψ(x) – ψ(y)

)

|x – y|N+2s2
dx dy

=
∫

�

k2(x) u–β2
n T2(un)–α2 ψ(x) dx.

(3.5)

By choosing (ϕ,ψ) = (T1(vn),T2(un)) ∈ H1
0 (�) × H1

0 (�), we obtain

∫

�

|∇T1(vn)|2 dx +
C(N , s1)

2

∫

RN

∫

RN

∣
∣T1(vn)(x) – T1(vn)(y)

∣
∣2

|x – y|N+2s1
dx dy

≤ C
∫

�

d(x)–a1–α1–β1+1 dx = const.

∫

�

|∇T2(un)|2 dx +
C(N , s2)

2

∫

RN

∫

RN

∣
∣T2(un)(x) – T2(un)(y)

∣
∣2

|x – y|N+2s2
dx dy

≤ C
∫

�

d(x)–a2–α2–β2+1 dx = const.,
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where C > 0 does not depend on n. Then, we deduce that {(T1(vn),T2(un))}n is uni-
formly bounded in H1

0 (�) × H1
0 (�). Hence, up to a sub-sequence, that (T1(vn),T2(un)) ⇀

(ũ, ṽ) in H1
0 (�) × H1

0 (�), (T1(vn),T2(un)) → (ũ, ṽ) in Lr(�), for 1 ≤ r < 2∗, and (T1(vn)(x),
T2(un)(x)) → (ũ(x), ṽ(x)) a.e. in �. Also

{∇T1(vn)}n , {∇T2(un)}n is bounded in L2(�),
{
T1(vn)(x) – T1(vn)(y)

|x – y| N+2s1
2

}

n

is bounded in L2(RN ×R
N ),

{
T2(un)(x) – T2(un)(y)

|x – y| N+2s2
2

}

n

is bounded in L2(RN ×R
N ).

By the point-wise convergence of T1(vn) to ũ and T2(un) to ṽ, we obtain

T1(vn)(x) – T1(vn)(y)

|x – y| N+2s1
2

→ ũ(x) – ũ(y)

|x – y| N+2s1
2

a. e. in R
N ×R

N ,

and

T2(un)(x) – T2(un)(y)

|x – y| N+2s2
2

→ ṽ(x) – ṽ(y)

|x – y| N+2s2
2

a. e. in R
N ×R

N .

It follows that

lim
n→∞

{∫

�

∇T1(vn) · ∇ϕ dx

+
C(N , s1)

2

∫

RN

∫

RN

(T1(vn)(x) – T1(vn)(y))(ϕ(x) – ϕ(y))

|x – y|N+2s1
dx dy

}

=
∫

�

∇ũ · ∇ϕ dx

+
C(N , s1)

2

∫

RN

∫

RN

(ũ(x) – ũ(y))(ϕ(x) – ϕ(y))

|x – y|N+2s1
dx dy,

(3.6)

and

lim
n→∞

{∫

�

∇T2(un) · ∇ψ dx

+
C(N , s2)

2

∫

RN

∫

RN

(T2(un)(x) – T2(un)(y))(ψ(x) – ψ(y))

|x – y|N+2s2
dx dy

}

=
∫

�

∇ ṽ · ∇ψ dx

+
C(N , s2)

2

∫

RN

∫

RN

(ṽ(x) – ṽ(y))(ψ(x) – ψ(y))

|x – y|N+2s2
dx dy,

(3.7)

for every (ϕ,ψ) ∈ C∞
c (�) × C∞

c (�). Moreover, one has,

∣
∣k1(x) v–β1

n T1(vn)–α1 ϕ(x)
∣
∣ ≤ C1d(x)–a1–β1–α1 ∈ L1(�),
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and

∣
∣k2(x) u–β2

n T2(un)–α2 ψ(x)
∣
∣ ≤ C2d(x)–a2–β2–α2 ∈ L1(�),

where C1 and C2 are positive constants, and for (ϕ,ψ) ∈ C∞
c (�) × C∞

c (�).

lim
n→∞

∫

�

k1(x) v–β1
n T1(vn)–α1 ϕ(x) dx =

∫

�

k1(x) v–β1 ũ–α1 ϕ(x) dx, (3.8)

lim
n→∞

∫

�

k2(x) u–β2
n T2(un)–α2 ψ(x) dx =

∫

�

k2(x) u–β2 ṽ–α2 ψ(x) dx. (3.9)

By combining (3.6)–(3.8), and (3.9), and passing to the limit in (3.5) as n → ∞, we obtain

∫

�

∇ũ · ∇ϕ dx +
C(N , s1)

2

∫

RN

∫

RN

(
ũ(x) – ũ(y)

) (
ϕ(x) – ϕ(y)

)

|x – y|N+2s1
dx dy

=
∫

�

k1(x) v–β1 ũ–α1 ϕ(x) dx,

∫

�

∇ ṽ · ∇ψ dx +
C(N , s2)

2

∫

RN

∫

RN

(
ṽ(x) – ṽ(y)

) (
ψ(x) – ψ(y)

)

|x – y|N+2s2
dx dy

=
∫

�

k2(x) u–β2 ṽ–α2 ψ(x) dx.

