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Existence of solutions for a class of nonlocal elliptic transmission systems

Abdelmalek Brahim∗, Tamrabet Sameh and Djellit Ali

abstract: This paper is devoted to the study of the existence of solutions for a class of elliptic transmi-
sion system with nonlocal term. Using the adequate variational approch, more precisely, the Mountain Pass
Theorem, we obtain at least one nontrivial weak solution.

Key Words:Nonlinear elliptic systems, p(x)-Kirchhoff-type problems, Transmission elliptic system,
Mountain pass theorem.
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1. Introduction

Let Ω be a smooth bounded domain of RN , N ≥ 2, and let Ω1 ⊂ Ω be a subdomain with smooth
boundary Σ satisfying Ω1 ⊂ Ω. Writing Γ = ∂Ω and Ω2 = Ω\Ω1 we have Ω = Ω1 ∪Ω2 and ∂Ω2 = Σ ∪ Γ.

The purpose of this paper is to study the existence of at least one nontrivial weak solutions for the
following class of nonlocal elliptic

−M1

(∫
Ω1

1

p (x)
|∇u|p(x) dx

)
div

(
|∇u|p(x)−2 ∇u

)
= f (x, u) in Ω1

−M2

(∫
Ω2

1

p (x)
|∇v|p(x)dx

)
div

(
|∇v|p(x)−2 ∇v

)
= g (x, v) in Ω2

v = 0 on Γ

, (1.1)

with the transmission condition

u = v,

and M1

(∫
Ω1

1

p (x)
|∇u|p(x) dx

)
∂u

∂η
= M2

(∫
Ω2

1

p (x)
|∇v|p(x)dx

)
∂v

∂η
on Σ.

Where p ∈ C
(
Ω
)
, and M1 and M2 are continuous functions. η is outward normal to Ω2 and is

inward Ω1. The operator div
(
|∇u|p(x)−2 ∇u

)
is called the p(x)-Laplacian, and becomes p−Laplacian

when p(x) = p (a constant). We confine ourselves to the case where M1 = M2 = M for simplicity,
The problem (1.1) is related to the stationary problem of two wave equations of the Kirchhoff type

utt −M1

(∫
Ω1

|∇u|2 dx
)
∆u = f (x, u) in Ω1

utt −M2

(∫
Ω2

|∇v|2dx
)
∆v = g (x, v) in Ω2

,
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which models the transverse vibrations of the membrane composed by two different materials in Ω1 and
Ω2. Controllability and stabilization of transmission problems for the wave equations can be found in
[20], [23]. We refer the reader to [2] for the stationary problems of Kirchhoff type, to [6] for elliptic
equation p−Kirchhoff type, and to [1] for p(x)−Kirchhoff type equation in unbounded domain.

We investigate the problem (1.1) in the case f (x, u) = λ1 |u|q(x)−2
u, g (x, v) = λ2 |v|q(x)−2

v where

λ1,λ2 > 0 and p, q ∈ C
(
Ω
)
such that 1 < q (x) < p∗ (x) where p∗ (x) = Np(x)

N−p(x) if p (x) < n or p∗ (x) = ∞
otherwise.

In order to study the existence of solutions, we assume that:

(M1) There exists m0 > 0 such that m0 ≤ M (t) .

(M2) There exists 0 < µ < 1 such that M̂(t) ≥ (1− µ)M(t)t.

such that M̂ =
∫ t

0
M (s) ds.

The solution of (1.1) belonging to the framework generalized Sobolev space, which we will be briefly
discribed in the second section.

E :=
{
(u, v) ∈ W 1,p(x) (Ω1)×W

1,p(x)
Γ (Ω2) : u = v on Σ

}
,

where
W

1,p(x)
Γ (Ω2) =

{
v ∈ W

1,p(x)
Γ (Ω2) : v = 0 on Γ

}
equipped with the norm ∥(u, v)∥E = ∥∇u∥p(x),Ω1

+ ∥∇v∥p(x),Ω2
.