(3.10)

By density arguments, we get (3.10) is satisfied for any (ϕ,ψ) ∈ H1
0 (�) × H1

0 (�). Now,
subtracting the equations (3.5) and (3.10) with the following test functions:

(ϕ,ψ) = (T1(vn) – ũ,T2(un) – ṽ) ∈ H1
0 (�) × H1

0 (�),

we obtain
∫

�

∣
∣∇(T1(vn) – ũ)

∣
∣2 dx

+
C(N , s1)

2

∫

RN

∫

RN

∣
∣(T1(vn) – ũ)(x) – (T1(vn) – ũ)(y)

∣
∣2

|x – y|N+2s1
dx dy

=
∫

�

k1(x)
[
v–β1

n T1(vn)–α1 – v–β1 ũ–α1
]

(T1(vn) – ũ) dx,
∫

�

∣
∣∇(T2(un) – ṽ)

∣
∣2 dx

+
C(N , s2)

2

∫

RN

∫

RN

∣
∣(T2(un) – ṽ)(x) – (T2(un) – ṽ)(y)

∣
∣2

|x – y|N+2s2
dx dy

=
∫

�

k2(x)
[
u–β2

n T2(un)–α2 – u–β2 ṽ–α2
]

(T2(un) – ṽ) dx.

(3.11)

In order to pass to the limit in the right-hand side of equations in (3.11), we use the
boundary behaviour of T1(vn),T2(un), un, vn, ũ, ṽ. Indeed, for ν1,ν2 ∈ (0, 1), such that ν1 <
1 – a1 – β1 – α1, ν2 < 1 – a2 – β2 – α2 and 1–ν1

2 + ν1
r1

+ 1
l1

= 1 and 1–ν2
2 + ν2

r2
+ 1

l2
= 1,

where r1, r2 < 2∗. Hence, from the Hölder and Hardy inequalities and boundedness of
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{(T1(vn),T2(un))}n in H1
0 (�) × H1

0 (�), we obtain

∣
∣
∣
∣

∫

�

k1(x)
[
v–β1

n T1(vn)–α1 – v–β1 ũ–α1
]

(T1(vn) – ũ) dx
∣
∣
∣
∣

≤ C
∫

�

∣
∣
∣
∣
T1(vn) – ũ

d(x)

∣
∣
∣
∣

1–ν1 ∣
∣T1(vn) – ũ

∣
∣ν1 d1–ν1–a1–β1–α1 (x)dx

≤ C
∥
∥T1(vn) – ũ

∥
∥1–ν1

H1
0 (�)

∥
∥T1(vn) – ũ

∥
∥ν1

Lr1 (�)

(∫

�

dl1(1–ν1–a1–β1–α1)(x)dx
) 1

l1 → 0,

and
∣
∣
∣
∣

∫

�

k2(x)
[
u–β2

n T2(un)–α2 – u–β2 ṽ–α2
]

(T2(un) – ṽ) dx
∣
∣
∣
∣

≤ C
∫

�

∣
∣
∣
∣
T2(un) – ṽ

d(x)

∣
∣
∣
∣

1–ν2 ∣
∣T2(un) – ṽ

∣
∣ν2 d1–ν2–a2–β2–α2 (x)dx

≤ C
∥
∥T2(un) – ṽ

∥
∥1–ν2

H1
0 (�)

∥
∥T2(un) – ṽ

∥
∥ν2

Lr2 (�)

(∫

�

dl2(1–ν2–a2–β2–α2)(x)dx
) 1

l2 → 0,

for some constant C > 0. Then (3.4), follows from taking the limit as n → ∞ in (3.11), that
is the compactness of the operator T .

• (T is a continuous operator). Indeed, let {(un, vn)}n ⊂H be an arbitrary sequence ver-
ifying:

(un, vn) → (u0, v0) in H1
0 (�) × H1

0 (�) as n → ∞.

It follows that, up to sub-sequence,

(un, vn) → (u0, v0) a.e. in � × � as n → ∞.

We know that T (un, vn) = (T1(vn),T2(un)) and T (u0, v0) = (T1(v0),T2(u0)). On the other
hand, since T is compact, there exists a sub-sequence denoted again by {(T1(vn),T2(un))}n

such that:

(T1(vn),T2(un)) → (û, v̂) in H1
0 (�) × H1

0 (�),

(T1(vn),T2(un)) → (û, v̂) in L2(�) × L2(�),

(T1(vn)(x),T2(un)(x)) → (û(x), v̂(x)) a.e. in � × �.

Combining this fact with the argument used in the previously mentioned proof of the
compactness of T , we can pass the limit to the following weak formulations:

∫

�

∇T1(vn) · ∇ϕ dx +
C(N , s1)

2

∫

RN

∫

RN

(
T1(vn)(x) – T1(vn)(y)

) (
ϕ(x) – ϕ(y)

)

|x – y|N+2s1
dx dy

=
∫

�

k1(x) v–β1
n T1(vn)–α1 ϕ(x) dx,

∫

�

∇T2(un) · ∇ψ dx +
C(N , s2)

2

∫

RN

∫

RN

(
T2(un)(x) – T2(un)(y)

) (
ψ(x) – ψ(y)

)

|x – y|N+2s2
dx dy
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=
∫

�

k2(x) u–β2
n T2(un)–α2 ψ(x) dx,

to obtain

∫

�

∇û · ∇ϕ dx +
C(N , s1)

2

∫

RN

∫

RN

(
û(x) – û(y)

) (
ϕ(x) – ϕ(y)

)

|x – y|N+2s1
dx dy

=
∫

�

k1(x) v–β1
0 û–α1 ϕ(x) dx,

∫

�

∇ v̂ · ∇ψ dx +
C(N , s2)

2

∫

RN

∫

RN

(
v̂(x) – v̂(y)

) (
ψ(x) – ψ(y)

)

|x – y|N+2s2
dx dy

=
∫

�

k2(x) u–β2
0 v̂–α2 ψ(x) dx,

(3.12)

for all (ϕ,ψ) ∈ C∞
c (�) × C∞

c (�). Since C∞
c (�) is dense in H1

0 (�), we then conclude that
(3.12) is satisfied for any (ϕ,ψ) ∈ H1

0 (�) × H1
0 (�). Thus, by uniqueness, it follows from

Theorem 2.2 - (1) that we obtain T (u0, v0) = (û, v̂), which implies that T is continuous.
Finally, by Schauder’s fixed-point theorem, it is easy to see that T has a fixed-point in H,
which is a pair of positive solutions to the system (S).

The remaining situations in (1) (Theorem 1.3) will be considered in a similar way to case
1. In order to do this, we will indicate the method by which we select the convex set that
enables us to apply Schauder’s fixed-point Theorem:

If a1 +β1 +α1 = 1 and a2 +β2 +α2 = 1. In this case, we will address the following problems:

L1u0 = d–β1 (x)k1(x) u–α1
0 , u0 > 0 in �; u0 = 0, in R

N \ �,

and

L2v0 = d–β2 (x)k2(x) v–α2
0 , v0 > 0 in �; v0 = 0, in R

N \ �.

Then, from Theorem 2.2 - (1), there exist unique solutions u0, v0 ∈ H1
0 (�). Moreover, there

also exist κ1,κ2 ∈ (0, 1) and C > 0 such that

C–1 d ≤ u0 ≤ Cd1–κ1 and C–1 d ≤ v0 ≤ Cd1–κ2 hold in �.

We now consider the following problems:

L1u1 = d–(1–κ2)β1 (x)k1(x) u–α1
1 , u1 > 0 in �; u1 = 0, in R

N \ �,

and

L2v1 = d–(1–κ1)β2 (x)k2(x) v–α2
1 , v1 > 0 in �; v1 = 0, in R

N \ �.

Again, from Theorem 2.2 - (1), there exist unique solutions u1, v1 ∈ H1
0 (�). Moreover, one

has for some constant C > 0:

C–1 d ≤ u1, v1 ≤ Cd hold in �.
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We now define

H :=

⎧
⎨

⎩

(u, v) ∈ H1
0 (�) × H1

0 (�);

m1 u1 ≤ u ≤ M1 u0 and m2 v1 ≤ v ≤ M2 v0

⎫
⎬

⎭
.

Here, 0 < m1 ≤ M1 < ∞ and 0 < m2 ≤ M2 < ∞ are those given in case (1), with

m1 diam κ1 (�) < M1 C2 and m2 diam κ2 (�) < M2 C2.

If a1 + β1 + α1 < 1 and a2 + β2 + α2 = 1. So, we can define the following convex

H :=

⎧
⎨

⎩

(u, v) ∈ H1
0 (�) × H1

0 (�);

m1 u1 ≤ u ≤ M1 u0 and m2 v0 ≤ v ≤ M2 v0

⎫
⎬

⎭
,

where u0, v0 and u1 in H1
0 (�) are weak solutions of the following problems, respectively:

L1u0 = d–β1 (x)k1(x) u–α1
0 , u0 > 0 in �; u0 = 0, in R

N \ �,

L2v0 = d–β2 (x)k2(x) v–α2
0 , v0 > 0 in �; v0 = 0, in R

N \ �,

and

L1u1 = d–(1–κ2)β1 (x)k1(x) u–α1
1 , u1 > 0 in �; u1 = 0, in R

N \ �.

Moreover, there exist κ2 ∈ (0, 1) and C > 0 such that

C–1 d ≤ u0, u1 ≤ Cd and C–1 d ≤ v0 ≤ Cd1–κ2 hold in �.