Definition 1.1 We say that (u, v) ∈ E is a weak solution of (1.1) if

M

(∫
Ω1

1

p (x)
|∇u|p(x) dx

)∫
Ω1

|∇u|p(x) ∇u∇zdx

+M

(∫
Ω2

1

p (x)
|∇v|p(x) dx

)∫
Ω2

|∇v|p(x) ∇v∇wdx

−λ1

∫
Ω1

|u|q(x)−1
uzdx− λ2

∫
Ω2

|v|q(x)−1
vwdx = 0,

for any (z, w) ∈ E.

2. Preliminary results

In order to study the problem (1.1), we recall some definitions and basic properties of the variable
exponent Lebesgue–Sobolev spaces and introduce some notations. we refer
Set

C+

(
Ω
)
=

{
h : h ∈ C

(
Ω
)
, h (x) > 1, for all x ∈ Ω

}
For p ∈ C+

(
Ω
)
, denote by 1 < p− := min

x∈Ω
p (x) ≤ p+ := max

x∈Ω
p (x) < ∞, we introduce the variable

exponent Lebesgue space

Lp(x) (Ω) :=

{
u;u : Ω → R is a measurable and

∫
Ω

|u|p(x) dx < +∞
}
.

We recal the following so-called Luxemburg norm

|u|p(x),Ω := inf

{
α > 0;

∫
Ω

∣∣∣∣u (x)α

∣∣∣∣p(x) dx ≤ 1

}
,

which is separable and reflexive Banach space.
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Let us define the space

W 1,p(x) (Ω) :=
{
u ∈ Lp(x) (Ω) ; |∇u| ∈ Lp(x) (Ω)

}
,

equipped with the norm

∥u∥1,p(x),Ω = |u|p(x),Ω + |∇u|p(x),Ω , ∀u ∈ W 1,p(x) (Ω) .

Let W
1,p(x)
0 (Ω) be the closure of C∞

0 (Ω) in W 1,p(x) (Ω).

Proposition 2.1 ( [15]) W
1,p(x)
0 (Ω) is separable reflexive Banach space.

Proposition 2.2 ( [14], [13]) Assume that Ω is bounded domain, the boundary of Ω prossesses the cone
property and p, q ∈ C+

(
Ω
)
and q (x) < p∗ (x) for any x ∈ Ω, then the embedding from W 1,p(x) (Ω) to

Lq(x) (Ω) is compact and continuous.

An important role in manipulating the generalized Lebesgue-Sobolev spaces is played by the mapping
ρ defined by

ρp(x),Ω (u) :=

∫
Ω

|∇u|p(x) dx.

Proposition 2.3 ( [14]) For u, uk ∈ Lp(x) (Ω) ; k = 1, 2, ..., we have

(i) |u|p(x),Ω > 1 (= 1;< 1)implies ρp(x),Ω (u) > 1 (= 1;< 1) ;

(ii) |u|p(x),Ω > 1 implies ∥u∥p
−
≤ ρp(x),Ω (u) ≤ ∥u∥p

+

;

(iii) |u|p(x),Ω < 1 implies ∥u∥p
+

≤ ρp(x),Ω (u) ≤ ∥u∥p
−
;

(iv) |u|p(x),Ω = a > 0 if and only if ρp(x),Ω
(
u
a

)
= 1.

Proposition 2.4 ( [14]) Let p ∈ C+ (Ω) , then the conjugate space of Lp(x) (Ω) is Lq(x) (Ω) , where 1
p(x) +

1
q(x) = 1. For any u ∈ Lp(x) (Ω) and v ∈ Lq(x) (Ω) we have∣∣∣∣∫

Ω

uvdx

∣∣∣∣ ≤ 2 |u|p(x),Ω |v|q(x),Ω .

Proposition 2.5 ( [14]) If u, un ∈ Lp(x) (Ω) , n = 1, 2, ..., then the following statements are mutually
equivalent:

(1) lim
n→∞

|un − u|p(x),Ω = 0,

(2) lim
n→∞

ρp(x),Ω (un − u) = 0,

(3) un → u in measure in Ω and lim
n→∞

ρp(x),Ω (un) = ρp(x),Ω (u) .