The constants m1, M1, m2, and M2 are the ones given in case 1, with

m2 diam κ2 (�) < M2 C2.

Now, if we interchange u and k1 with v and k2 in (S), respectively, and apply the same
approach, we obtain a similar result if a1 + β1 + α1 = 1 and a2 + β2 + α2 < 1.

Case 2: We first start with the following auxiliary problems:

L1u0 = d–ξβ1 (x) k1(x) u–α1
0 , u0 > 0 in �; u0 = 0, in R

N \ �,

L2v0 = d–γβ2 (x) k2(x) v–α2
0 , v0 > 0 in �; v0 = 0, in R

N \ �,

where 0 < ξ < 1 and 0 < γ < 1 are some suitable constants to be determined. In this case, if
a1 + ξβ1 + α1 > 1 with a1 + ξβ1 < 3

2 and a2 + γβ2 + α2 > 1 with a2 + γβ2 < 3
2 , then there are

unique minimal weak solutions u0, v0 ∈ H1
loc(�) to the above problems, respectively (from

Theorem 2.2 - (2)). Furthermore, there exists a constant C > 0 such that:

C–1d
2–a1–ξβ1

α1+1 ≤ u0 ≤ Cd
2–a1–ξβ1

α1+1 and C–1d
2–a2–γβ2

α2+1 ≤ v0 ≤ Cd
2–a2–γβ2

α2+1 in�.
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Set

γ =
2 – a1 – ξβ1

α1 + 1
and ξ =

2 – a2 – γβ2

α2 + 1
.

The following equivalent system is derived
⎧
⎨

⎩

γ (α1 + 1) + ξβ1 = 2 – a1,

γβ2 + ξ (α2 + 1) = 2 – a2.
(3.13)

Thanks to the subhomogeneity condition (1.6), the linear system possesses a unique solu-
tion. Precisely, we have

γ =
(2 – a1)(α2 + 1) – β1(2 – a2)

(α1 + 1)(α2 + 1) – β1β2
and ξ =

(2 – a2)(α1 + 1) – β2(2 – a1)

(α1 + 1)(α2 + 1) – β1β2
.

We now define

H :=

⎧
⎨

⎩

(u, v) ∈ H1
loc(�) × H1

loc(�);

m1 u0 ≤ u ≤ M1 u0 and m2 v0 ≤ v ≤ M2 v0

⎫
⎬

⎭
.

By following the same arguments as in case 1, we deduce that T is well-defined and that
T (H) ⊂H. It remains to prove the continuity and compactness of T .

• (T is a compact operator). For this aim, we consider a bounded sequence {(un, vn)}n ⊂
H. Then up to a sub-sequence, that (un, vn)

H1
loc(�)×H1

loc(�)
⇀ (u, v), (un, vn)

Lr
loc(�)→ (u, v) for 1 ≤

r < 2∗ and (un(x), vn(x)) → (u(x), v(x)) a.e. in �.
By definition of the operator T , we have T (un, vn) = (T1(vn),T2(un)). Now, from Theo-

rem 2.2 - (2), we have (T1(vn),T2(un)) ∈ H1
loc(�) × H1

loc(�) satisfying:

T1(vn), T2(un) > C(K) for all K � �, (3.14)

(T1(vn))θ ∈ H1
0 (�) and (T2(un))θ ∈ H1

0 (�),

for some θ ≥ 1, and C(K) > 0 does not depend on n (since T1(vn),T2(un) ∈H), with
∫

�

∇T1(vn) · ∇ϕ dx

+
C(N , s1)

2

∫

RN

∫

RN

(
T1(vn)(x) – T1(vn)(y)

) (
ϕ(x) – ϕ(y)

)

|x – y|N+2s1
dx dy

=
∫

�

k1(x) v–β1
n T1(vn)–α1 ϕ(x) dx,

∫

�

∇T2(un) · ∇ψ dx

+
C(N , s2)

2

∫

RN

∫

RN

(
T2(un)(x) – T2(un)(y)

) (
ψ(x) – ψ(y)

)

|x – y|N+2s2
dx dy

=
∫

�

k2(x) u–β2
n T2(un)–α2 ψ(x) dx,

(3.15)

for all (ϕ,ψ) ∈ H1
0 (�) × H1

0 (�), with compact supports contained in �.



Gouasmia Boundary Value Problems        (2024) 2024:126 Page 28 of 36

Now, we distinguish two cases:
• If α1+1

2(2–a1–ξβ1) ≤ 1 and α2+1
2(2–a2–γβ2) ≤ 1. Let us insert

(ϕ,ψ) = (T1(vn),T2(un)) ∈ H1
0 (�) × H1

0 (�),

as a test function in (3.15), we can derive
∫

�

|∇T1(vn)|2 dx ≤ C
∫

�

d(x)–a1–(α1–1)γ –β1ξ dx = const.
∫

�

|∇T2(un)|2 dx ≤ C
∫

�

d(x)–a2–(α2–1)ξ–β2γ dx = const.

where C > 0 does not depend on n.
By combining this fact with the same argument used in case 1, we are able to pass the

limit in (3.15). Again by repeating the proof of case 1, compactness of the operator T
holds.

• If α1+1
2(2–a1–ξβ1) > 1 and α2+1

2(2–a2–γβ2) > 1. In this case, we have (Theorem 2.2)

((T1(vn))ν , (T2(un))ν) ∈ H1
0 (�) × H1

0 (�),

if ν > max
{

α1+1
2(2–a1–ξβ1) , α2+1

2(2–a2–γβ2)

}
.

Let now {(ϕm,ψm)}n be a sequence in C∞
c (�) × C∞

c (�), such that

(ϕm,ψm) → ((T1(vn))ν , (T2(un))ν) in H1
0 (�) × H1

0 (�).

Setting (ϕn,m,ψn,m) := (min {(T1(vn))ν ,ϕm} , min {(T2(un))ν ,ψm}). It is easy to observe that
(ϕn,m,ψn,m) ∈ H1

0 (�) × H1
0 (�) and compact supports contained in �. Then, by testing the

weak formulation (3.15) by (ϕn,m,ψn,m), we obtain

∫

�

∇T1(vn) · ∇ϕn,m dx

+
C(N , s1)

2

∫

RN

∫

RN

(
T1(vn)(x) – T1(vn)(y)

) (
ϕn,m(x) – ϕn,m(y)

)

|x – y|N+2s1
dx dy

=
∫

�

k1(x) v–β1
n T1(vn)–α1 ϕn,m(x) dx.

∫

�

∇T2(un) · ∇ψn,m dx

+
C(N , s2)

2

∫

RN

∫

RN

(
T2(un)(x) – T2(un)(y)

) (
ψn,m(x) – ψn,m(y)

)

|x – y|N+2s2
dx dy

=
∫

�

k2(x) u–β2
n T2(un)–α2 ψn,m(x) dx.

By applying the dominated convergence theorem, we conclude

4ν

(ν + 1)2

∫

�

∣
∣
∣∇(T1(vn))

ν+1
2
∣
∣
∣
2

dx ≤
∫

�

k1(x)T1(vn)–α1+νv–β1
n dx

≤ C
∫

�

d(x)–a1–γ (α1–ν)–β1ξ dx = const.
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4ν

(ν + 1)2

∫

�

∣
∣
∣∇(T2(un))

ν+1
2
∣
∣
∣
2

dx ≤
∫

�

k2(x)T2(un)–α2+νu–β2
n dx

≤ C
∫

�

d(x)–a2–ξ (α2–ν)–β2γ dx = const.

Hence
{

(T1(vn))
ν+1

2
}

n
and

{
(T2(un))

ν+1
2
}

n
are uniformly bounded in H1

0 (�). On the other
hand, for all K � � (see (3.14)), we have

∫

K
|∇(T1(vn)|2 dx ≤ C1–ν(K)

∫

K
(T1(vn))ν–1 |∇(T1(vn)|2 dx

≤ 4C1–ν(K)

(ν + 1)2

∫

K

∣
∣
∣∇((T1(vn))

ν+1
2
∣
∣
∣
2

dx ≤ C0,
∫

K
|∇(T2(un)|2 dx ≤ C1–ν(K)

∫

K
(T2(un))ν–1 |∇(T2(un)|2 dx

≤ 4C1–ν(K)

(ν + 1)2

∫

K

∣
∣
∣∇((T2(un))

ν+1
2
∣
∣
∣
2

dx ≤ C0,

where C0 > 0 is independent of n. Then, we deduce that {(T1(vn),T2(un))}n is uniformly
bounded in H1

loc(�) × H1
loc(�). Hence, there exists a sub-sequence denoted again by

{(T1(vn),T2(un))}n such that:

(T1(vn),T2(un)) → (û, v̂) in H1
loc(�) × H1

loc(�),

(T1(vn),T2(un)) → (û, v̂) in L2
loc(�) × L2

loc(�),

(T1(vn)(x),T2(un)(x)) → (û(x), v̂(x)) a.e. in � × �. (3.16)

Furthermore, by using Fatou’s Lemma, we have

∫

�

∣
∣
∣∇û

ν+1
2
∣
∣
∣
2

dx ≤ lim inf
n→∞

∫

�

∣
∣
∣∇(T1(vn))

ν+1
2
∣
∣
∣
2

dx < C,
∫

�

∣
∣
∣∇ v̂

ν+1
2
∣
∣
∣
2

dx ≤ lim inf
n→∞

∫

�

∣
∣
∣∇(T2(un))

ν+1
2
∣
∣
∣
2

dx < C,

where C is a positive constant. On the one hand, from (3.14) and based on the point-wise
convergence (3.16), exists a constant CK > 0 for all K � �, where:

û(x), v̂(x) ≥ CK > 0 for a.e. x ∈ K .