Lemma 2.1 ( [5]) Let E be a closed subspace of W 1,p(x) (Ω1)×W 1,p(x) (Ω2) and

∥(u, v)∥ = ∥u∥1,p(x),Ω1
+ ∥v∥1,p(x),Ω2

define a norme in E equivalent to the standard norm of W 1,p(x) (Ω1)×W 1,p(x) (Ω2)
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3. Main result and proof

The Euler-Lagrange functional associated to problem (1.1) is defined as I : E → R

I (u, v) = J (u, v)−K (u, v)

where

J (u, v) = M̂

(∫
Ω1

1

p (x)
|∇u|p(x) dx

)
+ M̂

(∫
Ω2

1

p (x)
|∇v|p(x) dx

)
and

K (u, v) = λ1

∫
Ω1

1

q (x)
|u|q(x) dx+ λ2

∫
Ω2

1

q (x)
|v|q(x) dx.

Lemma 3.1 [5] The functional is well defined on E, and it is of class C1 (E,R) , and we have

I ′ (u, v) (z, w) = J ′ (u, v) (z, w)−K ′ (u, v) (z, w) ,

where

J ′ (u, v) (z, w) = M

(∫
Ω1

1

p (x)
|∇u|p(x) dx

)∫
Ω1

|∇u|p(x)−2 ∇u∇zdx

+M

(∫
Ω2

1

p (x)
|∇v|p(x) dx

)∫
Ω2

|∇v|p(x)−2 ∇v∇wdx

and

K ′ (u, v) (z, w) = λ1

∫
Ω1

|u|q(x)−1
uzdx+ λ2

∫
Ω2

|v|q(x)−1
vwdx

Lemma 3.2 Under assumptions (M1) and (M2), if p+ > q−. Then there exists λ∗ > 0 such that for
any λ1 + λ2 ∈ (0, λ∗) there exist η, b such that I (u, v) ≥ b for (u, v) ∈ E with ∥(u, v)∥E = η.

Proof: It is clear that I is even and I (0, 0) = 0.
By using the compacteness embedding of W 1,p(x) (Ω) into Lq(x) (Ω) , we obtain

|u|q(x),Ω1
≤ C1 ∥u∥p(x),Ω1

and
|v|q(x),Ω2

≤ C2 ∥v∥p(x),Ω2

Then

|u|q(x),Ω1
+ |v|q(x),Ω2

≤ C1 ∥u∥p(x),Ω1
+ C2 ∥v∥p(x),Ω2

≤ C ∥(u, v)∥E

We fix η ∈ (0, 1) such that η <
1

C
. Then the above relation implies

|u|q(x),Ω1
+ |v|q(x),Ω2

< 1, (u, v) ∈ E

By using the proposition 2.2 and 2.5, we get∫
Ω1

|u|q(x) dx ≤ c4

(
∥u∥q

+

q(x),Ω1
+ ∥u∥q

−

q(x),Ω1

)
, u ∈ W 1,p(x) (Ω1)

and ∫
Ω2

|v|q(x) dx ≤ c5

(
∥v∥q

+

q(x),Ω2
+ ∥v∥q

−

q(x),Ω2

)
, v ∈ W 1,p(x) (Ω2)
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Then, for any (u, v) ∈ E∫
Ω1

|u|q(x) dx+

∫
Ω2

|v|q(x) dx ≤ C6

(
∥u∥q(x),Ω1

+ ∥v∥q(x),Ω2

)
Hence, we deuce that ∫

Ω1

|u|q(x) dx+

∫
Ω2

|v|q(x) dx ≤ C7 ∥(u, v)∥E .

By using (M1) and (M2) , and in view the elementary inequality

|a+ b|s ≤ 2s−1 (|a|s + |b|s)

we obtain

J (u, v) = M̂

(∫
Ω1

1

p (x)
|∇u|p(x) dx

)
+ M̂

(∫
Ω2

1

p (x)
|∇v|p(x) dx

)
−λ1

∫
Ω1

1

q (x)
|u|q(x) dx− λ2

∫
Ω2

1

q (x)
|v|q(x) dx

≥ (1− µ)M

(∫
Ω1

1

p (x)
|∇u|p(x) dx

)∫
Ω1

1

p (x)
|∇u|p(x) dx

+(1− µ)M

(∫
Ω2

1

p (x)
|∇v|p(x) dx

)∫
Ω2

1

p (x)
|∇v|p(x) dx

−λ1

∫
Ω1

1

q (x)
|u|q(x) dx− λ2

∫
Ω2

1

q (x)
|v|q(x) dx

≥ m0 (1− µ)

p+

(∫
Ω1

|∇u|p(x) dx+

∫
Ω2

|∇v|p(x) dx
)

− λ1

q−

∫
Ω1

|u|q(x) dx− λ2

q−

∫
Ω2

|v|q(x) dx

≥ m0 (1− µ)

p+

(
|∇u|p

+

p(x),Ω1
+ |∇v|p

+

p(x),Ω2

)
−C7

(λ1 + λ2)

q−
∥(u, v)∥E

≥ m0 (1− µ)

p+

(
∥u∥p

+

p(x),Ω1
+ ∥v∥p

+

p(x),Ω2

)
−C7

(λ1 + λ2)

q−
∥(u, v)∥E

≥ 21−p+

m0 (1− µ)

p+

(
∥u∥p(x),Ω1

+ ∥v∥p(x),Ω2

)p+

−C7
(λ1 + λ2)

q−
∥(u, v)∥E

≥ 21−p+

m0 (1− µ)

p+
∥(u, v)∥p

+

E − C7
(λ1 + λ2)

q−
∥(u, v)∥E

By the above inequality, we define

λ∗ =
21−p+

m0 (1− µ) ηp
+−1

C7p+

Then, for any λ1+λ2 ∈ (0, λ∗) and (u, v) ∈ E with ∥(u, v)∥ = η, there exist b > 0 such that I (u, v) ≥ b.
2
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Lemma 3.3 Assume that (M1) - (M2) holds. Then there exists (e1, e2) ∈ E with ∥(e1, e2)∥ > η such
that I (e1, e2) < 0.

Proof: From (M2), we can obtain for t > t0

M̂ (t) ≤ M̂ (t0)

t
1

1−µ

0

t
1

1−µ ≤ Ct
1

1−µ

where C is constant, and t0 is an arbitrarily positive constant.
Choose u0 ∈ W 1,p(x) (Ω1) and v0 ∈ W 1,p(x) (Ω2) , u0, v0 > 0 and ∥(u, v)∥E > η. It follows that if t > 0

is large enough then

I (tu0, tv0) = M̂

(∫
Ω1

1

p (x)
|∇tu0|p(x) dx

)
+ M̂

(∫
Ω2

1

p (x)
|∇tv0|p(x) dx

)
−λ1

∫
Ω1

1

q (x)
|tu0|q(x) dx− λ2

∫
Ω2

1

q (x)
|tv0|q(x) dx

≤ C

(∫
Ω1

1

p (x)
|∇tu0|p(x) dx

) 1
1−µ

+ C

(∫
Ω2

1

q (x)
|∇tv0|p(x) dx

) 1
1−µ

−λ1

∫
Ω1

1

q (x)
|tu0|q(x) dx− λ2

∫
Ω2

1

q (x)
|tv0|q(x) dx

≤ Ct
p−
1−µ

(p−)
1

1−µ

[(∫
Ω1

|∇u0|p(x) dx
) 1

1−µ

+

(∫
Ω2

|∇v0|p(x) dx
) 1

1−µ

]

−λ1t
q+

q+

∫
Ω1

|u0|q(x) dx− λ2t
q+

q+

∫
Ω2

|v0|q(x) dx

≤ Ct
p−
1−µ

(p−)
1

1−µ

[
max

{
|∇u0|

p−
1−µ

p(x),Ω1
, |∇u0|

p+

1−µ

p(x),Ω1

}
+max

{
|∇v0|

p−
1−µ

p(x),Ω2
, |∇v0|

p+

1−µ

p(x),Ω2

}]
−λ1t

q+

q+
min

{
|v0|q

−

q(x),Ω1
, |v0|q

+

p(x),Ω1

}
− λ2t

q+

q+
min

{
|v0|q

−

q(x),Ω2
, |v0|q

+

p(x),Ω2

}
< 0

with t > 0 sufficiently small, q− < q+ < p−

1−µ and µ < 1, we conclude that I (tu0, tv0) < 0 and

I (tu0, tv0) → −∞ as t → +∞. 2

Lemma 3.4 The functional I satisfies the Palais-Smale condition (PS)c for any c ∈ R.