Now, we can pass to the limit in the left-hand side of (3.15) by employing the weak con-
vergence property and following the proof outlined in [11, Theorem 3.6, p. 240–242]. For
the right-hand side, by using Hardy’s inequality, we obtain for ϕ ∈ H1

0 (�) and ψ ∈ H1
0 (�),

with supp ϕ, supp ψ � �:
∫

�

k1(x)v–β1
n T1(vn)–α1ϕdx ≤ Csuppϕ

∫

suppϕ

d1–a1–ξβ1
ϕ

d
dx ≤ Csuppϕ ‖ϕ‖H1

0 (�) ,

and
∫

�

k2(x)u–β2
n T2(un)–α2ψdx ≤ Csuppψ

∫

suppψ

d1–a2–γβ2
ψ

d
dx ≤ Csuppψ ‖ψ‖H1

0 (�) .
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Now, by using Vitali’s convergence Theorem, we conclude that

∫

�

∇û · ∇ϕ dx +
C(N , s1)

2

∫

RN

∫

RN

(
û(x) – û(y)

) (
ϕ(x) – ϕ(y)

)

|x – y|N+2s1
dx dy

=
∫

�

k1(x) v–β1 û–α1 ϕ(x) dx,

∫

�

∇ v̂ · ∇ψ dx +
C(N , s2)

2

∫

RN

∫

RN

(
v̂(x) – v̂(y)

) (
ψ(x) – ψ(y)

)

|x – y|N+2s2
dx dy

=
∫

�

k2(x) u–β2 v̂–α2 ψ(x) dx,

(3.17)

for all (ϕ,ψ) ∈ H1
0 (�) × H1

0 (�), with compact supports contained in �. Now, by subtract-
ing (3.15) from (3.17) with test functions

(
(T1(vn) – û)ϕ2

1 , (T2(un) – v̂)ψ2
1
)

,

with (ϕ1,ψ1) ∈ C∞
c (�) × C∞

c (�), we obtain

∫

�

∇(T1(vn) – û)∇((T1(vn) – û)ϕ2
1 ) dx

+
C(N , s1)

2

×
∫

RN

∫

RN

[
(T1(vn) – û)(x) – (T1(vn) – û)(y)

] [
((T1(vn) – û)ϕ2

1 )(x) – ((T1(vn) – û)ϕ2
1 )(y)

]

|x – y|N+2s1
dx dy

=
∫

�

k1(x)
[
v–β1

n T1(vn)–α1 – v–β1 û–α1
]

(T1(vn) – û)ϕ2
1 dx,

∫

�

∇(T2(un) – v̂)∇((T2(un) – v̂)ψ2
1 ) dx

+
C(N , s2)

2

×
∫

RN

∫

RN

[
(T2(un) – v̂)(x) – (T2(un) – v̂)(y)

] [
((T2(un) – v̂)ψ2

1 )(x) – ((T2(un) – v̂)ψ2
1 )(y)

]

|x – y|N+2s2
dx dy

=
∫

�

k2(x)
[
u–β2

n T2(un)–α2 – u–β2 v̂–α2
]

(T2(un) – v̂)ψ2
1 dx.

By Young’s inequality and after straightforward computations, we deduce that

1
2

∫

�

∣
∣∇(T1(vn) – û)

∣
∣2

ϕ2
1 dx

≤ Csuppϕ1

[∥
∥T1(vn) – û

∥
∥

L2(suppϕ1) +
∥
∥T1(vn) – ũ

∥
∥2

L2(suppϕ1)

]
→ 0 as n → ∞,

1
2

∫

�

∣
∣∇(T2(un) – v̂)

∣
∣2

ψ2
1 dx

≤ Csuppψ1

[∥
∥T2(un) – v̂

∥
∥

L2(suppψ1) +
∥
∥T2(un) – v̂

∥
∥2

L2(suppψ1)

]
→ 0 as n → ∞.

Then, the sequence
{
(T1(vn) – û,T2(un) – û)

}

n converges in H1
loc(�) × H1

loc(�), as desired.
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• (T is a continuous operator). Indeed, let {(un, vn)}n ⊂H be an arbitrary sequence ver-
ifying:

(un, vn) → (u0, v0) in H1
loc(�) × H1

loc(�) as n → ∞.

It follows that, up to sub-sequence,

(un, vn) → (u0, v0) a.e. in � × � as n → ∞.

We know that T (un, vn) = (T1(vn),T2(un)) and T (u0, v0) = (T1(v0),T2(u0)). On the other
hand, since T is compact, there exists a sub-sequence denoted again by {(T1(vn),T2(un))}n

such that:

(T1(vn),T2(un)) → (û, v̂) in H1
loc(�) × H1

loc(�),

(T1(vn),T2(un)) → (û, v̂) in L2(�) × L2(�),

(T1(vn)(x),T2(un)(x)) → (û(x), v̂(x)) a.e. in � × �.