Proof: Let (un, vn) ⊂ E be a Palais-Smale sequence at a level c ∈ R, satisfies I (un, vn) → c and
I ′ (un, vn) → 0, we will show that (un, vn) is a bounded sequence.

c+ 1 ≥ I (un, vn)− 1
q− ⟨I ′ (un, vn) , (un, vn)⟩

≥ M̂
(∫

Ω1

1
p(x) |∇u|p(x) dx

)
+ M̂

(∫
Ω2

1
p(x) |∇v|p(x) dx

)
− λ1

∫
Ω1

1

q (x)
|u|q(x) dx

−λ2

∫
Ω2

1

q (x)
|v|q(x) dx− 1

q−
M

(∫
Ω1

1

p (x)
|∇un|p(x) dx

)∫
Ω1

|∇un|p(x) dx

− 1

q−
M

(∫
Ω2

1

p (x)
|∇vn|p(x) dx

)∫
Ω2

|∇vn|p(x) dx+
λ1

q−

∫
Ω1

|u|q(x) dx+
λ2

q−

∫
Ω2

|v|q(x) dx

≥ (1− µ)m0

p+

∫
Ω1

|∇un|p(x) dx+
(1− µ)m0

p+

∫
Ω2

|∇vn|p(x) dx− λ1

∫
Ω1

1

q (x)
|u|q(x) dx

−λ2

∫
Ω2

1

q (x)
|v|q(x) dx− m0

q−

∫
Ω1

|∇un|p(x) dx− m0

q−

∫
Ω2

|∇vn|p(x) dx

+
λ1

q−

∫
Ω1

|u|q(x) dx+
λ2

q−

∫
Ω2

|v|q(x) dx

≥ m0

(
(1− µ)

p+
− 1

q−

)∫
Ω1

|∇un|p(x) dx+m0

(
(1− µ)

p+
− 1

q−

)∫
Ω2

|∇vn|p(x) dx
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+λ1

∫
Ω1

(
1

q−
− 1

q (x)

)
|u|q(x) dx+ λ2

∫
Ω2

(
1

q−
− 1

q (x)

)
|v|q(x) dx

≥ m0

(
(1− µ)

p+
− 1

q−

)(
|∇un|p(x)p(x),Ω1

+ |∇vn|p(x)p(x),Ω2

)
≥ m0

(
(1− µ)

p+
− 1

q−

)(
∥un∥p

−

1,p(x),Ω1
+ ∥vn∥p

−

1,p(x),Ω2

)
≥ 21−p−

m0

(
(1− µ)

p+
− 1

q−

)
∥(un, vn)∥p

−
.

Since p+ < q−, dividing the above inequality by ∥(un, vn)∥ and passing to the limit as n → ∞ we
obtain a contradiction. Then the sequence (un, vn) is bounded in E.

Thus, there is a subsequence denoted again (un, vn) weakly convergent in Wp(x),q(x). We will show
that (un, vn) is strongly convergent to (u, v) in E.

we recall the elementary inequality for any ζ, η ∈ RN : 22−p |ζ − η|p ≤
(
|ζ|p−2

ζ − |η|p−2
η
)
(ζ − η) ,

(p− 1) |ζ − η|2 (|ζ|+ |η|)p−2 ≤
(
|ζ|p−2

ζ − |η|p−2
η
)
(ζ − η)