Now, by combining this fact with the argument used in the above proof of the compactness
of the operator T , we infer that there exists a constant C(K) > 0 for any K � �, such that

û, v̂ ≥ C(K) in K ,

and there exists θ ≥ 1, such that ûθ , v̂θ ∈ H1
0 (�), where

∫

�

∇û · ∇ϕ dx +
C(N , s1)

2

∫

RN

∫

RN

(
û(x) – û(y)

) (
ϕ(x) – ϕ(y)

)

|x – y|N+2s1
dx dy

=
∫

�

k1(x) v–β1
0 û–α1 ϕ(x) dx,

∫

�

∇ v̂ · ∇ψ dx +
C(N , s2)

2

∫

RN

∫

RN

(
v̂(x) – v̂(y)

) (
ψ(x) – ψ(y)

)

|x – y|N+2s2
dx dy

=
∫

�

k2(x) u–β2
0 v̂–α2 ψ(x) dx.

for all (ϕ,ψ) ∈ H1
0 (�) × H1

0 (�), and suppϕ, suppψ � �. Thus, by uniqueness follows from
Theorem 2.2-2), we obtain T (u0, v0) = (û, v̂), which implies that T is continuous. Again,
by Schauder’s fixed-point Theorem, it is easy to see that T has a fixed point in H, which
is a pair of positive solutions to the system (S). We indicate that the remaining cases will
be addressed by combining cases 1 and 2. We will only point out the way we choose the
convex which allows us to apply Schauder’s fixed-point theorem. More precisely, we have

Case 3: Firstly, if a1 +β1 +α1 > 1 with a1 +β1 < 3
2 . By using Theorem 2.2-(2), the problem:

L1u0 = d(x)–β1 k1(x) u–α1
0 , u0 > 0 in �; u0 = 0, in R

N \ �,

has a unique minimal weak solution u0, and satisfying:

C–1d
2–a1–β1

α1+1 ≤ u0 ≤ Cd
2–a1–β1

α1+1 in �,
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where C > 0 is a constant. We consider the following scalar auxiliary problem:

L2v0 = d(x)–γβ2 k2(x) v–α2
0 , v0 > 0 in �; v0 = 0, in R

N \ �,

with γ = 2–a1–β1
α1+1 . If γβ2 + a2 + α2 < 1, Theorem 2.2 - (1), ensures the existence of a unique

weak solution v0 in H1
0 (�) to the above problem. Furthermore, there exist a constant C > 0

such that:

C–1d ≤ v0 ≤ Cd in�.

Set

H :=

⎧
⎨

⎩

(u, v) ∈ H1
loc(�) × H1

loc(�);

m1u0 ≤ u ≤ M1u0 and m2v0 ≤ v ≤ M2v0

⎫
⎬

⎭
.

Secondly, if a1 + α1 + β1(1 – κ2) > 1 for some κ2 ∈ (0, 1), with a1 + β1 < 3
2 . Hence, again by

using Theorem 2.2 - (2), the following two problems:

L1u0 = d(x)–β1 k1(x) u–α1
0 , u0 > 0 in �; u0 = 0, in R

N \ �,

and

L1u1 = d(x)–β1(1–κ2)k1(x) u–α1
1 , u1 > 0 in �; u1 = 0, in R

N \ �,

have unique positive weak solutions denoted respectively by u0 and u1, satisfying

C–1d
2–a1–β1

α1+1 ≤ u0 ≤ Cd
2–a1–β1

α1+1 in �,

and

C–1d
2–a1–β1(1–κ2)

α1+1 ≤ u1 ≤ Cd
2–a1–β1(1–κ2)

α1+1 in �,

where C > 0 is a constant. Now, we consider the scalar auxiliary problem:

L2v0 = d(x)–γβ2 k2(x) v–α1
0 , v0 > 0 in �; v0 = 0, in R

N \ �,

with γ = 2–a1–β1
α1+1 . If γβ2 + a2 + α2 = 1, Theorem 2.2 - (1), ensures the existence of a unique

weak solution v0 in H1
0 (�) to the above problem. Furthermore, there exist a constant C > 0

such that:

C–1d ≤ v0 ≤ Cd1–κ2 in�.

Set

H :=

⎧
⎨

⎩

(u, v) ∈ H1
loc(�) × H1

loc(�);

m1u1 ≤ u ≤ M1u0 and m2v0 ≤ v ≤ M2v0

⎫
⎬

⎭
.
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Case 4: Similar to Case 3, we first assume a2 + β2 + α2 > 1 with a2 + β2 < 3
2 . By using The-

orem 2.2 - (2), the following problem:

L2v0 = d(x)–β2 k2(x) v–α2
0 , v0 > 0 in �; v0 = 0, in R

N \ �,

has a unique minimal weak solution v0, and satisfying: for some C > 0

C–1d
2–a2–β2

α2+1 ≤ v0 ≤ Cd
2–a2–β2

α2+1 in �.