if p ≥ 2
if 1 < p < 2

Indeed (un, vn) contains a Cauchy subsequence.
Put

Up,Ω1 = {x ∈ Ω1, p (x) ≥ 2} Vp,Ω1 = {x ∈ Ω1, 1 < p (x) < 2}
Up,Ω2

= {x ∈ Ω2, p (x) ≥ 2} Vp,Ω2
= {x ∈ Ω2, 1 < p (x) < 2}

Therefore for p (x) ≥ 2, using the above inequality, we get

22−p+

M

(∫
Ω1

1

p (x)
|∇un|p(x) dx

)
M

(∫
Ω1

1

p (x)
|∇um|p(x) dx

)∫
Up,Ω1

|∇un −∇um|p(x) dx

≤ M

(∫
Ω1

1

p (x)
|∇un|p(x) dx

)
M

(∫
Ω1

1

p (x)
|∇um|p(x) dx

)∫
Up,Ω1

|∇un|p(x)−2 ∇un (∇un −∇um) dx

−M

(∫
Ω1

1

p (x)
|∇um|p(x) dx

)
M

(∫
Ω1

1

p (x)
|∇um|p(x) dx

)∫
Up

|∇um|p(x)−2 ∇um (∇un −∇um) dx

≤ M

(∫
Ω1

1

p (x)
|∇un|p(x) dx

)
M

(∫
Ω1

1

p (x)
|∇um|p(x) dx

)∫
Up,Ω1

|∇un|p(x)−2 ∇un (∇un −∇um) dx

−M

(∫
Ω1

1

p (x)
|∇un|p(x) dx

)
M

(∫
Ω1

1

p (x)
|∇um|p(x) dx

)∫
Ω1

|∇um|p(x)−2 ∇um (∇un −∇um) dx

≤ M

(∫
Ω1

1

p (x)
|∇um|p(x) dx

)
J ′ (un, vn) (un − um, 0)

−M

(∫
Ω1

1

p (x)
|∇un|p(x) dx

)
J ′ (um, vm) (un − um, 0)

= M

(∫
Ω1

1

p (x)
|∇um|p(x) dx

)
I ′ (un, vn) (un − um, 0)

−M

(∫
Ω1

1

p (x)
|∇un|p(x) dx

)
I ′ (um, vm) (un − um, 0)

+M

(∫
Ω1

1

p (x)
|∇um|p(x) dx

)
K ′ (un, vn) (un − um, 0)

−M

(∫
Ω1

1

p (x)
|∇un|p(x) dx

)
K ′ (um, vm) (un − um, 0)

if we put

Xn := M

(∫
Ω1

1

p (x)
|∇un|p(x) dx

)
then the positive numerical sequence is bounded. We can write

22−p+

XnXm

∫
Up,Ω1

|∇un −∇um|p(x) dx ≤ XmI ′ (un, vn) (un − um, 0)
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−XnI
′ (um, vm) (un − um, 0) +XmK ′ (un, vn) (un − um, 0)

−XnK
′ (um, vm) (un − um, 0) .

When 1 < p (x) < 2, we use the second inequality (see [ [1]]), to get∫
Vp,Ω1

|∇un −∇um|p(x) dx ≤
∫
Vp,Ω1

|∇un −∇um|p(x) (|∇un|+ |∇um|)
p(x)(p(x)−2)

2

(|∇un|+ |∇um|)
p(x)(2−p(x))

2 dx

≤ 2
∣∣∣|∇un −∇um|p(x) . |∇un +∇um|

p(x)(p(x)−2)
2

∣∣∣
2

p(x)

×
∣∣∣|∇un +∇um|

p(x)(2−p(x))
2

∣∣∣
2

2−p(x)

≤ 2max
i=±

(∫
Ω1

|∇un −∇um|2 |∇un +∇um|p(x)−2
dx

) pi

2

×max
i=±

(∫
Ω1

|∇un +∇um|p(x) dx
) 2−pi

2

≤ 2max
i=±

(p− − 1)
−pi

2 .max
i=±

[∫
Ω1

|∇un|p(x)−2 ∇un (∇un −∇um) dx

−
∫
Ω1

|∇um|p(x)−2 ∇um (∇un −∇um) dx

] pi

2

×max
i=±

(∫
Ω1

|∇un +∇um|p(x)
) 2−pi

2

Taking into account Proposition 3., Proposition 4., the fact that ∥I ′ (un, vn)∥ → 0 as n → ∞ and the
fact that the operator K ′ is compact, it is easy to see that

lim
n,m→∞

∫
Ω1

|∇un −∇um|p(x) dx = 0.

In the same way we show that

lim
n,m→∞

∫
Ω2

|∇vn −∇vm|p(x) dx = 0.

Hence, (un, vn) contains a Cauchy subsequence. The proof is complete. 2

Theorem 3.1 System (1.1) has at least one nontrivial solution (u, v).

Proof: In view of Lemmas 3.1, 3.2, 3.3 and 3.4, we can apply the Mountain-Pass theorem (see [1]) to
conclude that system (1.1) has a nontrivial weak solution in E. 2
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