Now, we consider the following auxiliary problem:

L1u0 = d(x)–ξβ1 k1(x) u–α1
0 , u0 > 0 in �; u0 = 0, in R

N \ �,

with ξ = 2–a2–β2
α2+1 . If ξβ1 + a1 + α1 < 1, Theorem 2.2 - (1), ensures the existence of a unique

weak solution u0 in H1
0 (�) to the above problem. Furthermore, there exist a constant C > 0

such that:

C–1d ≤ u0 ≤ Cd in�.

Set

H :=

⎧
⎨

⎩

(u, v) ∈ H1
loc(�) × H1

loc(�);

m1u0 ≤ u ≤ M1u0 and m2v0 ≤ v ≤ M2v0

⎫
⎬

⎭
.

Secondly, if a2 + α2 + β2(1 – κ1) > 1 for some κ1 ∈ (0, 1), with a2 + β2 < 3
2 . Hence, again by

using Theorem 2.2 - (2), the following two problems:

L2v0 = d(x)–β2 k2(x) v–α2
0 , v0 > 0 in �; v0 = 0, in R

N \ �,

and

L2v1 = d(x)–β2(1–κ1)k2(x) v–α2
1 , v1 > 0 in �; v1 = 0, in R

N \ �,

have unique positive weak solutions denoted respectively by v0 and v1, satisfying

C–1d
2–a2–β2

α2+1 ≤ v0 ≤ Cd
2–a2–β2

α2+1 in �,

and

C–1d
2–a2–β2(1–κ1)

α2+1 ≤ v1 ≤ Cd
2–a2–β2(1–κ1)

α2+1 in �,

where C > 0 is a constant. Now, we consider the following auxiliary problem:

L1u0 = d(x)–ξβ1 k1(x) u–α1
0 , u0 > 0 in �; u0 = 0, in R

N \ �,
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with ξ = 2–a2–β2
α2+1 . If ξβ1 + a1 + α1 = 1, then Theorem 2.2 - (1) guarantees the existence of a

unique weak solution u0 in H1
0 (�) to the above problem. Moreover, there exists a positive

constant C such that:

C–1d ≤ u0 ≤ Cd1–κ1 in�.

Set

H :=

⎧
⎨

⎩

(u, v) ∈ H1
loc(�) × H1

loc(�);

m1u0 ≤ u ≤ M1u0 and m2v1 ≤ v ≤ M2v0

⎫
⎬

⎭
.

Part 2: Uniqueness of a pair of positive weak solutions.
Suppose by contradiction that there exist two positive weak solution pairs (u1, v1) and

(u2, v2) to system (S), belonging to the conical shell H (defined in each case of the Part 1
cases). This means that

T (u1, v1) = (u1, v1) and T (u2, v2) = (u2, v2) ,

this equivalently:

(T1 ◦ T2) (u1) = u1, (T2 ◦ T1) (v1) = v1 and (T1 ◦ T2) (u2) = u2, (T2 ◦ T1) (v2) = v2.

Now, we define:

cmax := sup {c ∈R+, c u2 ≤ u1 and c v2 ≤ v1} . (3.18)

We have:
(1) 0 < cmax < ∞, since (u1, v1) , (u2, v2) in the conical shell H.
(2) If one can show that cmax ≥ 1, then our objective is achieved, as it implies:

u2 ≤ u1 and v2 ≤ v1 in �.

Thus, by interchanging the roles of (u1, v1) and (u2, v2), we have

u1 ≤ u2 and v1 ≤ v2 in �.

So, we suppose by contradiction that 0 < cmax < 1. From Remark 1.1, we get

T1(cmaxv2) = (cmax)
– β1

α1+1 T1(v2), T2(cmaxu2) = (cmax)
– β2

α2+1 T1(u2),

and

(T2 ◦ T1)(cmaxv2) = (cmax)
β2

α2+1 · β1
α1+1 (T2 ◦ T1)(v2) = (cmax)

β2
α2+1 · β1

α1+1 v2,

(T1 ◦ T2)(cmaxu2) = (cmax)
β1

α1+1 · β2
α2+1 (T1 ◦ T2)(u2) = (cmax)

β1
α1+1 · β2

α2+1 u2.
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Also, by using the weak comparison principle (Theorem 2.1), both mappings T1 ◦ T2 and
T2 ◦ T1, being (pointwise) order-preserving mappings, we get that

u1 = (T1 ◦ T2)(u1) ≥ (T1 ◦ T2)(cmaxu2) = (cmax)
β1

1+α1
· β2

1+α2 u2

v1 = (T2 ◦ T1)(v1) ≥ (T2 ◦ T1)(cmaxv2) = (cmax)
β1

1+α1
· β2

1+α2 v2

from 0 < cmax < 1 combined with (1.6), we deduce that

(cmax)
β1

1+α1
· β2

1+α2 > cmax

from which we get a contradiction thanks to the definition of cmax in (3.18). Then, cmax ≥
1. �
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